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ABSTRACT. We present a pedagogical review of some of the methods employed in Eulerian computational
fluid dynamics (CFD). Fluid mechanics is governed by the Euler equations, which are conservation laws for
mass, momentum, and energy. The standard approach to Eulerian CFD is to divide space into finite volumes or
cells and store the cell-averaged values of conserved hydro quantities. The integral Euler equations are then
solved by computing the flux of the mass, momentum, and energy across cell boundaries. We review both first-
order and second-order flux assignment schemes. All linear schemes are either dispersive or diffusive. The
nonlinear, second-order accurate total variation diminishing (TVD) approach provides high-resolution capturing
of shocks and prevents unphysical oscillations. We review the relaxing TVD scheme, a simple and robust method
to solve systems of conservation laws such as the Euler equations. A three-dimensional relaxing TVD code is
applied to the Sedov-Taylor blast-wave test. The propagation of the blast wave is accurately captured and the
shock front is sharply resolved. We apply a three-dimensional self-gravitating hydro code to simulating the
formation of blue straggler stars through stellar mergers and present some numerical results. A sample three-
dimensional relaxing TVD code is provided in the Appendix.

1. INTRODUCTION shocks, which frequently occur and play an important role in

Astrophvsical structure f i dihe d . fast gasdynamics. The differential Euler equations are ill defined
strophysical structure formation and the dynamics of astro- ?t shock discontinuities where derivatives are infinite. Much

physical systems involve n_onlmeargasdynamlcal processesthaeffort has been devoted to solving this problem, and a field of
cannot be modeled analytically but require numerical methods.

One would like to address the challenging problem of star yvork has resulted from it. Computational fluid dynamics (CFD)

formation and how this process produces planetary systems.IS a powerful approach to_ simulating fluid flow with gmphasis
Observations of the X-ray emission from hot gas in galaxy on hlgh-_resolu_tl_o_n capturing of .ShOCkS and preve_:ntlon of nu-
clusters, the Sunyaev-Zeldovich effect in the cosmic microwave merical instabilities. Both Eulerian and Lagrangian methods
background (CMB) spectrum, and thed-_jorest in the spectra have been. developed. )
of quasars are meaningful only if we understand the gas- L-2drangian methods based on smoothed-particle hydro-
dynamical processes involved. The evolution of complex sys- dynamics (SPH; Gingold & Monaghan 1977; Lucy 1977) con-
tems is best modeled using numerical simulations. ;lder a Monte Carlo approximation to solving the fluid equa-
A large class of astrophysical problems involve collisional NS, somewhat analogous kebody methods for the Viasov
systems where the mean free path is much smaller than aleguation. SPH schemes follow the trajectories of particles of
length scales of interest. Hence, one can appropriately adopfixed mass that represent fluid elements. The Lagrangian forms
an ideal fluid description of matter where the thermodynamical ©f the Euler equations are solved to determine smoothed fluid
properties of the fluid obey well-known equations of state. vVariables such as density, velocity, and temperature. The par-
Conservation of mass, momentum, and energy allows one toticle formulation does not naturally capture shocks, and arti-
write the Euler equations that govern fluid mechanics (see Lan-ficial viscosity is added to prevent unphysical oscillations.
dau & Lifshitz 1987). This formalism is an ideal basis for However, the addition of artificial viscosity broadens shocks
simulating astrophysical fluids. over several smoothing lengths and degrades the resolution.
Hydrodynamical simulation is faced with challenging prob- The Lagrangian approach has a large dynamic range in length
lems, but advancements in the field have made it an importantbut not in mass. It achieves good spatial resolution in high-
tool for theoretical astrophysics. One of the main challenges density regions but does poorly in low-density regions. SPH
in simulating complex fluid flows is the capturing of strong schemes must smooth over a large number of neighboring par-
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ticles, making it computationally expensive and challenging to the kinetic energy from the total energy. For an ideal gas, the
implement in parallel. pressureP(e) is related to the thermal energy by the equation

The standard approach to Eulerian methods is to discretizeof state
the problem and solve the integral Euler equations on a Car-
tesian grid by computing the flux of mass, momentum, and P=(y— 1 (5)
energy across grid cell boundaries. In conservative schemes,
the flux taken out of one cell is added to the neighboring cell, ) ) - )
and this ensures the correct shock propagation. Flux assignmen/herey is the ratio of specific heats. Another thermodynamic
schemes based on thetal variation diminishing condition ~ Vvariable that is of importance is the sound spegd , which is
(Harten 1983) have been designed for high-order accuracy andiven by
high-resolution capturing of shocks, while preventing un-
physical oscillations. The Eulerian approach has a large dy- , P 4P
namic range in mass but not in length, opposite to that of Cc=— =" (6)
Lagrangian schemes. In general, Eulerian algorithms are com-
putationally faster by several orders of magnitude. They are
also easy to implement and to parallelize.

The purpose of this paper is to present a pedagogical revie
of some of the methods employed in Eulerian computational . . . ) : R
fluid dynamics. In 8 2, we briefly review the Euler equations tIOI’].S af‘d therefore are ill defined gtjump d|scont|QU|t|es vyhere
and discuss the standard approach to discretizing conservatioﬁer'vat'ves are infinite. In the literature, nondifferentiable

laws. We describe traditional central differencing methods such solutions are callgWgak solutions. Th.e differential fgrm gIves
as the Lax-Wendroff schema i§ 3 and more modem flux & complete description of the flow in smooth regions, but the

assignment methods such as the total variation diminishing'megr"’II form is needed to properly describe shock disconti-

(TVD) scheme in § 4. In § 5, we review the relaxing TVD nuities. In integral conservatior_l form, the rate of change in
method for systems of conservation laws such as the Euler equamass’ momenturr_1,. and energy is equal to the net.flux of those
tions, which have been successfully implemented for simulating conserved qu'antl'ge's through'the surche en'closmg a control
cosmological astrophysical fluids by Pen (1998). In § 6, we apply volume. Fpr S|mpI|c_|ty qf notat!on, we will continue to express
a self-gravitating hydro code to simulating the formation of conservation laws in differential form, as a shorthand for the
blue straggler stars through stellar mergers. A sample three—Integral form.

dimensional relaxing TVD code is provided in the Appendix.

The thermodynamical properties of an ideal gas obey well-
Wknown equations of state, which we do not fully list here.
The differential Euler equations require differentiable solu-

2 EULERIAN HYDRODYNAMICS 2.1. Computational Fluid Dynamics

The Euler equations, which govern hydrodynamics, are a The standard approach to Eulerian computational fluid dy-
In differential conservation form, the continuity equation, finite volumes or cells, where the conserved quantities are

solved on a Cartesian cubical lattice by computing the flux of

g 0 mass, momentum, and energy across cell boundaries in discrete
ot + a_xj (ovy) = 0, 1) time steps. Consider the Euler equations in vector differential
conservation form:

aev) 9
COA 1+ = (pv, + Ps,) = 0, 2
ot o (v, ) 2 u_ 9RW _ o @)
se  d at oo
ot o [e+P)y] = 0. 3)

whereu = (p, pv,, pv,, pv,, €) contains the conserved physical
We have omitted gravitational and other source terms such agjuantities and-(u) represents the flux terms. In practice, the
heating and cooling. The physical state of the fluid is specified conserved cell-averaged quantitiegs= u(x,) and flukes

by its densityp, velocity fieldv, and total energy density are defined at integer grid cell centets . The challenge is to
use the cell-averaged values to determine the flixes, at

o= }pvz +e ) cell boundaries.
2 ' In the following sections, we describe flux assignment meth-

ods designed to solve conservation laws such as the Euler
In practice, the thermal energyis evaluated by subtracting equations. For ease of illustration, we begin by considering a
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one-dimensional scalar conservation law: equivalently written as
au  dF(u) Ft —Ft
—+——=0, 8 that _ gt _ [+ n—1
P (8) ut ut (72AX )At. (13)

whereF(u) = vu and is a constant advection velocity. Equa-
tion (8) is referred to as a linear advection equation and has
the analytical solution

In this form, the discretization has the appearance of using a

central difference scheme to approximate spatial derivatives.

Hence, centered schemes are often referred to as central dif-

ference schemes. In practice, when using centered schemes,
u(x, t) = u(x —ot, 0). ©) the discretization is done on the differential conservation equa-

tion rather than the integral equation.
The linear advection equation describes the transport of the This simple scheme is numerically unstable and we can show
quantityu at a constant velocity . this using thevon Neumann linear stability analysis. Consider
In integral flux conservation form, the one-dimensional sca- writing u(x, t) as a discrete Fourier series:
lar conservation law can be written as

0 [ 2 oF w = %3, clex (Zﬂkn) (14)
ﬁj u(x, t)dx+f %dx= 0, (10) TN PN

X1 X1

whereN is the number of cells in our periodic box. In plane-

wherex, = X, ,, andx, = for our control cells. Let . . .
1= Yoo 2= Xnia2 wave solution form, we can write this as

F...,» denote the flux ofi through cell boundary,,,,, attime

t. Note then that the second integral is simply equal to
F...— EL.. The rate of change in the cell-integrated quantity
Judx is equal to the net flux ofi through the control cell.
For a discrete time step, the discretized solution for the cell-
averaged quantity, is given by

N exp [W] ' ()

wherec? are the Fourier series coefficients for the initial con-
ditionsu(x, 0). Equivalently, the time evolution of the Fourier
WA = gt — (Fn[+1/2_ Fn‘_uz) At (11) series coefficients in equation (14) can be cast into a plane-

AX wave solution of the form
The physical quantity is conserved since the flux taken out — it
of one cell is added to the neighboring cell that shares the same C = exp( N ) Cis (16)
boundary. Note that equation (11) has the appearance of being
a finite-difference scheme for solving the differential form of _ _ ] _ ] )
the one-dimensional scalar conservation law. This is why the Where the numerical dispersion relatiaitk) ~ is complex in
differential form can be used as a shorthand for the integral 9&neral- The imaginary part efrepresents the growth or decay
form. of the Fourier modes, while the real part describes the oscil-

lations. A numerical scheme is linearly stablelnfi(w) <0

Otherwise, the Fourier modes will grow exponentially in time
3. CENTERED FINITE-DIFFERENCE METHODS and the solution will blow up.

Central-space finite-difference methods have ease of imple- The exact solution to the linear advection equation can be
mentation but at the cost of lower accuracy and stability. For €xpressed in the form of equation (9) or by a plane-wave so-
illustrative purposes, we start with a simple first-order centered ution where the dispersion relation is given by = vk . The
scheme to solve the linear advection equation. The discretizedvaves all travel at the same phase veloeiyk = v in the

solution is given by equation (11), where the fluxes at cell €xact case.
boundaries The centrally discretized linear advection equation (eq. [13])

is exactly solvable. Aftem time steps, the time evolution of
Et .+ Ft the independent Fourier modes is given by
Fnl+1/2 = % (12)
c™ = (L —iNsing)™c, a7
are obtained by taking an average of cell-centered fluxes
F. = ou;. The discretized first-order centered scheme can bewhereN = vAt/Ax andp = 27kAX/N . The dispersion relation

n
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is given by advection equation can also be determined using the von Neu-
mann analysis. The discretized Lax-Wendroff equation (eq.
N i [21]) is exactly solvable and, aften time steps, the Fourier

©=-= tan' (\sing) + 5 In (1+ Nsin¢)|. (18) modes evolve according to

mAt _ 2 _

For any time stept > 0 , the imaginary partwWill be greater [l N1~ cosg) —in sm¢] Co 24)

than 0. The Fourier modes will grow exponentially in time and

the solution will blow up. Hence, the first-order centered

scheme is numerically unstable.

where A = vAt/AX is called theCourant number and¢ =
27kAX/N. The dispersion relation is given by

3.1. Lax-Wendroff Scheme Y 1[ Asing ]
w =
The Lax-Wendroff scheme (Lax & Wendroff 1960) is sec- 2mAt 1— N(1- cos¢)
ond-order accurate in time and space, and the idea behind it
is to stabilize the unstable first-order scheme from the previous +——In|1— 41— M) sin (¢)] (25)
section. Consider a Taylor series expansionus, t + At) AmAt 2
9 uAt2 It is important to note three things. First, the Lax-Wendroff
u(x, t+ At) = u(x, t) + _At Tt T o(at®), (19) scheme is conditionally stable provided thai(w) <0 , which
is satisfied if
and replace the time derivatives with spatial derivatives using
the conservation law to obtain vAt 1. (26)
AX ™
oF
u(x, t+ Al = u(x, 1) — == At This constraint is a particular example of a general stability
constraint known as th€ourant-Friedrichs-Lewy (CFL) con-
(aF oF 3_“) At o(ar).  (20) dition. The Courant numbex is also referred to as the CFL
X \du du ox/ 2 number. Second, fok = 1 , the dispersion relation is exactly

identical to that of the exact solution, and the numerical ad-
For the linear advection equation, the eigenvalue of the flux vection is exact. This is a special case, however, and it does
Jacobian i$F/ou = v . Discretization using central differences not test the ability of the Lax-Wendroff scheme to solve general
gives scalar conservation laws. Normally, one choosesl to sat-
isfy the CFL condition. Last, fok <1 , the dispersion relation
Fl..—F., At w(k) for the Lax-Wendroff solution is different from the exact
2AX solution wheres, = vk . The dispersion relation relative to the
exact solution can be parameterized by

tEAt gt
l'In - l-'In

Fli—F' F'—FL)) At
+ ( n+1 n_ 1) v . (21)
AX AX 2AX Aw = w — w,. (27)
In conservation form, the solution is given by equation (11), The second-order truncation of the Taylor series (eq. [20]) re-
where the fluxes at cell boundaries are defined as sults in a phase err®®e(dw) , which is a function of frequency.

In the Lax-Wendroff solution, the waves are damped and travel
Flyp = (Fnt+1 +EY — (L, — Ft) v t (22) at different speeds. Hence, the scheme is both diffusive and

dispersive.

_ _ _ In Figure 1, we plot the phase erBe(Aw) and the ampli-
Compare this with the boundary fluxes for the first-order fication termim(Aw) for the Lax-Wendroff scheme with pa-
scheme (eq. [12]). The Lax-Wendroff scheme obtains second-rametersN = 100 p = 1 , and = 0.9 . A negative value of

order fluxes, Re(Aw) represents a lagging phase error, while a positive value
indicates a leading phase error. For the chosen CFL number,
F@ — FO_ dF oF At (23) the high-frequency modes have the largest phase errors, but

uoax 2 they are highly damped. Some of the modes having lagging

phase errors are not highly damped. We will subsequently see
by modifying the first-order fluxe&® with a second-order how this becomes important.
correction. Arigorous test of the one-dimensional Lax-Wendroff scheme
The stability of the Lax-Wendroff scheme to solve the linear and other flux assignment schemes we will discuss is the linear
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Fic. 2.—Lax-Wendroff scheme used to linearly advect a square wslie (

Fic. 1.—Phase erroRe(Aw) and the amplification facton(Aw)  for the line) once flashed line) and 10 timesdotted line) through a box of 100 grid
Lax-Wendroff scheme with parameteis= 100 v =1 , ane= 0.9 . cells at speed = 1 .

advection of a square wave. The challenge is to accuratelyoriginate from celln. The upwind scheme proposes that, to
advect this discontinuous function where the edges mimic Rie-first order, the fluxess.,,, at cell boundaries be taken from
mann shock fronts. In Figure 2, we show how the Lax-Wendroff the cell-centered fluxeB! = vu’ , which is in the upwind di-
scheme does at advecting the square wave clashed line) rection. If the advection velocity is negative and flow is to the
and 10 timesdotted line) through a periodic box of 100 grid  left, the boundary fluxeE! ,, are taken from the cell-centered
cells at speed = 1 anN = 0.9 . Note that this scheme pro- fluxes F!,, = vu!,,. The first-order upwind flux assignment
duces numerical oscillations. Recall that a square wave can bescheme can be summarized as follows:

represented by a sum of Fourier or sine waves. These waves

will be damped and disperse when advected using the Lax- S Fi ifv>0, 28)
Wendroff scheme. Figure 1 shows that the modes having iz TR if v<O.

lagging phase errors are not damped away. Hence, the Lax-

Wendroff scheme is highly dispersive and the oscillations in Unlike central difference schemes, upwind schemes are ex-
Figure 2 are due to dispersion. We leave it as an exercise forplicitly asymmetric.

the reader to advect a sine wave using the Lax-Wendroff The CFL condition for the first-order upwind scheme can
scheme. Since there is only one frequency mode in this casepe determined from the von Neumann analysis. We consider
there will be no spurious oscillations due to dispersion, but a the case of a positive advection velocity. Aftartime steps,
phase error will be present. For a comprehensive discussion orthe Fourier modes evolve according to

the family of Lax-Wendroff schemes and other centered

schemes, see Hirsch (1990) and Laney (1998). ¢ = [1 — N1 — cos¢) — iXsing]™cy, (29)
4. UPWIND METHODS whereN = vA/AX andp = 27kAX/N . The dispersion relation
is given b

Upwind methods take into account the physical nature of g y
the flow when assigning fluxes for the discrete solution. This _
class of flux assignment schemes, whose origin dates back to _ N t _1[ Asing ]
the work of Courant, Isaason, & Reeves (1952), has been shown 2mAt 1-NM1- cos¢>)]
to be excellent at capturing shocks and also being highly stable.

We start with a simple first-order upwind scheme to solve iN _ _ : (Q)
the linear advection equation. Consider the case where the ad- * A At In L= a\L =N sirf 2]| (30)
vection velocity is positive and flow is to the right. The flux
of the physical quantity through the cell boundary,.,,, will  The CFL condition for solving the linear advection equation
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Fic. 4.—First-order upwind scheme used to linearly advect a square wave
Fic. 3.—Phase errdRe(Aw) and the amplification tdm{Aw)  forthe Lax-  (solid line) once (lashed line) and 10 times dotted line) through a box of
Wendroff schemehbjpxes) and the first-order upwind schemerdsses) with 100 grid cells at speed = 1 .
parameterdN = 100 y =1 , and = 0.9 .

accuracy and prevent spurious oscillations, nonlinear schemes

with this scheme is to have< 1 , identical to that for the Lax- .
are needed to solve conservation laws.

Wendroff scheme. Fok <1 , the dispersion relatio(k) for
the first-order upwind scheme is different from the exact so-
lution wherew, = vk . This scheme is both diffusive and dis- 4.1. Total Variation Diminishing Schemes
persive. Since it is only first-order accurate, the amount of

Harten (1983) proposed the TVD condition, which guar-
diffusion is large. In Figure 3, we compare the dispersion re- ( ) prop g

: . antees that a scheme have monotonicity preservation. Applying
lation of the upwind scheme to that of the Lax-Wendroff Godunov’s theorem, we know that all linear TVD schemes are

scr:]heme. The g:outr:er m.ﬁ(:)esdm thedupwmd _I_sr(]:htlemefalso haV%nly first-order accurate. In fact, the only linear TVD schemes
phase errors, but they will be damped away. The low-réquUency » e class of first-order upwind schemes. Therefore, higher
modes that contribute to the oscillations in the Lax-Wendroff |- < -ot0 TVD schemes must be nonlinear

solution are more damped _in t_he upwind_solution. Hence, one The TVD condition is a nonlinear stability condition. The
does n_ot expect to see oscillations _resultlng from _phase BITOTStal variation of a discrete solution, defined as

In Figure 4, we show how the first-order upwind scheme
does at advecting the Riemann shock wave. This scheme is N
well behaved and produces no spurious oscillations, but since ty — to_gt
it is only first order, ﬁ is highly diffugive. The first-order upwind ™) Zl s = Wi, G
scheme has the property of having monotonicity preservation.
When applied to the linear advection equation, it does not allow is a measure of the overall amount oscillationsLifThe direct
the creation of new extrema in the form of spurious oscillations. connection between the total variation and the overall amount
The Lax-Wendroff scheme does not have the property of havingof oscillations can be seen in the equivalent definition
monotonicity preservation.

The flux assignment schemes that we have discussed so far
are all linear schemes. Godunov (1959) showed that all linear TV(U) = 2(2 U = 2 umin)!
schemes are either diffusive or dispersive or a combination
of both. The Lax-Wendroff scheme is highly dispersive, while where each maxima is counted positively twice and each
the first-order upwind scheme is highly diffusive. Godunov’s minima is counted negatively twice (see Laney 1998). The
theorem also states that linear monotonicity preserving schemegormation of spurious oscillations will contribute new maxima
are only first-order accurate. In order to obtain higher order and minima and the total variation will increase. A flux

(32)
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assignment scheme is said to be TVD if Kutta scheme. We first do a half time step:
TV(Uu™) < TV(UuY), (33) T - (Fnt+1/2A_XFn[—1/z) % , (39)

which signifies that the overall number of oscillations is
bounded. In linear flux-assignment schemes, the von Neumanrusing the first-order upwind scheme to obtain the half-step
linear stability condition requires that the Fourier modes remain valuesu'*2"2 . A full time step is then computed:
bounded. In nonlinear schemes, the TVD stability condition
requires that the total variation diminishes. FLravz _ prrav2

We now describe a nonlinear second-order accurate TVD u = uy — (%) At,
scheme that builds upon the first-order monotone upwind X
scheme described in the previous section. The second-order
accurate fluxe§!,,, at cell boundaries are obtained by takingusing the TVD scheme on the half-step fluxes<’> . The
first-order fluxes®;, from the upwind scheme and modifying reader is encouraged to show that it is second-order accurate.
it with a second-order correction. First, consider the case where We briefly discuss three TVD limiters. The minmod flux
the advection velocity is positive. The first-order upwind flux limiter chooses the smallest absolute value between the left and
F®: comes from the averaged fli in callWe can define  right corrections:
two second-order flux corrections,

(40)

minmodg, b) = %[sign(a) + sign@)] min (|al, |b|). (41)

F'—F.
AFnll’tl/z = Tla (34)
Et _Et The superbee limiter (Roe 1985) chooses between the larger
AFRY = % (35) correction and 2 times the smaller correction, whichever is
smaller in magnitude:
using three local cell-centered fluxes. We use oedind the minmodé, 2b) if |a| > |b|
cells immediately left and right of it. If the advection velocity superbee, b) = ' e (42)

) ; . . minmod(2Z, b) otherwise.
is negative, the first-order upwind flux comes from the averaged

flux F., in cell n+ 1. In this case, the second-order flux o )
The Van Leer limiter (Van Leer 1974) takes the harmonic mean

corrections, . :
of the left and right corrections:
Ft _ Fl
AFYY, = — 1 36 2ab
ntaz 2 (36) vanleerg, b) = b (43)
Ft _ Fl
AFnFitl/z = — 2 2 nﬂ: (37) . o .
The minmod limiter is the most moderate of all second-order

TVD limiters. In Figure 5, we see that it does not do much
are based on ceti + 1 and the cells directly adjacent to it. better than first-order upwind for the square-wave advection
Near extrema where the corrections have opposite signs, wee€st. Superbee chooses the maximum correction allowed under
impose no second-order correction, and the flux assignmen[the TVD constraint. It is especially suited for piecewise linear

scheme reduces to first-order. A flux limitgris then used to ~ conditions and is the least diffusive for this particular test, as
determine the appropriate second-order correction, can be seen in Figure 6. Note that no additional diffusion can

be seen by advecting the square wave more than once through
the box. It can be shown that the minmod and superbee limiters
are extreme cases that bound all other second-order TVD lim-
iters. The Van Leer limiter differs from the previous two in
which still maintains the TVD condition. The second-order that it is analytic. This symmetrical approach falls somewhere
correction is added to the first-order fluxes to get second-orderin between the other two limiters in terms of moderation and
fluxes. The first-order upwind scheme and second-order TVD diffusion, as can be seen in Figure 7. It can be shown that the
scheme will be referred to asonotone upwind schemes for CFL condition for the second-order TVD scheme is to have
conservation laws (MUSCL). N < 1. For a comprehensive discussion on TVD limiters, see
Time integration is performed using a second-order Runge- Hirsch (1990) and Laney (1998).

AFnl+1/2 = ¢(A Fnll’tl/z- AFnTl/z)a (38)
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Fig. 5.—TVD scheme using the minmod flux limiter is applied to the
advection of a square wave.

5. RELAXING TVD

We now describe a simple and robust method to solve the
Euler equations using the MUSCL from the previous section.
The relaxing TVD method (Jin & Xin 1995) provides high-
resolution capturing of shocks using computationally inexpen-
sive algorithms that are straightforward to implement and to
parallelize. It has been successfully implemented for simulating
cosmological astrophysical fluids by Pen (1998).

The MUSCL scheme is straightforward to apply to conser-
vation laws such as the advection equation since the velocity
alone can be used as a marker of the direction of flow. However,
applying the MUSCL scheme to solve the Euler equations is
made difficult by the fact that the momentum and energy fluxes
depend on the pressure. In order to determine the direction
upwind of the flow, it becomes necessary to calculate the flux
Jacobian eigenvectors using Riemann solvers. This step re-
quires computationally expensive algorithms. The relaxing
TVD method offers an attractive alternative.

5.1. One-dimensional Scalar Conservation Law

We first present a motivation for the relaxing scheme by
again considering the one-dimensional scalar conservation law.
The MUSCL scheme for solving the linear advection equation
is explicitly asymmetric in that it depends on the sign of the
advection velocity. We now describe a symmetrical approach
that applies to a general advection velocity.

The flow can be considered as a sum of a right-moving wave
uRand a left-moving wava" . For a positive advection velocity,
the amplitude of the left-moving wave is zero, and for a nega-
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Fic. 6.—TVD scheme using the superbee flux limiter is applied to the
advection of a square wave.

is zero. In compact notation, the waves can be defined as
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Fic. 7.—TVD scheme using the Van Leer flux limiter is applied to the
tive advection velocity, the amplitude of the right-moving wave advection of a square wave.
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wherec = |v| . The two waves are traveling in opposite di-  In order to solve the relaxed system, we decouple the equa-
rections with advection speadand can be described by the tions through a change of variables:
advection equations:

ouR F . uR = > (52)
pr + x (cu®) =0, (46) .
aut ut- = 5 (53)
p ax( D= (47)
which then gives us
The MUSCL scheme is straightforward to apply to solve equa-
tions (46) and (47) since the upwind direction is left for the 9ur o
right-moving wave and right for the left-moving wave. The ot + _(CU ) =0, (54)
one-dimensional relaxing advection equation then becomes b 3
R . — ——(cut) = 0. (55)
W E_FE L, (48) ot
ot ox X

Equations (54) and (55) are vector linear advection equations,
whereFR = cu® andF- = cu® . For the discretized solution Wwhich can be interpreted as right-moving and left-moving flows
given by equation (11), the boundary fluxes,, are now a With advection speed. Note the similarity with their scalar
sum of the fluxeF?,,, an&.',, from the right-moving and counterparts, equations (46) and (47). The one-dimensional
left-moving waves, respectively. Note that the relaxing advec- vector-relaxing conservation law fer becomes
tion equation will correctly reduce to the linear advection equa-
tion for any general advection velocity. du 9FT  9F"

Using this symmetrical approach, a general algorithm can at X IX
be written to solve the linear advection equation for an arbitrary
advection velocity. This scheme is indeed inefficient for solving whereF®? = cu® andF" = cu* . The vector-relaxing equation
the linear advection equation since one wave will have zero can now be solved by applying the MUSCL scheme to equations
amplitude. However, the Euler equations can have both right- (54) and (55). Again, note the similarity between the vector-

=0, (56)

moving and left-moving waves with nonzero amplitudes. relaxing equation and its scalar counterpart, equation (48).
The relaxed scheme is TVD under the constraint that the
5.2. One-dimensional Systems of Conservation Laws freezing speed be greater than the characteristic speed given

by the largest eigenvalue of the flux Jacobar(u)/ou . For

We now discuss the one-dimensional relaxing TVD scheme , o g
the Euler equations, this is satisfied for

and later generalize it to higher spatial dimensions. Consider
a one-dimensional system of conservation laws:
c = |v| +c, (57)
u JF
au , aF(u)
ot X

=0, (49) Jin & Xin (1995) considered the freezing speed to be a positive
constant in their relaxing scheme, while we generalize it to be
a positive function. Time integration is again performed using
a second-order Runge-Kutta scheme, and the time step is
determined by satisfying the CFL condition

where for the Euler equations, we hauve= (p, pv, €) and
F(u), the corresponding flux terms. We now replace the vector
conservation law with the relaxation system

CraxAt
au Zmax=" (58)
—_ J’_ J— -_—
ot ox (o) = (50) Ax
5_W+ < (cuy = 0, (51) Note that a new freezing speed is computed for each partial
at  ax step in the Runge-Kutta scheme. The CFL numbes

CmaxAt/AX should be chosen such that,,  will be larger than
wherec(x, t) is a free positive function called the freezing max €!) and max ") .
speed. The relaxation system contains two coupled-vector lin- We now summarize the steps needed to numerically solve
ear advection equations. In practice, we wet F(u)/c and the one-dimensional Euler equations. At the beginning of each
use it as an auxiliary vector to calculate fluxes. Equation (50) partial step in the Runge-Kutta time integration scheme, we
reduces to our one-dimensional vector conservation law, andneed to calculate the cell-averaged variables defined at grid cell
equation (51) is a vector conservation law far centers. First for the half time step, we calculate the fluxes
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F(u}) and the freezing speel] . We then set the auxiliary vector
w! = F(u!)/ct, and construct the right-moving wave§' and

left-moving wavesu'* . The half time step is given by utt =L L Ll (65)
v Flus = Ry At and then perform a reverse sweep:
Uy = = ) S (59)
ut+2At — LxLyLZuHAt, (66)
where using the same time steft  to obtain second-order accuracy.
We will refer to the combination of the forward and reverse
Focve = Rty — Ry (60)  sweeps as a double sweep.

A more symmetrical sweeping pattern can be used by per-
The first-order upwind scheme is used to compute fluxes atmutating the sweeping order when completing the next double
cell boundaries for the right-moving and left-moving waves. time step. The dimensional splitting or operator splitting tech-
For the full time step, we construct the right-moving waves nique can be summarized as follows:
uRttav2 and left-moving waves:-**4"2 | using the half-step val-

ues of the appropriate variables. The full time step, u = ute = L L L L L L ut, (67)
Fi+Av2 _ Et+av2 us = u'zre = LzLxLyLnyLzutzv (68)
t+At t n+1/2 n—1/2
= uf - (T Tz ) A 1
U™ = U ( AX ) L (61) Ut = Ut = UL L L LU, (69)

is computed using the second-order TVD scheme. This com-WhereAt, ,At, , andit, are newly determined time steps after
pletes the updating aft  to'**t . completing each double sweep.

We have found that a minor modification to the implemen- The CFL condition for the three-dimensional relaxing TVD
tation described above gives more accurate results. Considegcheme is similarly given by equation (58), but with
writing the flux of the right-moving and left-moving waves as

Cmax = ma'x [(Cx)max! (Cy)maxv (Cz)max]' (70)
F™ = G, (62) wherec; = |v;| + c,. Note that sincenax (v;|) is on average
Ft = cG, (63) a factor ofy3 smaller thamax (v|) , a dimensionally split
scheme can use a longer time step compared to an unsplit
whereGR is the flux os® = u¥c andG" is the flux ofu" = scheme.

u/c. The linear advection equations fof aptd  are similar ~ The dimensional splitting technique also has other advan-

to equations (54) and (55), but where we replafe  with  tages. The decomposition into a one-dimensional problem al-
and u with p*. For each partial step in the Runge-Kutta lows one to write short one-dimensional algorithms, which are
scheme, the net fluxes at cell boundaries are then taken to b&asy to optimize to be cache efficient. A three-dimensional
hydro code is straightforward to implement in parallel. When

Frivs = Coia(GRiao — GEu), (64) sweeping in the<. direption, for example, one can break up the

data into one-dimensional columns and operate on the inde-

d pendent columns in parallel. A sample three-dimensional
relaxing TVD code, implemented in parallel using OpenMP

directives, is provided in the Appendix.

where we use,_,,, = (C,., + C,)/2 . In practice, this modifie
implementation has been found to resolve shocks with better
accuracy in certain cases. Note that the two different imple-
mentations of the relaxing TVD scheme are identical when a

constant freezing speed is used. 6. SEDOV-TAYLOR BLAST-WAVE TEST FOR

THREE-DIMENSIONAL HYDRO

A rigorous and challenging test for any three-dimensional
Eulerian or Lagrangian hydrodynamic code is the Sedov-Taylor

The one-dimensional relaxing TVD scheme can be gener-blast-wave test. We set up the simulation box with a homo-
alized to higher dimensions using the dimensional splitting geneous medium of densify, and negligible pressure and
technique by Strang (1968). In three dimensions, the Eulerintroduce a pointlike supply of thermal energy  in the center
equations can be dimensionally split into three separate one-of the box attime = 0 . The challenge is to accurately capture
dimensional equations that are solved sequentially. Let thethe strong spherical shock that sweeps along material as it
operatorL; represent the updatingwf ug* by including propagates out into the ambient medium. The Sedov-Taylor
the flux in thei direction. We first complete a forward sweep: test is used to model nuclear-type explosions. In astrophysics,

5.3. Multidimensional Systems of Conservation Laws
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Fic. 8.—Sedov-Taylor blast-wave test conducted in a box with®*28fls. The data points are taken from a random subset of cells, and the solid lines are the
analytical self-similar solutions.

it is often used as a basic setup to model supernova explosion$§ince the ambient medium has negligible pressure, the shocks

and the evolution of supernova remnants (see Shu 1992).  will be very strong. The density, , velocity, , and pressure
The analytical Sedov solution uses the self-similar nature of B, directly behind the shock front are

the blast-wave expansion (see Landau & Lifshitz 1987). Con-

sider a frame fixed relative to the center of the explosion. The v+ 1
spherical shock front propagates outward, and the distance from P2 = (j) P (73)
the origin is given by i
2
2\ 1/5 Uy, = ( )Ush (74)
rat) = so(E"t ) , (71) ik
Py 2
. . . 2 = (—) plvih' (75)
wheref, = 1.15 for an ideal gas with = 5/3 . The velocity y+1
of the shocky,, = dr, /ot is given by
The immediate postshock gas density is constant in time, while
vo(t) = 2144(t) (72) the shocked gas velocity, and presstye decrease®as
sh 5 t ° andt ®*, respectively. The full analytical Sedov-Taylor solu-

tions can be found in Landau & Lifshitz (1987).
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Fic. 9.—Closeup of the Sedov-Taylor blast wave. The resolution of the shock front is roughly two grid cells, and the anisotropic scatter is less tdan one gri
cell.

The three-dimensional relaxing TVD code based on the Van three-dimensional relaxing TVD code ensures the correct shock
Leer flux limiter is applied to capturing the Sedov-Taylor blast propagation. The resolution of the shock front is roughly two
wave. We set up a box with 25@&ells and constant initial  grid cells. The numerical shock jump valuesf v,, , dd
densityp, = 1. At timet = 0, we inject a supply of thermal are resolution dependent and come close to the theoretical val-
energyE, = 10° into one cell at the center of the box. The ues for our test with 256cells. We leave it as an exercise for
simulation is stopped at tinte= 283 , in which the shock front the reader to test the code using the minmod and superbee flux
has propagated out to a distancergf= 110 cells from the limiters.
center. In Figures 8 and 9, we plot the radial distributions of

density, momentum, and pressure, normalizeg,t®,v, , and
B, respectively. The data points are taken from a random subset 7. SELF-GRAVITATING HYDRO FOR
of cells, and the solid lines are the analytical Sedov-Taylor ASTROPHYSICAL APPLICATIONS

solutions. Despite solving a spherically symmetric problem

on an explicitly nonrotationally invariant Cartesian grid, the For astrophysical applications, both hydrodynamical and
anisotropic scatter in the results is small. The distance of thegravitational forces are included. The gravitational forces arise
shock front from the center of the explosion as a function of from the self-gravity of the fluid and can also come from an
time is indeed given by equation (71), demonstrating that the external field. The Euler equations with the gravitational source
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Fic. 10.—Advection of a self-gravitating polytrope in a periodic box with
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sum and Poisson’s equation can be solved using fast Fourier
transforms (FFTs) to do the convolution. The forces are then
calculated by finite differencing the potential (see Hockney &
Eastwood 1988).

The addition of gravitational source terms in the Euler equa-
tions is easily handled using the operator splitting technique
described in § 5.3. Consider the double sweep:

Ut = | L LGGL,L, L,ul, (82)

where the operatdr; represents the updating lwf including

the flux in thei direction and the operatd® represents the
gravitational acceleration of the fluid. During the gravitational
step, the flux terms in the Euler equations are ignored. The
density distribution does not change and only the fluid momenta
and total energy density are updated.

7.1. Astrophysical Formation of Blue Stragglers
through Stellar Collisions

The stellar density in the cores of globular and open clusters
is high enough for stellar collisions to take place with signif-
icant frequency (Hills & Day 1976). Current observations and

and advected polytrope after 1000 time steps in which the polytrope has movedsjmulations suggest that the merger of two main—sequence stars

256 cells in each direction.

terms included are given as

o0y
it ) =0 (76)
Wov) , 0. __, %
G Pt PO = —p T, (77)
ve, o _ 0
o (e Pl = —pusl (79)

where¢ is the gravitational potential. Poisson’s equation
V2 = 47Gp (79)

relates the gravitational potential to the density field. The gen-
eral solution can be written as

®(x) = fp(X’)W(X - x)d*, (80)
where the kernel is given by

G
w(x) = — ™ (81)

produces a blue straggler (Sills et al. 1997; Sandquist, Bolte,
& Hernquist 1997). The blue stragglers are outlying main-
sequence stars that lie beyond the main-sequence turnoff in the
color-magnitude diagram (CMD) of a star cluster. The blue
stragglers are more massive, brighter, and bluer than the turnoff
stars. Since more massive stars evolve faster than lower mass
stars and are not expected to lie beyond the turnoff, this sug-
gests that blue stragglers must have formed more recently.

In principle, the merger of two main-sequence stars can produce
a young remnant star provided that significant mixing occurs in
the process. The mixing produces a higher hydrogen fraction in
the core of the remnant than that of the parent stars, which have
already burned most of the hydrogen to helium in their cores.
Benz & Hills (1987) used low-resolution SPH simulations with
~10 particles to simulate the mergingof= 3/2  polytropes and
found that they fully mixed. However, medium-resolution SPH
simulations with~10* particles ofn = 3/2 om = 3 polytropes
showed only weak mixing (Lombardi, Rasio, & Shapiro 1996;
Sandquist et al. 1997). It is worth noting that= 3/2  poly-
tropes are more representative of low-mass main-sequence stars
with large convective envelopes, while= 3  polytropes re-
semble main-sequence stars near the turnoff that have little
mass in their convective envelopes. High-resolution SPH sim-
ulations involving~10°~10 particles have now been applied
to simulating stellar collisions (Sills et al. 2002).

The merging stars process is mostly subsonic, and strong
shocks are not expected. In the absence of shocks, SPH particles
will follow flow lines of constant entropy as a result of the

In the discrete case, the integral in equation (80) becomes aLagrangian nature of the method. As a result, the particles may
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Fic. 11.—Snapshots of the merging process taken at time0 , 2, 4, apd Bhe density contours are spaced logarithmically with two per decade and

covering three decades down from the maximum.

experience sedimentation. In addition, the mixing can also de-n = 3 polytropes. A polytrope with polytropic indexhas equi-
pend on the adopted smoothing length and the form of artificial librium density and pressure profiles, which are related by
viscosity. For an SPH fluid, the Reynolds number is of the
order of (N,/N,)*®, whereN, is the total number of particles P oc pth, (83)
andN, is the number of particles over which the smoothing is
done. FoN, ~ 10° and\, ~ 10? , the Reynolds numberIKD. The density profile is determined by solving the Lane-Emden
However, a fluid with a low Reynolds number will tend to equation (see Chandrasekhar 1957). We adopt an ideal gas
experience laminar flow. Hence, SPH may undermix. equation of state with adiabatic indgx= 5/3 . Note that for

It is a worthwhile exercise to model the merging process ann = 3 polytrope, 90% of the total mass is contained within
using Eulerian hydrodynamical simulations. The differences r < 0.5R. We define the dynamical time to be
between Eulerian and Lagrangian approaches may lead to very
different results on mixing. At present, no such work has been 1

reported in the literature. Tom = T (84)

7.2. Numerical Method wherep is the average density. For the chosen parent stars, the
We consider the off-axis collision of two main-sequence stars dynamical time is approximately 1 physical hour.
withM = 0.8Mg andR = 0.955R, , which are modeled using The collision is simulated in a box with 51 512 x 256
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Fic. 12.—Thermodynamic profiles of the merger remnaolid line) and the parent stardgshed line). Units are cgs. The radial plot is included for comparison.

cells, and the orbital plane coincides with thg pkane. Initially, parameteA,, is defined to be the minimum entropy of the parent
each parent star has a radius of 96 grid cells. The stars are segbolytrope. After 1000 time steps in which the polytrope has
up on zero-energy parabolic orbits with a pericenter separationmoved 256 cells in each direction, the advected polytrope has
equal to 0.2R. The initial trajectories are calculated assuming still retained its equilibrium profile. Shock heating can occur
point masses. In a Eulerian simulation, the vacuum cannot haven the outer envelope as the polytrope moves through the false
zero density. We set the minimum density of the cells to be vacuum. However, by setting the density of the false vacuum

10°° of the central density of the parent stars. to be 10® of the central density of the polytrope, we can
_ minimize the spurious shock heating.
7.3. Numerical Results In Figure 11, we show four snapshots of the merging process

A nontrivial test of a self-gravitating Eulerian hydro code is taken at time = 0 , 2, 4, andr§,. The two-dimensional den-
the advection of an object in hydrostatic equilibrium. The chal- Sity maps are created by averaging over four planes taken about
lenge is to maintain the equilibrium profile over a large number the orbital midplane. The density contours are spaced loga-
of time steps. One of the parent stars is placed in a periodicrithmically with two per decade and covering three decades
box with 256 cells and given some initial momentum. We down from the maximum. The parent stars are initially sepa-
make the test rigorous by having the polytrope move in all rated by 3.7 and placed on zero-energy orbits with a peri-
three directions. In Figure 10, we compare the mass and entropycenter separation dd.25R . During the collision process, the
profiles of the initial and advected polytrope. The entropic var- outer envelopes of the parent stars are shock-heated and
iable A = Plp” is used in place of the specific entropy. The material gets ejected. In less thanr]f) the merger remnant
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establishes hydrostatic equilibrium. The merger remnant is avery memory friendly. For thd024* x 512 grid, 10 GBytes
rotating oblate with mass approximately 90% of the combined is required to store the hydro variables, 2 GBytes for the po-
mass of the parent stars. tential, and less than 1 GByte for the test particles. For every

In Figure 12, we plot the thermodynamic profiles of the double time step, approximately 1000 floating point operations
merger remnant and the parent stars. The central density angber grid cell are needed to carry out the TVD hydro calcula-
pressure in the core of the merger remnant is lower than thetions. The potential is computed once for every double step
corresponding values in the parent stars by approximately half.and this requires two FFTs. Since Eulerian codes are very
The entropy floor has risen by a factor of 1.6. Shock heating memory friendly, have low floating point counts, are easily
is expected to be minimal in the core, so a change in entropyparallelized, and scale very well on shared-memory, multiple-
suggests that some mixing has taken place. However, it is dif-processor machines, they can be used to run very high reso-
ficult to quantify the amount of mixing from examining the lution simulations.
thermodynamic profiles alone.

8. SUMMARY

7.4. Future Work We have presented several numerical schemes for solving
To help address the question of mixing, we are implementing the linear advection equation and given the CFL stability con-
a particle-mesh (PM) scheme where test particles can be usedlitions for each scheme. We have implemented the relaxing
to track passively advected quantities such as chemical com-TVD scheme to solve the Euler system of conservation laws.
position. Initially, each parent star is assigned a large numberThe second-order accurate TVD scheme provides high-reso-
of particles with known chemical composition. The test par- lution capturing of shocks, as can be seen in the Riemann shock
ticles are passively advected along velocity field lines. For eachtest and the Sedov-Taylor blast-wave test. The one-dimensional
time step, the velocity of each particle is interpolated from the relaxing TVD scheme can be easily generalized to higher di-
grid using a “cloud-in-cell” (CIC) scheme (Hockney & East- mensions using the dimensional splitting technique. A dimen-
wood 1988), and the equations of motions are solved usingsionally split scheme can use longer time steps and is straight-
second-order Runge-Kutta integration. The CIC interpolation forward to implement in parallel. We have presented a sample
scheme is also used to determine the local density, pressureastrophysical application. A three-dimensional self-gravitating
and entropy associated with each particle. With this setup, weEulerian hydro code is used to simulate the formation of blue
have the benefit of being able to track thermodynamic quantitiesstraggler stars through stellar mergers. We hope to have con-
like in an SPH scheme but avoid the undermixing problem vinced the reader that Eulerian computational fluid dynamics
since the fluid equations are solved using the Eulerian schemeis a powerful approach to simulating complex fluid flows be-
Future work (H. Trac, A. Sills, & U.-L. Pen 2003, in prep- cause it is simple, fast, and accurate.
aration) will have higher resolution simulations. Collisions will
be simulated in a box witi024 x 1024 x 512 cells. Each We thank Joachim Stadel and Norm Murray for comments
parent star will have a radius of 192 grid cells and be assignedand suggestions on the writing and editing of this paper. We
256 test particles. also thank Alison Sills, Phil Arras, and Chris Matzner for dis-
The self-gravitating hydro code used for the simulations is cussions on stellar mergers.

APPENDIX
THREE-DIMENSIONAL RELAXING TVD CODE

We provide a sample three-dimensional relaxing TVD code are operated on by the=1axing subroutine. The independent
written in Fortran 90. The code is implemented using OpenMP columns are distributed amongst multiple processors on a
directives to run in parallel on shared memory machines. The shared memory machine by the OpenMP directives.
code is fast and memory friendly. The arraya, i, j, k) The relaxing TVD subroutine in this sample code is written
stores the five conserved hydro quantities for ease of readability and therefore is not fully optimized. At
a= (p,pvx,pvy,pvz,e) for each cell {,7,%) in the the beginning of each partial step in the Runge-Kutta time
Cartesian cubical lattice with side lengtlz. For each sweep, integration scheme, the cell-averaged variables defined at grid
we first call the subroutinetimestep to determine the  cell centers are calculated by thererageflux subroutine.
appropriate time stepgt that satisfies the CFL condition. The The fluxes at cell boundaries for the right-moving and left-
updating of u by including the flux in thex direction is moving waves are stored ifir andfl, respectively. We have
performed by thesweepx subroutine. The data array is implemented the minmod, superbee, and Van Leer flux limiters,
divided into one-dimensional array sectiarisd (a, 1), which and the user of the code can easily switch between them.
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We have provided some initial conditions for the Sedov- call sweepy
Taylor blast-wave test. The reader is encouraged to test the if (stopsim .eq. 1) exit
code and compare how the various flux limiters do at resolving enddo
strong shocks. This sample code does not implement the call outputresults

modified relaxing TVD scheme described at the end of § 5.2,

which has been found to work very well with the Van Leer  contains

flux limiter but unstable with superbee for the three-

dimensional Sedov Taylor test. We have found that the superbee subroutine sedovtaylor
limiter is often unstable for three-dimensional fluid simulations. implicit none
Please contact the authors regarding any questions on the integer i,j,k

implementation of the relaxing TVD algorithm.

do k=1,nc
program main doj=1,nc
implicit none doi=1,nc
integer, parameter :: re64,hc=nc/2 u(d,i,j,k)=1
real, parameter :: gammaab./3,cfl=0.9 u(2:4,i,j,k)=0
u(5,i,j,k)=1e-3
real, dimension(5,nc,nc,nc) :: u enddo
enddo
integer nsw,stopsim enddo
real t,tf,dt,EOQ,rmax u(5,hc,hc,hcxEO
return
t=0 end subroutine sedovtaylor
dt=0
nsw=0 subroutine outputresults
stopsim=0 implicit none
integer i,j,k
EO=1e5 real r,x,y,z

rmax=3*hc/4
tf =sqrt((rmax/1.15)**5/E0)
call sedovtaylor

do z=k-hc
call timestep do j=1,nc
call sweepx y=j-hc
call sweepy doi=1,nc
call sweepz x=i-hc
call sweepz r=sqrt(x**2+y**2 +z**2)
call sweepy write(1,*) r,u(:,i,j,k)
call sweepx enddo
if (stopsim .eq. 1) exit enddo
call timestep enddo
call sweepz close(1)
call sweepx return
call sweepy end subroutine outputresults
call sweepy
call sweepx subroutine timestep
call sweepz implicit none
if (stopsim .eq. 1) exit integer i,j,k
call timestep real P,cs,cmax
call sweepy real v(3)
call sweepz
call sweepx cmax=1e-5
call sweepx 1$omp parallel do default(shared) private(i,j,k,v,cs,P)
call sweepz reduction(max:cmax)
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open(1,file="sedovtaylor.dat’,rect 200)
do k=1,nc
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do k=1,nc
doj=1,nc
doi=1,nc
v=abs(u(2:4,i,j,k)/u(l,i,j,k))
P=max((gamma-21)*(u(5,i,j,k)-u(1,i,j,k)
*sum(v**2)/2),0.)
cs=sqrt(gamma*P/u(1,i,j,k))
cmax=max(cmax,maxval(v)cs)
enddo
enddo
enddo
I$omp end parallel do

dt=cfl/cmax

if (t+2*dt .gt. tf) then
dt=(tf-t)/2
stopsim=1

endif

t=t+2*dt

nsw=nsw+1

write(*,”(a7,i3,a8,f7.5,a6,f8.5)") 'nsw= ’,nsw,’
dt ='dt)t ="t

return

end subroutine timestep

subroutine sweepx
implicit none
integer j,k
real uld(5,nc)

I$omp parallel do default(shared) private(j,k,uld)
do k=1,nc
do j=1,nc
uld=u(:,:,j,k)
call relaxing(uld)
u(;,:,j,k)=uld
enddo
enddo
I$Somp end parallel do
return
end subroutine sweepx

subroutine sweepy
implicit none
integer i,k
real uld(5,nc)

1$omp parallel do default(shared) private(i,k,uld)
do k=1,nc
do i=1,nc
uld((/1,3,2,4,5/),F u( :,i,:,k)
call relaxing(uld)
u(:,i,;,K)=ul1d((/1,3,2,4,5/),:)
enddo

enddo
ISomp end parallel do
return

end subroutine sweepy

subroutine sweepz
implicit none
integer i,j
real uld(5,nc)

I$omp parallel do default(shared) private(i,j,uld)
do j=1,nc
doi=1,nc
uld((/1,4,3,2,5/),F u(:,i,j,>)
call relaxing(uld)
u(:,i,j,;)=uld((/1,4,3,2,5/),))
enddo
enddo
I$omp end parallel do
return
end subroutine sweepz

subroutine relaxing(u)
implicit none
real, dimension(nc) :: ¢
real, dimension(5,nc) :: u,ul,w,fu,frfl,dfl, dfr

Il Do half step using first-order upwind scheme
call averageflux(u,w,c)

fr = (u*spread(c,1,5}w)/2

fl = cshift(u*spread(c,1,5)-w,1,2)/2

fu = (fr-fl)

ul=u-(fu-cshift(fu,-1,2))*dt/2

Il Do full step using second-order TVD scheme
call averageflux(ul,w,c)

Il Right-moving waves

fr =(ul*spread(c,1,5)w)/2
dfl = (fr-cshift(fr,-1,2))/2
dfr=cshift(dfl,1,2)

call vanleer(fr,dfl,dfr)

Icall minmod(fr,dfl,dfr)
Icall superbee(fr,dfl,dfr)

Il Left-moving waves

fl = cshift(ul*spread(c,1,5)-w,1,2)/2
dfl = (cshift(fl,-1,2)-fl)/2
dfr=cshift(dfl,1,2)

call vanleer(fl,dfl,dfr)

Icall minmod(fl,dfl,dfr)

Icall superbee(fl,dfl,dfr)

fu = (fr-fl)
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u=u-(fu-cshift(fu,-1,2))*dt where (c .gt. 0)
return f=f+2*c/(a+b)
end subroutine relaxing endwhere
return
subroutine averageflux(u,w,c) end subroutine vanleer
implicit none
integer i subroutine minmod(f,a,b)
real Pv implicit none
real u(5,nc),w(5,nc),c(nc) real, dimension(nc) :: f,a,b
Il Calculate cell-centered fluxes and freezing speed f =f+(sign(L.,a) sign(1.,b))*min(abs(a),abs(b))/2.
doi=1,nc return ’ ' '
v=u(2,)/u(1,i) end subroutine minmod

P=max((gamma-1)*(u(5,i)-
sum(u(2:4,i)**2)/u(1,i)/2),0.)

c(i) =abs(vH-max(sqrt(gamma*P/u(1,i)),1e-5)

w(1,i)=u(l,i)*v

w(2,)=(u(2,)*v+P)

w(3,))=u(3,i)*v

w(4,i)=u(4,i)*v

w(5,0)=(u(5,)+P)*v

subroutine superbee(f,a,b)
implicit none
real, dimension(5,nc) :: f,a,b

where (abs(a) .gt. abs(b))
f=f+(sign(1.,a)}sign(1.,b))*min(abs(a),

enddo abs(2*b))/2.
return elsewhere . ' .
end subroutine averageflux f=f+(sign(1.,a)sign(1.,b))*min(abs(2*a),
abs(b))/2.
subroutine vanleer(f,a,b) endwhere
implicit none return
real, dimension(5,nc) :: f,a,b,c end subroutine superbee
c=a*b end program main
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