po polsku

Astronomical Observatory of the Jagiellonian University

 

Astronomy Object of the Month: Archive

2019

May: New method of constructing inhomogeneous cosmological models
  Studies of inhomogeneous cosmological models are an actively developed branch of general relativity and cosmology. By developing new techniques for solving the physically motivated issues of Einstein's theory of gravity, we expand our knowledge of the Universe with unknown phenomena and set future directions for research. More...
 
April: Gamma-Ray Bursts zoo sorted in 3D
  A powerful tool for characterizing and classifying gamma-ray bursts (GRBs) to allow their use as tracers of the expansion history of the universe has recently been presented by an international team of researchers led by Dr. Maria Dainotti, assistant Professor at Jagiellonian University, Poland and concurrently serve as Chretienne Fellow appointed by the American Astronomical Society at Stanford University. The work, which has been published in the Astrophysical Journal, is a statistical analysis of the properties of the yet mysterious GRBs, aimed at determining a sub-group of GRBs and investigating the physical origin of these systems. More...
 
March: Compact galaxy groups observed with LOFAR radio interferometer
  LOFAR Two-metre Sky Survey (LoTSS) has detected thousands of new galaxies. International team — including scientists from the Astronomical Observatory of the Jagiellonian University — used this survey to identify the groups of galaxies from the Hickson Compact Groups and Magnitude Limited Compact Groups samples that emit at the low radio frequency of 150 MHz. Their radio emission was then characterised and the newly obtained results were compared to earlier observations and theoretical predictions for the groups. More...
 
February: Stars, galaxies and quasars from the Infrared WISE Survey
  The Wide-field Infrared Survey Explorer ( WISE) satellite has detected hundreds of millions of new infrared sources. Classifying them reliably is, however, a very challenging task. Simple colour cuts are often not sufficient; for satisfactory levels of completeness and purity, more sophisticated classification methods are needed. A team of astronomers from Jagiellonian University and other Polish research centers is developing new, automated methods of source classification in full-sky WISE data. More...
 
January: Possible link between relativistic jets and accretion disk found in the giant quasar 4C+74.26
  4C+74.26 is a quasar located about 1.4 billion light years away from us - one of the few quasars with giant radio lobes spreading across millions light years. An team of researchers led by Dr. Gopal Bhatta from the Jagiellonian University in Kraków studied the source using multifrequency observations from the ground and space based telescopes. The team discovered that the optical emission delayed behind radio emission by ~250 days. The authors proposed that the delay may indicate a scenario in which flux modulations arose due to magnetic disruptions at the innermost regions of the accretion disk. Such a lag between two emission bands is relatively rarely observed and it could help in understating the most challenging issues in modern astrophysics. More...
 

2018

December: Kordylewski Clouds – dust moons of the Earth-Moon System
  At the end of October 2018, an interesting set of publications, by a team of Hungarian scientists, were published in the Monthly Notices of the Royal Astronomical Society. Judith Sliz-Balogh, Andras Bart and Gabor Horvath reported their observations of the Earth’s dust moon. The initiator of the search for these dusty moons of Earth was doc. Kazimierz Kordylewski from the Astronomical Observatory of the Jagiellonian University. More...
 
November: Blazars observed behind the Magellanic Clouds
  Identification of AGNs in dense stellar fields such as the Large and Small Magellanic Clouds (MCs) is extremely challenging due to large densities of stars in the interstellar medium. Among the 758 MQS quasars and 898 unidentified objects, a sample of 44 blazar candidates were identified with respect to their radio, optical, and mid-infrared properties. The newly selected blazar candidates possess the long-term multi-colour (I nad V filters) photometric data from the OGLE, multi-colour mid-infrared observations, and archival radio data for at least one frequency. Moreover, nine blazar candidates have radio polarization data. The results are accepted by Astrophysical Journal. More...
 
October: SBS B1646+499: black hole with a jumbled past
  Blazars constitute a particular class of so-called active galaxies (AGNs). These exotic objects emit huge amount of energy. Blazars host very masive black holes in their centers, surrounded by accretion discs and toruses. Their high-energy radiation is mostly emitted in collimated streams called jets. The emission of such objects is dominated by the relativistically boosted, non-thermal emission of the jets observed at a small angle to the observer on Earth. In the case of blazar SBS B1646+499, the galaxy activity phase associated with the jet production has already occurred at least twice. The results are accepted by Astrophysical Journal. More...
 
September: Detection of Periodic Radio Signal from the Blazar PKS 0219-164
  PKS 0219-164 (z=0.7) is a BL Lac source that been detected over a broad range of the electromagnetic spectrum including radio, infra-red, optical, X and gamma rays. The accurate position of the source at radio frequency (2700 MHz) and its optical counterpart was measured in 1977. The decade-long 15 GHz radio observations of the blazar PKS 0219-164 from the 40-m telescope OVRO were recently analyzed. Study revealed a strong repeating signal with a periodicity of ∼270 days. The results are published in Astrophysical Journal More...
 
August: TXS 0506+56: discovery of an energetic cosmic neutrino source due to very high energy gamma ray observations
  On September 22nd last year the Ice Cube Neutrino Observatory at the South Pole detected a high energy neutrino with a likely cosmic origin. A single neutrino does not suffice to identify its source. Very soon after its detection telescopes working at different wavelengths of the electromagnetic spectrum started to observe the possible location it came from. The results are published in Science. More...
 
July: First long term all-frequency power spectral analysis of OJ 287
  The international team headed by Dr Arti Goyal from the Astronomical Observatory of the Jagiellonian University conducted the first long term all-frequency power spectral analysis for OJ 287, using also the data from Kepler satellite and constructing the optical variability power spectrum without any gaps. The results are published in The Astronomical Journal. More...
 
June: In-depth measurements of the interstellar asteroid ‘Oumuamua unveil its turbulent past and verify previous reports
  ‘Oumuamua is the first astronomical object known to science to have entered the Solar System from the interstellar space, having been ejected from its original planetary system. Using the giant Gemini North telescope in Hawaii, a team of scientists led by astronomers from the Jagiellonian University in Kraków conducted an in-depth study of the body. Among other findings, the study revealed that ‘Oumuamua is “tumbling” through space, consistent with a collision in the distant past, as well as verified and expanded upon a number of previous reports. The results have just appeared in the latest issue of Nature Astronomy. More...
 



Contact:

Elżbieta Kuligowska
Astronomical Observatory of the Jagiellonian University
Elzbieta.Kuligowska [at] oa.uj.edu.pl

TKGS