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Outline 1

1. Introduction
e Fusion & astrophysical plasmas = Spectral theory of moving plasmas

e Theme of new textbook on Advanced MHD = Stationary plasma flow

2. New spectral theory
e Self-adjoint operators (z and U =- Real quadratic forms W and V/

e Energy flow in open system =- | Solution path | inthe complex w plane

e Oscillation theorem = | Alternator | monotonic on solution path

3. Applications

e | Spectral web |for magneto-rotational and other instabilities

e | Rotational |stabilization of jets

4, Summary
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Two textbooks on Magnetohydrodynamics
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With Applications to Laboratory and Astrophysical Plasmas

J. P. Goedbloed
s o R. Keppens
and S.Poedts

With Applications to Laboratory and Astrophysical Plasmas




1. Introduction: The ideal MHD model (from Vol. 1) 2

Conservation laws & Scale independence |

e |deal MHD equations interms of p, v, p, B:

0
8_§ +V - (pv) =0, Conservation of mass
ov 1
,0(—+V-VV)+Vp—,0g——(V><B)><B:O, momentum
ot o
dp
§+V-Vp+7pV-V:O, entropy
0B
E_VX(VXB>:O’ V-B=0. magnetic flux!

e They are independent of length scale (ly), density (pg) and magnetic field (B5)

—> describe global dynamics of both laboratory and astrophysi cal plasmas!

e Of course, to be supplemented with  appropriate boundary conditions.



Introduction: The grand vision (from Vol. 2)

Magnetized plasma |

IS omni-present and described by magnetohydrodynamics

e Tokamak (Iter)

= Nuts and bolts fix

static plasma

e Pinwheel Galaxy M101 (HST)

= Gravity and rotation

fix

moving plasma




Introduction —> Flow demands a fundamentally new approach 4

Fusion plasmas

e Energy principle for static plasmas (1957): standard stability paradigm for more
than 50 years =- interchanges, kinks, peeling—ballooning, RWM (k . B).

e Modification for stationary plasmas (Frieman—Rotenberg, 1 960): known, but
hardly investigated due to misnomer “non self-adjoint”. Shear flow stabilizes some
Instabilities, but also drives new ones = | Kelvin—Helmholtz (KH)

Astrophysical plasmas
e Energy principle does not apply  since there are no static astrophysical plasmas.

e Gravity and differential rotation establish equilibrium, but also drive instabilities
(violating tokamak “intuition”: k || B) =-| Rayleigh-Taylor (RT), Parker, MRI, . ..

MHD spectroscopy of stationary plasma flow
e Urgent common theme for laboratory and astrophysical plasma research.

e Demands fundamentally different approach  from static flow, that can be based on
two foundations laid 50 (Frieman—Rotenberg) and 100 (Hilbert) years ago.



2. New spectral theory: Waves and instabilities of static plasmas

Displacement vector | /ﬁ(w

= Solves 3 of the 4 PDESs, so that _— _r\E\
only ‘Newtons law’ remains: r °
_ 825 _ 2 iwt
F(&) = p? = —pw-€ | (for normal modes e'“")
t
= Energy: = —% [ & -F(&)dV | Hain etal. (1957), Bernstein et al. (1958)
Wo
® ® o
Wi
Energy Wy
J
Wo
€ 3
Force — > — >
- —
F F

= More than 50 years applied to tokamaks, and even to astrophys ical plasmas!



New spectral theory: Waves and instabilities of moving plasmas 6

Modified displacement |

Since astrophysical (and also present tokamak)

plasmas are not static at all (even supersonic!) perturbed flow E(ro,1)

= Need MHD spectroscopy for moving plasmas. stationary flow

= Again solves 3 of the 4 PDEs f0,t=0

so that ‘Newtons law’ remains:

2
G(&) —2pv -V % — p% = G(&) — 2wUE + pw*€ = 0| Frieman—Rotenberg (1960)

G: generalized force operator, = —ipv - V: Doppler—Coriolis shift operator

(for plain waves X : =k - v()



New spectral theory: Three fundamental problems 7

(1) HWY = lh%—\f = EW (1926) bound free c
0

Quantum mechanics (atoms,molecules, condensed/living matter . .. everything?):
Hamiltonian H =- real EVs £ — stable solutions!

unstable ¢ @

(1957) x x
stable ¢

W >0 (wreal) — stable waves

MHD of static plasmas (fusion only):

Force operator F = real EVs w? — { | |
W <0 (wimag.) — instabilities

unstable | e

3) Q&) —2v -V~ ,TE _ Ge) — 20U + put =0

ot ot? x *
MHD of moving plasmas (fusion/astrophysical ... cosmic): sl || o
Generalized force G and Doppler—Coriolis U = —ipv - V
w real — stable (undamped) waves
= EVs _ How to compute them?
w complex — instabilities/damped waves



New spectral theory:

Facing problem (3) — Hilbert space concepts 8

Obstacle |

e Problems (1) & (2): extensively studied ( ~ ten thousands of papers).

e Problem (3): hardly studied ( ~ hundreds of papers), due to widely held belief that
“the problem is non-self-adjoint”.

e How come? Energy is conserved, and both

Quadratic forms |

e Inner product and norm:

e Operators are self-adjoint

&n =3 p&ndv,

(n,p'UE) =

(n,p”'G(&)) =

(p~'Un &) =

(p"'G(n),&) =

G and U are self-adjoint!

I[€] = |I€]* = (& &) < o0 .

real

(Doppler shift) ,

real

(energy) .

e But eigenvalue problem (3) is nonlinear

W= 2Vw—W =0

: VEV/[

W=W/I=(-p'G).



New spectral theory:  Solution paths — monotonicity?

) 1V
‘Solutions’ of the quadratic, with w = o + 1v: (@)

of*= -W
( _ _ _
o=V =+ \/W+V2, v=0 (stable waves)

o V, v=+ \/ W — V" (instabilities) \//
This expression determines stability and yields o=V

picture of where actual eigenvalues are located =

Would also yield a computational procedure if we knew:
How to compute solution averages before eigenvalue (EV) is 0 btained?

Recall static (‘linear’) eigenvalue problem:
(1) F self-adjoint = w?real = EVs w lie on the real and imaginary axes.
(2) EVs monotonic with number of zeros of & (Goedbloed—Sakanaka, 1974).

In stationary problem, Doppler—Coriolis shift V_ moves EVs off the imaginary axis:

= (1) Solution path = unknown curve on which the EVs are located?

= (2) Monotonicity property of EVs on the solution path?




New spectral theory: Generic spectral problems 10

ROC Arbitrary p(r), p(r), ve(r), va(r), By(r), B.(r),

Reduction of Frieman—Rotenberg equation, with y = &, = x(r)ell

but satisfying the equilibrium condition,

A
// B = (- B —
("] |®

\ Apply to two generic astrohysical problems:

(1) Accretion disk model, thin slice  Az:
annulus Ar (Myatr =0), kAz > 1;

(2) Rotating jet of finite length  L:
plasma + ‘vacuum’, &, =0, k =nn/L.

mO+kz—wt)

S

d [ N dy B (C)' d X C D X
A+=4= = N— =0
r[Ddr]+[ +D+{D}]X 0sor dr<H>+<E —C) (H) /

where N = N(r;w), with © = w — k; - v, and Il is the total pressure perturbation.

BCs:

x(r1) =0 (left)

_ = Eigenvalue problem.
X(r2) =0 (right)




New spectral theory: Generic spectral problems (cont'd)

11

Spectral properties |

For plane slab: ODE similar to static case (Goedbloed, 1971), but w is replaced by the
In co-moving layers:

Doppler-shifted frequency

w — wr)=w-— ), Q=k-

v(z).

For cylinder: Hain—Lulst eq. (1958), generalized for rotation by Bondeson et al. (1987),
and for gravitating thin disk with MRI by Keppens et al. (2002).

Qo = mug/r + kv, |

Previous results:

and Coriolis terms

~ vg /T

e HD = flow continuum {{2(z)}, discovered by Case (1960).
(Goedbloed et al., 2004).

e MHD = contrary to prolonged belief, no flow continuum!

e Instead, three static MHD continua split into six Doppler-shifted continua:

Qj = OQp(x) T wa(x)

(Alfvén).

O = Qox) £ ws(z)

(slow),

Flow continuum is obtained in the limit B — 0.

= How is the full (complex) spectrum connected to this (real) s

szioo

tructure?

(fast).



New spectral theory: Real EVs monotonic about the continua

: : = cONtinuum
Continuous spectra in HD and MHD | ——  non-monofonic

—»  Sturmian

(Goedbloed, Beéin, van der Holst, Keppens, 2004) < anti-Sturmian
HD: (a)  backward backward / forward forward
p modes g modes p modes
(QE)
- +
Qp Qo Qp
] :'—_—H ; } > O
- RIS +
(- ) PO A0) Y PO ()
MHD: (b) backward LN forward
: '.‘ 5 N
fast Alfvén . slow "sllow Alfvén fast
; S (Qg) ‘
- - Nt ~ ot +
Qp Qp Qg Qs A Qp
T —> - —> < i e D S
| - - — - b e +—}——> O
- . + +
Qo Qg0 0 250 219



New spectral theory: Solution path method 13

Consider open system |

(a) Spectral differential equation  can be solved accurately for arbitrary complex w.
= No problem!

(b) Actual problem is searching in the complex w-plane for the eigenvalues.
= Temporarily, drop that part by removing one of the boundarie s!

Keep:  {(x1) =0 (left BC)
Drop:  {(xp) =0 (right BC).

e To get harmonic time dependence exp(—iwt),
energy has to be injected or extracted at  x».
This is represented by imaginary part of energy,
which we demand to vanish:

Wy =Im(W) =0 = solution path!

e Required expression follows directly from proof
v of self-adjointness of the force operator  G.

XE E B B E B EEEEBE BN

e Eigenvalues have to lie on this path.



New spectral theory: Physical meaning of solution path 14

Complex omega_p|ane I Problem solvable for arbitrary complex  w,
but energy is complex: W =W; +1iW,.

|
‘ <« ]I
I (W2 <0) I (W»> >0) B
I
\Y% o
4
I 1
I I p—
I (W5 > 0) I (W» <0)
< ]I
|
0)

Solution of the quadratic w?> —2Vw —W =0 =

— Three BVPs:

| — Eigenvalues (closed),
wall on the plasma:

WQZOa 5(332):07

Il — Solution path (closed), <«
e.g. variable vacuum layer:

W2:Ov f(ﬁUV):O,

Il — Arbitrary complex w (open),
external excitation:

Wy 0.

O':V, ift WQZO

—> average Doppler shifted real part of frequency vanishes iff system is closed.



New spectral theory: Two equivalent formulations 15

Solution path |

e Pre-self-adjointness relation for G, with & and 1) not yet satisfying right BC:

Gauss)

/ (7" - G(€) — & GV "= — / nT(E) — EMl(n")]dS (=0ifBC).
Skip last step! Choosing n = £ yields easily computable expression for 1W5:
Wy =i [ (€ Gle) € GENav = [ (G- &) ds

= |Wh&(r;w)] =0 | = path P, of unstable solutions.

e Equivalently, self-adjointness of U yields mapping of w-plane onto itself,

Jeugav

Q) = w = Viglrw) =w =,

which provides both solution paths:
{ Im@Q=v=0 =- path P; of stable solutions,

Re@QQ=oc=0— V[é(r;w)} =0| = path P, of unstable solutions.




New spectral theory: Complex EVs monotonic along the solution path! 16

Osclllation theorems and alternator |

e Once solution path is determined, EVs on it are found by imposing the missing BC.
But how does one move from one EV to the next?

e Oscillation theorem R for stable waves : Counting nodes of the real function &
yields Sturm-Liouville monotonicity (as static case: Goedbloed—Sakanaka 1974).

e |Instabilities: On the solution path, the alternating ratio R = & /Il is real:

_ 1 _ §@2) _ &i(wy) _ &)
=3l = oI, =0 = R M(zy)  1hi(z2) (o) |

Ri=0 = Eigenvalues.

e = Oscillation theorem C for instabilities | proof exploits quadratic forms]:

The alternator R = &_/I1, is real and monotonic along the solution path in
between the zeros of 11, separating the eigenvalues.

e Now, we are in business!



3. Applications:

(a) Rayleigh—Taylor & Kelvin—Helmholtz instabllities 17

Solution path |

4.

0

Plane gravitating slab

(a)

p: linear profile,
3 B: sheared,

v sinusoidal profile.

0.16

0.12 — Q ]

6
0.04 - -1 0.04

Ce7
@

Al ) | 0.0 | c:‘ 0.0

| .

2.0 3.0 0.0 -0.04 0.0 1.88 1.92 1.96
c c

= Infinite sequence RT modes on ever smaller
closed loops, one isolated KH mode.



Applications: (b) Magneto-rotational instabilities (MRI) 18

Full spectrum (LEDA—-FLOW) Standard equiibrium:

|[Keppens, Casse, Goedbloed, ApJL (2002)] p=r32 o~ /2
Parameters:
O6[ T T T 7 L I E—— — T —
T %%A/MRIS e=4p =01,
- 001t 76£2p/32:20007
| | ode numbers:
m=0, k=50

—15 —10 -9 0 o 10 15



Applications: MRIs 19

Spectral web (ROC) |

Contours of solution path and alternator Equilibrium:
0.8
! ! e e=0.1, B=100
p=1;
s — | Mode numbers:
m=20, k=250.
0.4 (—
Solution path is not
along imaginary axis:
o=V #0
0.2 —
Alternator loops give
= genuine (& = & = 0)
S——
& false (I, = Iy = 0)
~ S~ ) -
0.0 % A 0.0 eigenvalues.
sig

ROC72-361d-1



Applications:

MRI, eigenfunction nr. 1

20

Fastest growing mode |

1.0

l l l

chilE =-5.4328E-12

chil
o
o

chi2

1.

0

1.25 1.5 1.75 2.0

PilE =-5.6910E-03

Pil

Pi2

I I I

1.

0

1.25 1.5 1.75 2.0

o=—-2.031x107", v=0.6277

chi2E = 1.3188E-10

1.

1.

25

Pi2E = 4.4129E-05

1.

0

ROC72-361d-2

1.

25

1.

1.75 2.



Applications: MRI, eigenfunction nr.10

One of the cluster modes | o= —1.287 x 1073, v = 0.3861

l 1.0

chilE =-2.2793E-11

chi2E = 9.6704E-12

—  -0.5 H{

ROC73-361g



Applications:

(c) Non-axisymmetric modes (NAM)

22

Spectral web (ROC) |

Contours of solution path and alternator

0.

0.

Equilibrium:
e=0.1, /=100,
po=1;
Mode numbers:
m =10, k=50
Y

Overlapping continua:

_|_ _
QA’S and QA’S .

| (D \\ //st) _
L) ) )

-10.0

-9.2
sig

ROC72-350-1

Both, solution path and
alternator form loops!



Applications:

NAM, eigenfunction nr. 1

23

Fastest growing mode |

~8.860 x 1073, v = 0.3753

chi2E #-2.11N0E-01

1.02 1.05 1.08 1.1

Pi2E =-2.2345E~

1.0 1.0
chilE =-9.0946E-02
0.5 |— - 0.5 |—
i AN
= 0.0 = 0.0
(&S] [&]
0.5 |— — 0.5 |
1.0 | | 1.0
1.0 1.02 1.05 1.08 1.1 1.
X
1.0 1.0
PilE = 2.5651E-03
0.5 |— /\ /_ 0.5
0.0 0.0
o [a
0.5 |— — 0.5 |—
1.0 | 1.0
1.0 1.02 1.05 1.08 1.1 1.

ROC72-350-2

1.02 1.05 1.08 1.1



Applications:

Non-axisymmetric modes (NAM)

24

Spectral web (zoom) |

Contours of solution path and alternator

0.08

S
c 0.04
@

=

W2
[S1]

It

\

-9.2
sig
ROC72-351-1

Loops of solution path
and alternator continue
indefinitely towards the
edges of forward and
backward Alfv én/slow
continua 2 gand .



Applications:

NAM, eigenfunction nr.4

25

One of the cluster modes |

chil

Pil

I I I
chilE #N.5038E-01

1.0 1

I \>\/// I
.02 1.05 1.08 1.

I I

PilE = 9.2244E-03

1

.1

chi?2

Pi2

o= —9.101, v = 0.06565

I I

chfi2E\=-8.5101E-01

| | |
Pi2E = .2476E-03
N /\ /\ N\

1.0 1

I \N\/// I
.02 1.05 1.08 1.

ROC72-351-2

1



Applications: (d) Alfv énic jet (far beyond Kruskal-Shafranov limit!) 26

Equilibrium (ROC) | e=2ma/L =01, ¢g=01, ¢ =0.2

K-S limit: ¢q; > 1 (torus), g; > 2 (jet)

Bth(x)

Bz (x)

1.00 0.47 |
0.95}— < 3.8039E-01 —] 0.41— rng = 4.6802E81 —
jthmax =\6.9996E-01 jzmax = 2.0000E+00
0.90— jthmin =-25264E-01 | 0.35— jzmin =-7.0527E-01
— 0.86— — — 0.29— —
o 1
~.0.81F — — 0.23 —
~n 0.76 — £ 0.18— —
m Om
0.71 — 0.12 0.
0.67— — 0.06— —
0.62 | | l 0.0 | I I I
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
X X
x10-1°
0.20 a(x) 0.13 Error
l l l l l l l l
019— rng = 1.0561E-01 010— rng = 2.3739E-16 —
0.17— 0.07— —
0.16— _ 0.04—
= 0.15— — 2o0.01fp, Nl \ ,Mﬂ
\V4 LI T 14
0.13 — Yo, 02— ww 'UN v
0.12— — 0.05—
0.11 — 0.081— —
0.09] l -0.11 I I I |
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
X X

ROC74-672-1



Applications: Alfv énic jet 27

Spectral web (ROC) | . L 1 1
—nr/L,n=1, m=—

Contours of W2, psil/2 and Lam1/2

0.2 I
\ | /== I
N\ /! — psil
~_ PN Just one violently
0.1 | N unstable external
kink mode!

0.1 _/ﬁ§ ﬁ
%\

-0.2 -0.1 0.0 0.1 0.2
sig
ROC74-672-2




Applications: Alfv énic jet 28
External kink mode | o= —5.000 x 102, v =0.1334
S | | | 0 Plasma:
" chilE = 0711E-01 chi2E = 0711E-01
05 i 1E :-2.05995-01_ . i E :-2.05995-01_ (X : H)T’
o : = ‘Vacuum':
80.0 x o 0.0 7
= ' - . T
I . N . <¢7A) ‘
%-0.5—5 —%- .5—5 —
10 L1 1 1 1 1 o Lt | 1 1 1
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
X [1/x] X [1/x]
1.0 l .0 l
\0706E-02 \0706E-02
LamlE =-2.08 E-01 Lam2E =-2.08 E-01
0.5 — .5 —
£ 0.0 §0.0
E-o.s — — E 5 — —
10 L1 1 1 1 1 oLt | 1 1 1
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

x [1/x]

x [1/x]

ROC74-672-3



Applications:

Rotating Alfv énic jet

29

Equilibrium (ROC) |

rho

O 0O O O kP R R R R

VZ
O 0O O O kP R R Rk B

.50
.38—
25—
A3

rho(x)

ol

25—
A3

I

I

rng = 0.0000E+00 —

I

87—
.I5—
62—

vz (Xx)

I

rng = 0.0000E+00

I

87—
75—
.62—

0.

0

0.

2

0.4

0.

6

0.

8

1

.0

vth

O O O O O O o o o

1 1 1
R O O O O O O O krpk

Adding rigid rotation

- O
© 5

.75
.5
.25
.0
.25
.5
.75

-1.0

p(x)

(Ul = 014)

I

I

rng = 0.0000E+00 —

I

I

0.0

.14
.12
.11
.09
.07
.05
.04

.02
.0

0.

2

0.4

X

0.

vth(x)

6

0.

I

I

I

I

rng = 1.4000E01 —

I

0.0

ROC74-673-1

0.

2

0.4

X

0.

6

0.

8



Applications:  Rotating Alfv énic jet 30

Spectral web (ROC) |

Contours of W2, psil/2 and Lam1/2
I I

\/

0.2

oo ';E%
33
=YY=

\V/

\/

Approaching v; = 0.15
~ suUa ¢ Where external
kink mode is completely
stabilized by rotation.

/

0.2 -0.1 0.0
sig
ROC74-673-2

\




Applications:

Rotating Alfv énic jet

31

External kink mode |

- chil [psil]

Pil [Laml]

o

o

o

o=—4989x1072, v =4.354x 1072

(nearly stable)

ROC74-673-3

0 : 1.0 l
. chilE = #0714E-01 chi2E = #0707E-01
. E =-2.0927E-01 . E =-2.0925E-01
S — 0.5 — —
. '@ .
0 E 8_0.0 E
. o .
5 — . — <=-0.5 — . —]
. © .
0 : l l l 1.0 : I I I
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
X [1/X] X [1/x]
.00 1.0
\0471E-02 \0465E-02
LamlE =-2.04S4E-01 Lam2E =-2.04lE-01
5 — 0.5 I
o
0 %0.0
I
o~
5 — — 7-0.5 — —
0 : | | | 1.0 : | | |
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
X [1/x] X [1/x]



4. Summary 32

Conclusions |

New spectral theory [Goedbloed, PoP (2009), PPCF (2011)]

e Construction of full complex MHD spectrum of moving plasmas based on
self-adjointness of force operator G and Doppler—Coriolis operator U.

Method

e Closed system is opened up, converting the original EVP into one-sided BVP.
Solvable for all complex w, which makes the energy W complex, whereas the
Doppler—Coriolis shift  V remainsreal. = W, = 0 | provides the solution path,

on which the alternator is real and monotonic and R; = 0 | provides the EVs.

Applications

e Spectral web of MRIs and new class of non-axisymmetric modes.

e External kink modes of Alfv  énic jets stabilized by rigid rotation.
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