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ABSTRACT. We present a pedagogical review of some of the methods employed in Eulerian computational
fluid dynamics (CFD). Fluid mechanics is governed by the Euler equations, which are conservation laws for
mass, momentum, and energy. The standard approach to Eulerian CFD is to divide space into finite volumes or
cells and store the cell-averaged values of conserved hydro quantities. The integral Euler equations are then
solved by computing the flux of the mass, momentum, and energy across cell boundaries. We review both first-
order and second-order flux assignment schemes. All linear schemes are either dispersive or diffusive. The
nonlinear, second-order accurate total variation diminishing (TVD) approach provides high-resolution capturing
of shocks and prevents unphysical oscillations. We review the relaxing TVD scheme, a simple and robust method
to solve systems of conservation laws such as the Euler equations. A three-dimensional relaxing TVD code is
applied to the Sedov-Taylor blast-wave test. The propagation of the blast wave is accurately captured and the
shock front is sharply resolved. We apply a three-dimensional self-gravitating hydro code to simulating the
formation of blue straggler stars through stellar mergers and present some numerical results. A sample three-
dimensional relaxing TVD code is provided in the Appendix.

1. INTRODUCTION

Astrophysical structure formation and the dynamics of astro-
physical systems involve nonlinear gasdynamical processes that
cannot be modeled analytically but require numerical methods.
One would like to address the challenging problem of star
formation and how this process produces planetary systems.
Observations of the X-ray emission from hot gas in galaxy
clusters, the Sunyaev-Zeldovich effect in the cosmic microwave
background (CMB) spectrum, and the Lya forest in the spectra
of quasars are meaningful only if we understand the gas-
dynamical processes involved. The evolution of complex sys-
tems is best modeled using numerical simulations.

A large class of astrophysical problems involve collisional
systems where the mean free path is much smaller than all
length scales of interest. Hence, one can appropriately adopt
an ideal fluid description of matter where the thermodynamical
properties of the fluid obey well-known equations of state.
Conservation of mass, momentum, and energy allows one to
write the Euler equations that govern fluid mechanics (see Lan-
dau & Lifshitz 1987). This formalism is an ideal basis for
simulating astrophysical fluids.

Hydrodynamical simulation is faced with challenging prob-
lems, but advancements in the field have made it an important
tool for theoretical astrophysics. One of the main challenges
in simulating complex fluid flows is the capturing of strong

shocks, which frequently occur and play an important role in
gasdynamics. The differential Euler equations are ill defined
at shock discontinuities where derivatives are infinite. Much
effort has been devoted to solving this problem, and a field of
work has resulted from it. Computational fluid dynamics (CFD)
is a powerful approach to simulating fluid flow with emphasis
on high-resolution capturing of shocks and prevention of nu-
merical instabilities. Both Eulerian and Lagrangian methods
have been developed.

Lagrangian methods based on smoothed-particle hydro-
dynamics (SPH; Gingold & Monaghan 1977; Lucy 1977) con-
sider a Monte Carlo approximation to solving the fluid equa-
tions, somewhat analogous toN-body methods for the Vlasov
equation. SPH schemes follow the trajectories of particles of
fixed mass that represent fluid elements. The Lagrangian forms
of the Euler equations are solved to determine smoothed fluid
variables such as density, velocity, and temperature. The par-
ticle formulation does not naturally capture shocks, and arti-
ficial viscosity is added to prevent unphysical oscillations.
However, the addition of artificial viscosity broadens shocks
over several smoothing lengths and degrades the resolution.
The Lagrangian approach has a large dynamic range in length
but not in mass. It achieves good spatial resolution in high-
density regions but does poorly in low-density regions. SPH
schemes must smooth over a large number of neighboring par-
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ticles, making it computationally expensive and challenging to
implement in parallel.

The standard approach to Eulerian methods is to discretize
the problem and solve the integral Euler equations on a Car-
tesian grid by computing the flux of mass, momentum, and
energy across grid cell boundaries. In conservative schemes,
the flux taken out of one cell is added to the neighboring cell,
and this ensures the correct shock propagation. Flux assignment
schemes based on thetotal variation diminishing condition
(Harten 1983) have been designed for high-order accuracy and
high-resolution capturing of shocks, while preventing un-
physical oscillations. The Eulerian approach has a large dy-
namic range in mass but not in length, opposite to that of
Lagrangian schemes. In general, Eulerian algorithms are com-
putationally faster by several orders of magnitude. They are
also easy to implement and to parallelize.

The purpose of this paper is to present a pedagogical review
of some of the methods employed in Eulerian computational
fluid dynamics. In § 2, we briefly review the Euler equations
and discuss the standard approach to discretizing conservation
laws. We describe traditional central differencing methods such
as the Lax-Wendroff scheme in § 3 and more modern flux
assignment methods such as the total variation diminishing
(TVD) scheme in § 4. In § 5, we review the relaxing TVD
method for systems of conservation laws such as the Euler equa-
tions, which have been successfully implemented for simulating
cosmological astrophysical fluids by Pen (1998). In § 6, we apply
a self-gravitating hydro code to simulating the formation of
blue straggler stars through stellar mergers. A sample three-
dimensional relaxing TVD code is provided in the Appendix.

2. EULERIAN HYDRODYNAMICS

The Euler equations, which govern hydrodynamics, are a
system of conservation laws for mass, momentum, and energy.
In differential conservation form, the continuity equation,
momentum equation, and energy equation are given as

�r �
� (rv ) p 0, (1)j�t �xj

�(rv ) �i � (rv v � Pd ) p 0, (2)iji j�t �xj

�e �
� [(e � P)v ] p 0. (3)j�t �xj

We have omitted gravitational and other source terms such as
heating and cooling. The physical state of the fluid is specified
by its densityr, velocity field , and total energy densityv

1 2e p rv � e. (4)
2

In practice, the thermal energye is evaluated by subtracting

the kinetic energy from the total energy. For an ideal gas, the
pressure is related to the thermal energy by the equationP(e)
of state

P p (g � 1)e, (5)

whereg is the ratio of specific heats. Another thermodynamic
variable that is of importance is the sound speed , which iscs

given by

�P gP2c { p . (6)s
�r r

The thermodynamical properties of an ideal gas obey well-
known equations of state, which we do not fully list here.

The differential Euler equations require differentiable solu-
tions and therefore are ill defined at jump discontinuities where
derivatives are infinite. In the literature, nondifferentiable
solutions are calledweak solutions. The differential form gives
a complete description of the flow in smooth regions, but the
integral form is needed to properly describe shock disconti-
nuities. In integral conservation form, the rate of change in
mass, momentum, and energy is equal to the net flux of those
conserved quantities through the surface enclosing a control
volume. For simplicity of notation, we will continue to express
conservation laws in differential form, as a shorthand for the
integral form.

2.1. Computational Fluid Dynamics

The standard approach to Eulerian computational fluid dy-
namics is to discretize time into discrete steps and space into
finite volumes or cells, where the conserved quantities are
stored. In the simplest case, the integral Euler equations are
solved on a Cartesian cubical lattice by computing the flux of
mass, momentum, and energy across cell boundaries in discrete
time steps. Consider the Euler equations in vector differential
conservation form:

�u �F(u)i� p 0, (7)
�t �xi

where contains the conserved physicalu p (r, rv , rv , rv , e)x y z

quantities and represents the flux terms. In practice, theF(u)
conserved cell-averaged quantities and fluxesu { u(x ) Fn n n

are defined at integer grid cell centers . The challenge is toxn

use the cell-averaged values to determine the fluxes atFn�1/2

cell boundaries.
In the following sections, we describe flux assignment meth-

ods designed to solve conservation laws such as the Euler
equations. For ease of illustration, we begin by considering a
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one-dimensional scalar conservation law:

�u �F(u)
� p 0, (8)

�t �x

where and is a constant advection velocity. Equa-F(u) p vu v
tion (8) is referred to as a linear advection equation and has
the analytical solution

u(x, t) p u(x � vt, 0). (9)

The linear advection equation describes the transport of the
quantity at a constant velocity .u v

In integral flux conservation form, the one-dimensional sca-
lar conservation law can be written as

x x2 2
� �F(u)

u(x, t)dx � dx p 0, (10)� �
�t �xx x1 1

where and for our control cells. Letx { x x { x1 n�1/2 2 n�1/2

denote the flux ofu through cell boundary at timetF xn�1/2 n�1/2

t. Note then that the second integral is simply equal to
. The rate of change in the cell-integrated quantityt tF � Fn�1/2 n�1/2

is equal to the net flux ofu through the control cell.u dx∫
For a discrete time step, the discretized solution for the cell-
averaged quantity is given byun

t tF � Fn�1/2 n�1/2t�Dt tu p u � Dt. (11)n n ( )Dx

The physical quantityu is conserved since the flux taken out
of one cell is added to the neighboring cell that shares the same
boundary. Note that equation (11) has the appearance of being
a finite-difference scheme for solving the differential form of
the one-dimensional scalar conservation law. This is why the
differential form can be used as a shorthand for the integral
form.

3. CENTERED FINITE-DIFFERENCE METHODS

Central-space finite-difference methods have ease of imple-
mentation but at the cost of lower accuracy and stability. For
illustrative purposes, we start with a simple first-order centered
scheme to solve the linear advection equation. The discretized
solution is given by equation (11), where the fluxes at cell
boundaries

t tF � Fn�1 ntF p (12)n�1/2 2

are obtained by taking an average of cell-centered fluxes
. The discretized first-order centered scheme can bet tF p vun n

equivalently written as

t tF � Fn�1 n�1t�Dt tu p u � Dt. (13)n n ( )2Dx

In this form, the discretization has the appearance of using a
central difference scheme to approximate spatial derivatives.
Hence, centered schemes are often referred to as central dif-
ference schemes. In practice, when using centered schemes,
the discretization is done on the differential conservation equa-
tion rather than the integral equation.

This simple scheme is numerically unstable and we can show
this using thevon Neumann linear stability analysis. Consider
writing as a discrete Fourier series:u(x, t)

N/21 2piknt tu p c exp , (14)�n k ( )N Nkp�N/2

whereN is the number of cells in our periodic box. In plane-
wave solution form, we can write this as

N/21 2pi(kn � qt)t 0u p c exp , (15)�n k [ ]N Nkp�N/2

where are the Fourier series coefficients for the initial con-0ck

ditions . Equivalently, the time evolution of the Fourieru(x, 0)
series coefficients in equation (14) can be cast into a plane-
wave solution of the form

�2piqtt 0c p exp c , (16)k k( )N

where the numerical dispersion relation is complex inq(k)
general. The imaginary part ofq represents the growth or decay
of the Fourier modes, while the real part describes the oscil-
lations. A numerical scheme is linearly stable if .Im(q) ≤ 0
Otherwise, the Fourier modes will grow exponentially in time
and the solution will blow up.

The exact solution to the linear advection equation can be
expressed in the form of equation (9) or by a plane-wave so-
lution where the dispersion relation is given by . Theq p vk0

waves all travel at the same phase velocity in theq /k p v0

exact case.
The centrally discretized linear advection equation (eq. [13])

is exactly solvable. Afterm time steps, the time evolution of
the independent Fourier modes is given by

mDt m 0c p (1 � il sinf) c , (17)k k

where and . The dispersion relationl { vDt/Dx f p 2pkDx/N
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is given by

N i
�1 2 2q p tan (l sinf) � ln (1 � l sin f) . (18)[ ]2pDt 2

For any time step , the imaginary part ofq will be greaterDt 1 0
than 0. The Fourier modes will grow exponentially in time and
the solution will blow up. Hence, the first-order centered
scheme is numerically unstable.

3.1. Lax-Wendroff Scheme

The Lax-Wendroff scheme (Lax & Wendroff 1960) is sec-
ond-order accurate in time and space, and the idea behind it
is to stabilize the unstable first-order scheme from the previous
section. Consider a Taylor series expansion for :u(x, t � Dt)

2 2�u � u Dt 3u(x, t � Dt) p u(x, t) � Dt � � O(Dt ), (19)2�t �t 2

and replace the time derivatives with spatial derivatives using
the conservation law to obtain

�F
u(x, t � Dt) p u(x, t) � Dt

�x

2� �F �F �u Dt 3� � O(Dt ). (20)( )�x �u �u �x 2

For the linear advection equation, the eigenvalue of the flux
Jacobian is . Discretization using central differences�F/�u p v
gives

t tF � Fn�1 n�1t�Dt tu p u � Dtn n 2Dx

t t t t 2F � F F � F vDtn�1 n n n�1� � . (21)( )Dx Dx 2Dx

In conservation form, the solution is given by equation (11),
where the fluxes at cell boundaries are defined as

1 vDtt t t t tF p (F � F ) � (F � F ) . (22)n�1/2 n�1 n n�1 n2 2Dx

Compare this with the boundary fluxes for the first-order
scheme (eq. [12]). The Lax-Wendroff scheme obtains second-
order fluxes,

�F �F Dt(2) (1)F p F � , (23)
�u �x 2

by modifying the first-order fluxes with a second-order(1)F
correction.

The stability of the Lax-Wendroff scheme to solve the linear

advection equation can also be determined using the von Neu-
mann analysis. The discretized Lax-Wendroff equation (eq.
[21]) is exactly solvable and, afterm time steps, the Fourier
modes evolve according to

mmDt 2 0c p 1 � l (1 � cosf) � il sinf c , (24)[ ]k k

where is called theCourant number andl { vDt/Dx f p
. The dispersion relation is given by2pkDx/N

N l sinf
�1q p tan 2[ ]2pDt 1 � l (1 � cosf)

iN f2 2 4� ln 1 � 4l (1 � l ) sin . (25)( )[ ]4pDt 2

It is important to note three things. First, the Lax-Wendroff
scheme is conditionally stable provided that , whichIm(q) ≤ 0
is satisfied if

vDt ≤ 1. (26)
Dx

This constraint is a particular example of a general stability
constraint known as theCourant-Friedrichs-Lewy (CFL) con-
dition. The Courant numberl is also referred to as the CFL
number. Second, for , the dispersion relation is exactlyl p 1
identical to that of the exact solution, and the numerical ad-
vection is exact. This is a special case, however, and it does
not test the ability of the Lax-Wendroff scheme to solve general
scalar conservation laws. Normally, one chooses to sat-l ! 1
isfy the CFL condition. Last, for , the dispersion relationl ! 1

for the Lax-Wendroff solution is different from the exactq(k)
solution where . The dispersion relation relative to theq p vk0

exact solution can be parameterized by

Dq { q � q . (27)0

The second-order truncation of the Taylor series (eq. [20]) re-
sults in a phase error , which is a function of frequency.Re(Dq)
In the Lax-Wendroff solution, the waves are damped and travel
at different speeds. Hence, the scheme is both diffusive and
dispersive.

In Figure 1, we plot the phase error and the ampli-Re(Dq)
fication term for the Lax-Wendroff scheme with pa-Im(Dq)
rameters , , and . A negative value ofN p 100 v p 1 l p 0.9

represents a lagging phase error, while a positive valueRe(Dq)
indicates a leading phase error. For the chosen CFL number,
the high-frequency modes have the largest phase errors, but
they are highly damped. Some of the modes having lagging
phase errors are not highly damped. We will subsequently see
how this becomes important.

A rigorous test of the one-dimensional Lax-Wendroff scheme
and other flux assignment schemes we will discuss is the linear
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Fig. 1.—Phase error and the amplification factor for theRe(Dq) Im(Dq)
Lax-Wendroff scheme with parameters , , and .N p 100 v p 1 l p 0.9

Fig. 2.—Lax-Wendroff scheme used to linearly advect a square wave (solid
line) once (dashed line) and 10 times (dotted line) through a box of 100 grid
cells at speed .v p 1

advection of a square wave. The challenge is to accurately
advect this discontinuous function where the edges mimic Rie-
mann shock fronts. In Figure 2, we show how the Lax-Wendroff
scheme does at advecting the square wave once (dashed line)
and 10 times (dotted line) through a periodic box of 100 grid
cells at speed and . Note that this scheme pro-v p 1 l p 0.9
duces numerical oscillations. Recall that a square wave can be
represented by a sum of Fourier or sine waves. These waves
will be damped and disperse when advected using the Lax-
Wendroff scheme. Figure 1 shows that the modes having
lagging phase errors are not damped away. Hence, the Lax-
Wendroff scheme is highly dispersive and the oscillations in
Figure 2 are due to dispersion. We leave it as an exercise for
the reader to advect a sine wave using the Lax-Wendroff
scheme. Since there is only one frequency mode in this case,
there will be no spurious oscillations due to dispersion, but a
phase error will be present. For a comprehensive discussion on
the family of Lax-Wendroff schemes and other centered
schemes, see Hirsch (1990) and Laney (1998).

4. UPWIND METHODS

Upwind methods take into account the physical nature of
the flow when assigning fluxes for the discrete solution. This
class of flux assignment schemes, whose origin dates back to
the work of Courant, Isaason, & Reeves (1952), has been shown
to be excellent at capturing shocks and also being highly stable.

We start with a simple first-order upwind scheme to solve
the linear advection equation. Consider the case where the ad-
vection velocity is positive and flow is to the right. The flux
of the physical quantityu through the cell boundary willxn�1/2

originate from celln. The upwind scheme proposes that, to
first order, the fluxes at cell boundaries be taken fromtFn�1/2

the cell-centered fluxes , which is in the upwind di-t tF p vun n

rection. If the advection velocity is negative and flow is to the
left, the boundary fluxes are taken from the cell-centeredtFn�1/2

fluxes . The first-order upwind flux assignmentt tF p vun�1 n�1

scheme can be summarized as follows:

tF if v 1 0,t nF p (28)n�1/2 t{ F if v ! 0.n�1

Unlike central difference schemes, upwind schemes are ex-
plicitly asymmetric.

The CFL condition for the first-order upwind scheme can
be determined from the von Neumann analysis. We consider
the case of a positive advection velocity. Afterm time steps,
the Fourier modes evolve according to

mDt m 0c p [1 � l(1 � cosf) � il sinf] c , (29)k k

where and . The dispersion relationl { vDt/Dx f p 2pkDx/N
is given by

N l sinf
�1q p tan [ ]2pDt 1 � l(1 � cosf)

iN f2� ln 1 � 4l(1 � l) sin . (30)( )[ ]4pDt 2

The CFL condition for solving the linear advection equation
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Fig. 3.—Phase error and the amplification term for the Lax-Re(Dq) Im(Dq)
Wendroff scheme (boxes) and the first-order upwind scheme (crosses) with
parameters , , and .N p 100 v p 1 l p 0.9

Fig. 4.—First-order upwind scheme used to linearly advect a square wave
(solid line) once (dashed line) and 10 times (dotted line) through a box of
100 grid cells at speed .v p 1

with this scheme is to have , identical to that for the Lax-l ≤ 1
Wendroff scheme. For , the dispersion relation forl ! 1 q(k)
the first-order upwind scheme is different from the exact so-
lution where . This scheme is both diffusive and dis-q p vk0

persive. Since it is only first-order accurate, the amount of
diffusion is large. In Figure 3, we compare the dispersion re-
lation of the upwind scheme to that of the Lax-Wendroff
scheme. The Fourier modes in the upwind scheme also have
phase errors, but they will be damped away. The low-frequency
modes that contribute to the oscillations in the Lax-Wendroff
solution are more damped in the upwind solution. Hence, one
does not expect to see oscillations resulting from phase errors.

In Figure 4, we show how the first-order upwind scheme
does at advecting the Riemann shock wave. This scheme is
well behaved and produces no spurious oscillations, but since
it is only first order, it is highly diffusive. The first-order upwind
scheme has the property of having monotonicity preservation.
When applied to the linear advection equation, it does not allow
the creation of new extrema in the form of spurious oscillations.
The Lax-Wendroff scheme does not have the property of having
monotonicity preservation.

The flux assignment schemes that we have discussed so far
are all linear schemes. Godunov (1959) showed that all linear
schemes are either diffusive or dispersive or a combination
of both. The Lax-Wendroff scheme is highly dispersive, while
the first-order upwind scheme is highly diffusive. Godunov’s
theorem also states that linear monotonicity preserving schemes
are only first-order accurate. In order to obtain higher order

accuracy and prevent spurious oscillations, nonlinear schemes
are needed to solve conservation laws.

4.1. Total Variation Diminishing Schemes

Harten (1983) proposed the TVD condition, which guar-
antees that a scheme have monotonicity preservation. Applying
Godunov’s theorem, we know that all linear TVD schemes are
only first-order accurate. In fact, the only linear TVD schemes
are the class of first-order upwind schemes. Therefore, higher
order accurate TVD schemes must be nonlinear.

The TVD condition is a nonlinear stability condition. The
total variation of a discrete solution, defined as

N

t t tTV(u ) p Fu � u F, (31)� i�1 i
ip1

is a measure of the overall amount oscillations inu. The direct
connection between the total variation and the overall amount
of oscillations can be seen in the equivalent definition

tTV(u ) p 2 u � u , (32)(� � )max min

where each maxima is counted positively twice and each
minima is counted negatively twice (see Laney 1998). The
formation of spurious oscillations will contribute new maxima
and minima and the total variation will increase. A flux
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assignment scheme is said to be TVD if

t�Dt tTV(u ) ≤ TV(u ), (33)

which signifies that the overall number of oscillations is
bounded. In linear flux-assignment schemes, the von Neumann
linear stability condition requires that the Fourier modes remain
bounded. In nonlinear schemes, the TVD stability condition
requires that the total variation diminishes.

We now describe a nonlinear second-order accurate TVD
scheme that builds upon the first-order monotone upwind
scheme described in the previous section. The second-order
accurate fluxes at cell boundaries are obtained by takingtFn�1/2

first-order fluxes from the upwind scheme and modifying(1),tFn�1/2

it with a second-order correction. First, consider the case where
the advection velocity is positive. The first-order upwind flux

comes from the averaged flux in celln. We can define(1),t tF Fn�1/2 n

two second-order flux corrections,

t tF � Fn n�1L,tDF p , (34)n�1/2 2

t tF � Fn�1 nR,tDF p , (35)n�1/2 2

using three local cell-centered fluxes. We use celln and the
cells immediately left and right of it. If the advection velocity
is negative, the first-order upwind flux comes from the averaged
flux in cell . In this case, the second-order fluxtF n � 1n�1

corrections,

t tF � Fn�1 nL,tDF p � , (36)n�1/2 2

t tF � Fn�2 n�1R,tDF p � , (37)n�1/2 2

are based on cell and the cells directly adjacent to it.n � 1
Near extrema where the corrections have opposite signs, we
impose no second-order correction, and the flux assignment
scheme reduces to first-order. A flux limiterf is then used to
determine the appropriate second-order correction,

t L,t R,tDF p f(DF , DF ), (38)n�1/2 n�1/2 n�1/2

which still maintains the TVD condition. The second-order
correction is added to the first-order fluxes to get second-order
fluxes. The first-order upwind scheme and second-order TVD
scheme will be referred to asmonotone upwind schemes for
conservation laws (MUSCL).

Time integration is performed using a second-order Runge-

Kutta scheme. We first do a half time step:

t tF � F Dtn�1/2 n�1/2t�Dt/2 tu p u � , (39)n n ( )Dx 2

using the first-order upwind scheme to obtain the half-step
values . A full time step is then computed:t�Dt/2u

t�Dt/2 t�Dt/2F � Fn�1/2 n�1/2t�Dt tu p u � Dt, (40)n n ( )Dx

using the TVD scheme on the half-step fluxes . Thet�Dt/2F
reader is encouraged to show that it is second-order accurate.

We briefly discuss three TVD limiters. The minmod flux
limiter chooses the smallest absolute value between the left and
right corrections:

1
minmod(a, b) p [sign(a) � sign(b)] min (FaF, FbF). (41)

2

The superbee limiter (Roe 1985) chooses between the larger
correction and 2 times the smaller correction, whichever is
smaller in magnitude:

minmod(a, 2b) if FaF ≥ FbF,
superbee(a, b) p (42){minmod(2a, b) otherwise.

The Van Leer limiter (Van Leer 1974) takes the harmonic mean
of the left and right corrections:

2ab
vanleer(a, b) p . (43)

a � b

The minmod limiter is the most moderate of all second-order
TVD limiters. In Figure 5, we see that it does not do much
better than first-order upwind for the square-wave advection
test. Superbee chooses the maximum correction allowed under
the TVD constraint. It is especially suited for piecewise linear
conditions and is the least diffusive for this particular test, as
can be seen in Figure 6. Note that no additional diffusion can
be seen by advecting the square wave more than once through
the box. It can be shown that the minmod and superbee limiters
are extreme cases that bound all other second-order TVD lim-
iters. The Van Leer limiter differs from the previous two in
that it is analytic. This symmetrical approach falls somewhere
in between the other two limiters in terms of moderation and
diffusion, as can be seen in Figure 7. It can be shown that the
CFL condition for the second-order TVD scheme is to have

. For a comprehensive discussion on TVD limiters, seel ! 1
Hirsch (1990) and Laney (1998).
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Fig. 5.—TVD scheme using the minmod flux limiter is applied to the
advection of a square wave.

Fig. 6.—TVD scheme using the superbee flux limiter is applied to the
advection of a square wave.

Fig. 7.—TVD scheme using the Van Leer flux limiter is applied to the
advection of a square wave.

5. RELAXING TVD

We now describe a simple and robust method to solve the
Euler equations using the MUSCL from the previous section.
The relaxing TVD method (Jin & Xin 1995) provides high-
resolution capturing of shocks using computationally inexpen-
sive algorithms that are straightforward to implement and to
parallelize. It has been successfully implemented for simulating
cosmological astrophysical fluids by Pen (1998).

The MUSCL scheme is straightforward to apply to conser-
vation laws such as the advection equation since the velocity
alone can be used as a marker of the direction of flow. However,
applying the MUSCL scheme to solve the Euler equations is
made difficult by the fact that the momentum and energy fluxes
depend on the pressure. In order to determine the direction
upwind of the flow, it becomes necessary to calculate the flux
Jacobian eigenvectors using Riemann solvers. This step re-
quires computationally expensive algorithms. The relaxing
TVD method offers an attractive alternative.

5.1. One-dimensional Scalar Conservation Law

We first present a motivation for the relaxing scheme by
again considering the one-dimensional scalar conservation law.
The MUSCL scheme for solving the linear advection equation
is explicitly asymmetric in that it depends on the sign of the
advection velocity. We now describe a symmetrical approach
that applies to a general advection velocity.

The flow can be considered as a sum of a right-moving wave
and a left-moving wave . For a positive advection velocity,R Lu u

the amplitude of the left-moving wave is zero, and for a nega-
tive advection velocity, the amplitude of the right-moving wave

is zero. In compact notation, the waves can be defined as

1 � v/cRu p u, (44)( )2

1 � v/cLu p u, (45)( )2
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where . The two waves are traveling in opposite di-c p FvF
rections with advection speedc and can be described by the
advection equations:

R�u � R� (cu ) p 0, (46)
�t �x

L�u � L� (cu ) p 0. (47)
�t �x

The MUSCL scheme is straightforward to apply to solve equa-
tions (46) and (47) since the upwind direction is left for the
right-moving wave and right for the left-moving wave. The
one-dimensional relaxing advection equation then becomes

R L�u �F �F
� � p 0, (48)

�t �x �x

where and . For the discretized solutionR R L LF p cu F p cu
given by equation (11), the boundary fluxes are now atFn�1/2

sum of the fluxes and from the right-moving andR,t L,tF Fn�1/2 n�1/2

left-moving waves, respectively. Note that the relaxing advec-
tion equation will correctly reduce to the linear advection equa-
tion for any general advection velocity.

Using this symmetrical approach, a general algorithm can
be written to solve the linear advection equation for an arbitrary
advection velocity. This scheme is indeed inefficient for solving
the linear advection equation since one wave will have zero
amplitude. However, the Euler equations can have both right-
moving and left-moving waves with nonzero amplitudes.

5.2. One-dimensional Systems of Conservation Laws

We now discuss the one-dimensional relaxing TVD scheme
and later generalize it to higher spatial dimensions. Consider
a one-dimensional system of conservation laws:

�u �F(u)
� p 0, (49)

�t �x

where for the Euler equations, we have andu p (r, rv, e)
F(u), the corresponding flux terms. We now replace the vector
conservation law with the relaxation system

�u �
� (cw) p 0, (50)

�t �x

�w �
� (cu) p 0, (51)

�t �x

where is a free positive function called the freezingc(x, t)
speed. The relaxation system contains two coupled-vector lin-
ear advection equations. In practice, we setw p F(u)/c and
use it as an auxiliary vector to calculate fluxes. Equation (50)
reduces to our one-dimensional vector conservation law, and
equation (51) is a vector conservation law forw.

In order to solve the relaxed system, we decouple the equa-
tions through a change of variables:

u � wRu p , (52)
2

u � wLu p , (53)
2

which then gives us

R�u � R� (cu ) p 0, (54)
�t �x

L�u � L� (cu ) p 0. (55)
�t �x

Equations (54) and (55) are vector linear advection equations,
which can be interpreted as right-moving and left-moving flows
with advection speedc. Note the similarity with their scalar
counterparts, equations (46) and (47). The one-dimensional
vector-relaxing conservation law foru becomes

R L�u �F �F
� � p 0, (56)

�t �x �x

where and . The vector-relaxing equationR R L LF p cu F p cu
can now be solved by applying the MUSCL scheme to equations
(54) and (55). Again, note the similarity between the vector-
relaxing equation and its scalar counterpart, equation (48).

The relaxed scheme is TVD under the constraint that the
freezing speedc be greater than the characteristic speed given
by the largest eigenvalue of the flux Jacobian . For�F(u)/�u
the Euler equations, this is satisfied for

c p FvF � c . (57)s

Jin & Xin (1995) considered the freezing speed to be a positive
constant in their relaxing scheme, while we generalize it to be
a positive function. Time integration is again performed using
a second-order Runge-Kutta scheme, and the time step is
determined by satisfying the CFL condition

c Dtmax ≤ 1. (58)
Dx

Note that a new freezing speed is computed for each partial
step in the Runge-Kutta scheme. The CFL numberl p

should be chosen such that will be larger thanc Dt/Dx cmax max

and .t t�Dt/2max (c ) max (c )n n

We now summarize the steps needed to numerically solve
the one-dimensional Euler equations. At the beginning of each
partial step in the Runge-Kutta time integration scheme, we
need to calculate the cell-averaged variables defined at grid cell
centers. First for the half time step, we calculate the fluxes
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F( ) and the freezing speed . We then set the auxiliary vectort tu cn n

p F( )/ and construct the right-moving waves andt t t R,tw u c un n n n

left-moving waves . The half time step is given byL,tun

t tF � F Dtn�1/2 n�1/2t�Dt/2 tu p u � , (59)n n ( )Dx 2

where

t R,t L,tF p F � F . (60)n�1/2 n�1/2 n�1/2

The first-order upwind scheme is used to compute fluxes at
cell boundaries for the right-moving and left-moving waves.
For the full time step, we construct the right-moving waves

and left-moving waves , using the half-step val-R,t�Dt/2 L,t�Dt/2u un n

ues of the appropriate variables. The full time step,

t�Dt/2 t�Dt/2F � Fn�1/2 n�1/2t�Dt tu p u � Dt, (61)n n ( )Dx

is computed using the second-order TVD scheme. This com-
pletes the updating of to .t t�Dtu u

We have found that a minor modification to the implemen-
tation described above gives more accurate results. Consider
writing the flux of the right-moving and left-moving waves as

R RF p cG , (62)

L LF p cG , (63)

where is the flux of p /c and is the flux of pR R R L LG m u G m

/c. The linear advection equations for and are similarL R Lu m m

to equations (54) and (55), but where we replace withR Ru m

and with . For each partial step in the Runge-KuttaL Lu m

scheme, the net fluxes at cell boundaries are then taken to be

R LF p c (G � G ), (64)n�1/2 n�1/2 n�1/2 n�1/2

where we use . In practice, this modifiedc p (c � c )/2n�1/2 n�1 n

implementation has been found to resolve shocks with better
accuracy in certain cases. Note that the two different imple-
mentations of the relaxing TVD scheme are identical when a
constant freezing speed is used.

5.3. Multidimensional Systems of Conservation Laws

The one-dimensional relaxing TVD scheme can be gener-
alized to higher dimensions using the dimensional splitting
technique by Strang (1968). In three dimensions, the Euler
equations can be dimensionally split into three separate one-
dimensional equations that are solved sequentially. Let the
operator represent the updating of to by includingt t�DtL u ui

the flux in thei direction. We first complete a forward sweep:

t�Dt tu p L L L u , (65)z y x

and then perform a reverse sweep:

t�2Dt t�Dtu p L L L u , (66)x y z

using the same time step to obtain second-order accuracy.Dt
We will refer to the combination of the forward and reverse
sweeps as a double sweep.

A more symmetrical sweeping pattern can be used by per-
mutating the sweeping order when completing the next double
time step. The dimensional splitting or operator splitting tech-
nique can be summarized as follows:

t t �2Dt t2 1 1 1u p u p L L L L L L u , (67)x y z z y x

t t �2Dt t3 2 2 2u p u p L L L L L L u , (68)z x y y x z

t t �2Dt t4 3 3 3u p u p L L L L L L u , (69)y z x x z y

where , , and are newly determined time steps afterDt Dt Dt1 2 3

completing each double sweep.
The CFL condition for the three-dimensional relaxing TVD

scheme is similarly given by equation (58), but with

c p max [(c ) , (c ) , (c ) ]. (70)max x max y max z max

where . Note that since is on averagec p FvF � c max (FvF)i si i

a factor of smaller than , a dimensionally split�3 max (FvF)
scheme can use a longer time step compared to an unsplit
scheme.

The dimensional splitting technique also has other advan-
tages. The decomposition into a one-dimensional problem al-
lows one to write short one-dimensional algorithms, which are
easy to optimize to be cache efficient. A three-dimensional
hydro code is straightforward to implement in parallel. When
sweeping in the direction, for example, one can break up thex
data into one-dimensional columns and operate on the inde-
pendent columns in parallel. A sample three-dimensional
relaxing TVD code, implemented in parallel using OpenMP
directives, is provided in the Appendix.

6. SEDOV-TAYLOR BLAST-WAVE TEST FOR
THREE-DIMENSIONAL HYDRO

A rigorous and challenging test for any three-dimensional
Eulerian or Lagrangian hydrodynamic code is the Sedov-Taylor
blast-wave test. We set up the simulation box with a homo-
geneous medium of density and negligible pressure andr1

introduce a pointlike supply of thermal energy in the centerE0

of the box at time . The challenge is to accurately capturet p 0
the strong spherical shock that sweeps along material as it
propagates out into the ambient medium. The Sedov-Taylor
test is used to model nuclear-type explosions. In astrophysics,
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Fig. 8.—Sedov-Taylor blast-wave test conducted in a box with 2563 cells. The data points are taken from a random subset of cells, and the solid lines are the
analytical self-similar solutions.

it is often used as a basic setup to model supernova explosions
and the evolution of supernova remnants (see Shu 1992).

The analytical Sedov solution uses the self-similar nature of
the blast-wave expansion (see Landau & Lifshitz 1987). Con-
sider a frame fixed relative to the center of the explosion. The
spherical shock front propagates outward, and the distance from
the origin is given by

2 1/5E t0r (t) p y , (71)sh 0( )r1

where for an ideal gas with . The velocityy p 1.15 g p 5/30

of the shock is given byv p �r /�tshsh

2 r (t)shv (t) p . (72)sh 5 t

Since the ambient medium has negligible pressure, the shocks
will be very strong. The density , velocity , and pressurer v2 2

directly behind the shock front areP2

g � 1
r p r , (73)2 1( )g � 1

2
v p v , (74)2 sh( )g � 1

2 2P p r v . (75)2 1 sh( )g � 1

The immediate postshock gas density is constant in time, while
the shocked gas velocity and pressure decrease as�3/5v P t22

and , respectively. The full analytical Sedov-Taylor solu-�6/5t
tions can be found in Landau & Lifshitz (1987).
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Fig. 9.—Closeup of the Sedov-Taylor blast wave. The resolution of the shock front is roughly two grid cells, and the anisotropic scatter is less than one grid
cell.

The three-dimensional relaxing TVD code based on the Van
Leer flux limiter is applied to capturing the Sedov-Taylor blast
wave. We set up a box with 2563 cells and constant initial
density . At time , we inject a supply of thermalr p 1 t p 01

energy into one cell at the center of the box. The5E p 100

simulation is stopped at time , in which the shock frontt p 283
has propagated out to a distance of cells from ther p 110sh

center. In Figures 8 and 9, we plot the radial distributions of
density, momentum, and pressure, normalized to , , andr r v2 2 2

, respectively. The data points are taken from a random subsetP2

of cells, and the solid lines are the analytical Sedov-Taylor
solutions. Despite solving a spherically symmetric problem
on an explicitly nonrotationally invariant Cartesian grid, the
anisotropic scatter in the results is small. The distance of the
shock front from the center of the explosion as a function of
time is indeed given by equation (71), demonstrating that the

three-dimensional relaxing TVD code ensures the correct shock
propagation. The resolution of the shock front is roughly two
grid cells. The numerical shock jump values of , , andr v P2 22

are resolution dependent and come close to the theoretical val-
ues for our test with 2563 cells. We leave it as an exercise for
the reader to test the code using the minmod and superbee flux
limiters.

7. SELF-GRAVITATING HYDRO FOR
ASTROPHYSICAL APPLICATIONS

For astrophysical applications, both hydrodynamical and
gravitational forces are included. The gravitational forces arise
from the self-gravity of the fluid and can also come from an
external field. The Euler equations with the gravitational source
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Fig. 10.—Advection of a self-gravitating polytrope in a periodic box with
2563 cells. We compare the mass and entropy profiles of the initial (solid line)
and advected polytrope after 1000 time steps in which the polytrope has moved
256 cells in each direction.

terms included are given as

�r �
� (rv ) p 0, (76)j�t �xj

�(rv ) � �fi � (rv v � Pd ) p �r , (77)iji j�t �x �xj i

�e � �f
� [(e � P)v ] p �rv , (78)j i�t �x �xj i

wheref is the gravitational potential. Poisson’s equation

2∇ f p 4pGr (79)

relates the gravitational potential to the density field. The gen-
eral solution can be written as

′ ′ 3 ′f(x) p r(x )w(x � x )d x , (80)�
where the kernel is given by

G
w(x) p � . (81)

FxF

In the discrete case, the integral in equation (80) becomes a

sum and Poisson’s equation can be solved using fast Fourier
transforms (FFTs) to do the convolution. The forces are then
calculated by finite differencing the potential (see Hockney &
Eastwood 1988).

The addition of gravitational source terms in the Euler equa-
tions is easily handled using the operator splitting technique
described in § 5.3. Consider the double sweep:

t�2Dt tu p L L L GGL L L u , (82)x y z z y x

where the operator represents the updating ofu by includingLi

the flux in thei direction and the operatorG represents the
gravitational acceleration of the fluid. During the gravitational
step, the flux terms in the Euler equations are ignored. The
density distribution does not change and only the fluid momenta
and total energy density are updated.

7.1. Astrophysical Formation of Blue Stragglers
through Stellar Collisions

The stellar density in the cores of globular and open clusters
is high enough for stellar collisions to take place with signif-
icant frequency (Hills & Day 1976). Current observations and
simulations suggest that the merger of two main-sequence stars
produces a blue straggler (Sills et al. 1997; Sandquist, Bolte,
& Hernquist 1997). The blue stragglers are outlying main-
sequence stars that lie beyond the main-sequence turnoff in the
color-magnitude diagram (CMD) of a star cluster. The blue
stragglers are more massive, brighter, and bluer than the turnoff
stars. Since more massive stars evolve faster than lower mass
stars and are not expected to lie beyond the turnoff, this sug-
gests that blue stragglers must have formed more recently.

In principle, the merger of two main-sequence stars can produce
a young remnant star provided that significant mixing occurs in
the process. The mixing produces a higher hydrogen fraction in
the core of the remnant than that of the parent stars, which have
already burned most of the hydrogen to helium in their cores.
Benz & Hills (1987) used low-resolution SPH simulations with
∼103 particles to simulate the merging of polytropes andn p 3/2
found that they fully mixed. However, medium-resolution SPH
simulations with∼104 particles of or polytropesn p 3/2 n p 3
showed only weak mixing (Lombardi, Rasio, & Shapiro 1996;
Sandquist et al. 1997). It is worth noting that poly-n p 3/2
tropes are more representative of low-mass main-sequence stars
with large convective envelopes, while polytropes re-n p 3
semble main-sequence stars near the turnoff that have little
mass in their convective envelopes. High-resolution SPH sim-
ulations involving∼105–106 particles have now been applied
to simulating stellar collisions (Sills et al. 2002).

The merging stars process is mostly subsonic, and strong
shocks are not expected. In the absence of shocks, SPH particles
will follow flow lines of constant entropy as a result of the
Lagrangian nature of the method. As a result, the particles may
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Fig. 11.—Snapshots of the merging process taken at time , 2, 4, and 8tdyn. The density contours are spaced logarithmically with two per decade andt p 0
covering three decades down from the maximum.

experience sedimentation. In addition, the mixing can also de-
pend on the adopted smoothing length and the form of artificial
viscosity. For an SPH fluid, the Reynolds number is of the
order of , where is the total number of particles1/3(N /N ) Np s p

and is the number of particles over which the smoothing isNs

done. For and , the Reynolds number is∼10.5 2N ∼ 10 N ∼ 10p s

However, a fluid with a low Reynolds number will tend to
experience laminar flow. Hence, SPH may undermix.

It is a worthwhile exercise to model the merging process
using Eulerian hydrodynamical simulations. The differences
between Eulerian and Lagrangian approaches may lead to very
different results on mixing. At present, no such work has been
reported in the literature.

7.2. Numerical Method

We consider the off-axis collision of two main-sequence stars
with and , which are modeled usingM p 0.8M R p 0.955R, ,

polytropes. A polytrope with polytropic indexn has equi-n p 3
librium density and pressure profiles, which are related by

1�1/nP ∝ r . (83)

The density profile is determined by solving the Lane-Emden
equation (see Chandrasekhar 1957). We adopt an ideal gas
equation of state with adiabatic index . Note that forg p 5/3
an polytrope, 90% of the total mass is contained withinn p 3

. We define the dynamical time to ber � 0.5R

1
t { , (84)dyn � ¯Gr

where is the average density. For the chosen parent stars, ther̄

dynamical time is approximately 1 physical hour.
The collision is simulated in a box with 512# 512# 256
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Fig. 12.—Thermodynamic profiles of the merger remnant (solid line) and the parent stars (dashed line). Units are cgs. The radial plot is included for comparison.

cells, and the orbital plane coincides with the -y plane. Initially,x
each parent star has a radius of 96 grid cells. The stars are set
up on zero-energy parabolic orbits with a pericenter separation
equal to 0.25R. The initial trajectories are calculated assuming
point masses. In a Eulerian simulation, the vacuum cannot have
zero density. We set the minimum density of the cells to be
10�8 of the central density of the parent stars.

7.3. Numerical Results

A nontrivial test of a self-gravitating Eulerian hydro code is
the advection of an object in hydrostatic equilibrium. The chal-
lenge is to maintain the equilibrium profile over a large number
of time steps. One of the parent stars is placed in a periodic
box with 2563 cells and given some initial momentum. We
make the test rigorous by having the polytrope move in all
three directions. In Figure 10, we compare the mass and entropy
profiles of the initial and advected polytrope. The entropic var-
iable is used in place of the specific entropy. ThegA { P/r

parameter is defined to be the minimum entropy of the parentA0

polytrope. After 1000 time steps in which the polytrope has
moved 256 cells in each direction, the advected polytrope has
still retained its equilibrium profile. Shock heating can occur
in the outer envelope as the polytrope moves through the false
vacuum. However, by setting the density of the false vacuum
to be 10�8 of the central density of the polytrope, we can
minimize the spurious shock heating.

In Figure 11, we show four snapshots of the merging process
taken at time , 2, 4, and 8tdyn. The two-dimensional den-t p 0
sity maps are created by averaging over four planes taken about
the orbital midplane. The density contours are spaced loga-
rithmically with two per decade and covering three decades
down from the maximum. The parent stars are initially sepa-
rated by 3.75R and placed on zero-energy orbits with a peri-
center separation of . During the collision process, the0.25R
outer envelopes of the parent stars are shock-heated and
material gets ejected. In less than 10tdyn, the merger remnant
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establishes hydrostatic equilibrium. The merger remnant is a
rotating oblate with mass approximately 90% of the combined
mass of the parent stars.

In Figure 12, we plot the thermodynamic profiles of the
merger remnant and the parent stars. The central density and
pressure in the core of the merger remnant is lower than the
corresponding values in the parent stars by approximately half.
The entropy floor has risen by a factor of 1.6. Shock heating
is expected to be minimal in the core, so a change in entropy
suggests that some mixing has taken place. However, it is dif-
ficult to quantify the amount of mixing from examining the
thermodynamic profiles alone.

7.4. Future Work

To help address the question of mixing, we are implementing
a particle-mesh (PM) scheme where test particles can be used
to track passively advected quantities such as chemical com-
position. Initially, each parent star is assigned a large number
of particles with known chemical composition. The test par-
ticles are passively advected along velocity field lines. For each
time step, the velocity of each particle is interpolated from the
grid using a “cloud-in-cell” (CIC) scheme (Hockney & East-
wood 1988), and the equations of motions are solved using
second-order Runge-Kutta integration. The CIC interpolation
scheme is also used to determine the local density, pressure,
and entropy associated with each particle. With this setup, we
have the benefit of being able to track thermodynamic quantities
like in an SPH scheme but avoid the undermixing problem
since the fluid equations are solved using the Eulerian scheme.

Future work (H. Trac, A. Sills, & U.-L. Pen 2003, in prep-
aration) will have higher resolution simulations. Collisions will
be simulated in a box with cells. Each1024# 1024# 512
parent star will have a radius of 192 grid cells and be assigned
2563 test particles.

The self-gravitating hydro code used for the simulations is

very memory friendly. For the grid, 10 GBytes21024 # 512
is required to store the hydro variables, 2 GBytes for the po-
tential, and less than 1 GByte for the test particles. For every
double time step, approximately 1000 floating point operations
per grid cell are needed to carry out the TVD hydro calcula-
tions. The potential is computed once for every double step
and this requires two FFTs. Since Eulerian codes are very
memory friendly, have low floating point counts, are easily
parallelized, and scale very well on shared-memory, multiple-
processor machines, they can be used to run very high reso-
lution simulations.

8. SUMMARY

We have presented several numerical schemes for solving
the linear advection equation and given the CFL stability con-
ditions for each scheme. We have implemented the relaxing
TVD scheme to solve the Euler system of conservation laws.
The second-order accurate TVD scheme provides high-reso-
lution capturing of shocks, as can be seen in the Riemann shock
test and the Sedov-Taylor blast-wave test. The one-dimensional
relaxing TVD scheme can be easily generalized to higher di-
mensions using the dimensional splitting technique. A dimen-
sionally split scheme can use longer time steps and is straight-
forward to implement in parallel. We have presented a sample
astrophysical application. A three-dimensional self-gravitating
Eulerian hydro code is used to simulate the formation of blue
straggler stars through stellar mergers. We hope to have con-
vinced the reader that Eulerian computational fluid dynamics
is a powerful approach to simulating complex fluid flows be-
cause it is simple, fast, and accurate.

We thank Joachim Stadel and Norm Murray for comments
and suggestions on the writing and editing of this paper. We
also thank Alison Sills, Phil Arras, and Chris Matzner for dis-
cussions on stellar mergers.

APPENDIX

THREE-DIMENSIONAL RELAXING TVD CODE

We provide a sample three-dimensional relaxing TVD code
written in Fortran 90. The code is implemented using OpenMP
directives to run in parallel on shared memory machines. The
code is fast and memory friendly. The arrayu(a,i,j,k)
stores the five conserved hydro quantities
ap(r,rvx,rvy,rvz,e) for each cell (i,j,k) in the
Cartesian cubical lattice with side lengthnc. For each sweep,
we first call the subroutinetimestep to determine the
appropriate time stepdt that satisfies the CFL condition. The
updating of u by including the flux in thex direction is
performed by thesweepx subroutine. The data arrayu is
divided into one-dimensional array sectionsu1d(a,i), which

are operated on by therelaxing subroutine. The independent
columns are distributed amongst multiple processors on a
shared memory machine by the OpenMP directives.

The relaxing TVD subroutine in this sample code is written
for ease of readability and therefore is not fully optimized. At
the beginning of each partial step in the Runge-Kutta time
integration scheme, the cell-averaged variables defined at grid
cell centers are calculated by theaverageflux subroutine.
The fluxes at cell boundaries for the right-moving and left-
moving waves are stored infr andfl, respectively. We have
implemented the minmod, superbee, and Van Leer flux limiters,
and the user of the code can easily switch between them.
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We have provided some initial conditions for the Sedov-
Taylor blast-wave test. The reader is encouraged to test the
code and compare how the various flux limiters do at resolving
strong shocks. This sample code does not implement the
modified relaxing TVD scheme described at the end of § 5.2,
which has been found to work very well with the Van Leer
flux limiter but unstable with superbee for the three-
dimensional Sedov Taylor test. We have found that the superbee
limiter is often unstable for three-dimensional fluid simulations.
Please contact the authors regarding any questions on the
implementation of the relaxing TVD algorithm.

program main
implicit none
integer, parameter :: ncp64,hcpnc/2
real, parameter :: gammap5./3,cflp0.9

real, dimension(5,nc,nc,nc) :: u

integer nsw,stopsim
real t,tf,dt,E0,rmax

tp0
dtp0
nswp0
stopsimp0

E0p1e5
rmaxp3*hc/4
tfpsqrt((rmax/1.15)**5/E0)
call sedovtaylor
do

call timestep
call sweepx
call sweepy
call sweepz
call sweepz
call sweepy
call sweepx
if (stopsim .eq. 1) exit
call timestep
call sweepz
call sweepx
call sweepy
call sweepy
call sweepx
call sweepz
if (stopsim .eq. 1) exit
call timestep
call sweepy
call sweepz
call sweepx
call sweepx
call sweepz

call sweepy
if (stopsim .eq. 1) exit

enddo
call outputresults

contains

subroutine sedovtaylor
implicit none
integer i,j,k

do kp1,nc
do jp1,nc

do ip1,nc
u(1,i,j,k)p1
u(2:4,i,j,k)p0
u(5,i,j,k)p1e-3

enddo
enddo

enddo
u(5,hc,hc,hc)pE0
return

end subroutine sedovtaylor

subroutine outputresults
implicit none
integer i,j,k
real r,x,y,z

open(1,filep’sedovtaylor.dat’,reclp200)
do kp1,nc

zpk-hc
do jp1,nc

ypj-hc
do ip1,nc

xpi-hc
rpsqrt(x**2�y**2 �z**2)
write(1,*) r,u(:,i,j,k)

enddo
enddo

enddo
close(1)
return

end subroutine outputresults

subroutine timestep
implicit none
integer i,j,k
real P,cs,cmax
real v(3)

cmaxp1e-5
!$omp parallel do default(shared) private(i,j,k,v,cs,P)

reduction(max:cmax)
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do kp1,nc
do jp1,nc

do ip1,nc
vpabs(u(2:4,i,j,k)/u(1,i,j,k))
Ppmax((gamma-1)*(u(5,i,j,k)-u(1,i,j,k)

*sum(v**2)/2),0.)
cspsqrt(gamma*P/u(1,i,j,k))
cmaxpmax(cmax,maxval(v)�cs)

enddo
enddo

enddo
!$omp end parallel do

dtpcfl/cmax
if (t�2*dt .gt. tf) then

dtp(tf-t)/2
stopsimp1

endif
tpt�2*dt
nswpnsw�1
write(*,”(a7,i3,a8,f7.5,a6,f8.5)”) ’nswp ’,nsw,’

dt p ’,dt,’ t p ’,t
return

end subroutine timestep

subroutine sweepx
implicit none
integer j,k
real u1d(5,nc)

!$omp parallel do default(shared) private(j,k,u1d)
do kp1,nc

do jp1,nc
u1dpu(:,:,j,k)
call relaxing(u1d)
u(:,:,j,k)pu1d

enddo
enddo
!$omp end parallel do
return

end subroutine sweepx

subroutine sweepy
implicit none
integer i,k
real u1d(5,nc)

!$omp parallel do default(shared) private(i,k,u1d)
do kp1,nc

do ip1,nc
u1d((/1,3,2,4,5/),:)pu( :,i,:,k)
call relaxing(u1d)
u(:,i,:,k)pu1d((/1,3,2,4,5/),:)

enddo

enddo
!$omp end parallel do
return

end subroutine sweepy

subroutine sweepz
implicit none
integer i,j
real u1d(5,nc)

!$omp parallel do default(shared) private(i,j,u1d)
do jp1,nc

do ip1,nc
u1d((/1,4,3,2,5/),:)pu(:,i,j,:)
call relaxing(u1d)
u(:,i,j,:)pu1d((/1,4,3,2,5/),:)

enddo
enddo
!$omp end parallel do
return

end subroutine sweepz

subroutine relaxing(u)
implicit none
real, dimension(nc) :: c
real, dimension(5,nc) :: u,u1,w,fu,fr,fl,dfl,dfr

!! Do half step using first-order upwind scheme
call averageflux(u,w,c)
frp(u*spread(c,1,5)�w)/2
flpcshift(u*spread(c,1,5)-w,1,2)/2
fup(fr-fl)
u1pu-(fu-cshift(fu,-1,2))*dt/2

!! Do full step using second-order TVD scheme
call averageflux(u1,w,c)

!! Right-moving waves
frp(u1*spread(c,1,5)�w)/2
dflp(fr-cshift(fr,-1,2))/2
dfrpcshift(dfl,1,2)
call vanleer(fr,dfl,dfr)
!call minmod(fr,dfl,dfr)
!call superbee(fr,dfl,dfr)

!! Left-moving waves
flpcshift(u1*spread(c,1,5)-w,1,2)/2
dflp(cshift(fl,-1,2)-fl)/2
dfrpcshift(dfl,1,2)
call vanleer(fl,dfl,dfr)
!call minmod(fl,dfl,dfr)
!call superbee(fl,dfl,dfr)

fup(fr-fl)
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upu-(fu-cshift(fu,-1,2))*dt
return

end subroutine relaxing

subroutine averageflux(u,w,c)
implicit none
integer i
real P,v
real u(5,nc),w(5,nc),c(nc)

!! Calculate cell-centered fluxes and freezing speed
do ip1,nc

vpu(2,i)/u(1,i)
Ppmax((gamma-1)*(u(5,i)-

sum(u(2:4,i)**2)/u(1,i)/2),0.)
c(i)pabs(v)�max(sqrt(gamma*P/u(1,i)),1e-5)
w(1,i)pu(1,i)*v
w(2,i)p(u(2,i)*v�P)
w(3,i)pu(3,i)*v
w(4,i)pu(4,i)*v
w(5,i)p(u(5,i)�P)*v

enddo
return

end subroutine averageflux

subroutine vanleer(f,a,b)
implicit none
real, dimension(5,nc) :: f,a,b,c

cpa*b

where (c .gt. 0)
fpf�2*c/(a�b)

endwhere
return

end subroutine vanleer

subroutine minmod(f,a,b)
implicit none
real, dimension(nc) :: f,a,b

fpf�(sign(1.,a)�sign(1.,b))*min(abs(a),abs(b))/2.
return

end subroutine minmod

subroutine superbee(f,a,b)
implicit none
real, dimension(5,nc) :: f,a,b

where (abs(a) .gt. abs(b))
fpf�(sign(1.,a)�sign(1.,b))*min(abs(a),

abs(2*b))/2.
elsewhere

fpf�(sign(1.,a)�sign(1.,b))*min(abs(2*a),
abs(b))/2.

endwhere
return

end subroutine superbee

end program main
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