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. INTRODUCTION

The interstellar medium (ISM) is turbulent, magnetized (e.g., Heiles
& Troland 2003, 2005), and self-gravitating.

Turbulence and gravity in the ISM lead to the formation of density
enhancements that constitute clouds, and clumps and cores
within them (Sasao 1973; EImegreen 1993; Ballesteros-Paredes et al. 1999).

This talk (Vazquez-Semadeni et al. 2011, MNRAS):

— Qutline of underlying physical processes.

— Results from cloud-formation simulations including MHD and
ambipolar diffusion (AD).



Il. BASIC PHYSICAL PROCESSES

1. Fundamental fact:

A density enhancement requires an accumulation of initially distant
material into a more compact region.

l.e., need to the material from the surroundings into the
region.

With selt-gravity

Vazquez-Semadeni et al.
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2. ISM thermodynamics.

2.1. A key property of the atomic ISM is that it is thermally bistable.

* The balance between the various heating and cooling processes
affecting the ISM. ..
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... causes its atomic component to be

— A warm, diffuse phase (WNM, T ~ 8000 K, n ~ 0.4 cm) can be
in a pressure equilibrium with a cold, dense (CNM, T ~ 80
K, n ~ 40 cm3) phase (Field et al 1969; Wolfire et al 1995, 2003).
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— This is the famous of the ISM (Field et al 1969).
— The presence of turbulence and magnetic fields makes the
problem more complex.

* Transonic compressions in the linearly stable WNM can nonlinearly
trigger a transition to the CNM... (Hennebelle & Pérault 1999).
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* ... and, aided by gravity, an overshoot to molecular cloud conditions
(Vazquez-Semadeni et al 2007; Heitsch & Hartmann 2008).

* This constitutes a fundamental process for
out of the WNM.



3. Compressions and the mass-to-flux ratio in ideal MHD.

— An object can only collapse gravitationally if it is magnetically
supercritical (1 = [M/@/[M/q@] .. > 1) and Jeans unstable.

crit

—  The usual notion is that, if a (Lagrangian) object is subcritical, it
can only collapse if it sheds enough magnetic flux ¢ to become
supercritical.

— However, n is actually not an absolute quantity, but rather
depends on the boundary conditions.



3.1. Under c2a/ MHD conditions, and for a /xed cloud mass, the
mass-to-flux ratio p of a clump of size r within an initially uniform
cloud of size R is expected to range within:

where |, is the mass-to-flux ratio of the parent cloud (Vazquez-
Semadeni et al. 2005, ApJ 618, 344).

Consider two limiting cases under ideal MHD:
a) A subregion of a uniform cloud with a uniform field:

mass = M
size = R
flux =@

size = r
mass = (#/R)* M
flux = (/R)* @
Moo = (/R) My




b) A full compression of the region into a smaller volume:

mass = M,
mass = =qQ,,
=@, u= |,l0 Hoior = Hy

Thus, under ideal MHD conditions, the mass-to flux ratio of a fragment
of a cloud must be smaller or equal than that of the whole cloud.



b) A full compression of the region into a smaller volume:

mass = M,
mass = =qQ,,
=@, u= |,l0 Hoior = Ho

Thus, under ideal MHD conditions, the mass-to flux ratio of a fragment
of a cloud must be smaller or equal than that of the whole cloud.

But note: if the magnetic field lines continue, so does the density field.
— Where is the boundary???
— U is a boundary condition, not a physical property of the “cloud”!



Clumps in a subregion of an ideal-MHD simulation of a 4-pc box with

global mass-to-flux ratio u=2.8 by Vazquez-Semadeni et al. 2005, ApJ, 618,
344 (see also Luttmila et al. 2009).
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Numerical dissipation has started
to act, increasing U in the densest
regions.




* Crutcher et al. 2009
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Thus, for uniform p and B, the farther away the boundary is
along the field, the larger pu is.

The usual solution is to appeal to a warm, diffuse confining
medium, but...



3.2. If a cloud (i.e., a dense region) is formed by a compression with a
component along the field lines, the cloud’s observed mass and

mass-to-flux ratio increase together (Mestel 1985; Hennebelle &
Pérault 2000; Hartmann et al. 2001; Shu et al. 2007; VS et al. 2011).

subcritical diffuse subcritical dense
supercritical diffuse

supercritical diffuse

supercrltlcal dense

—>
supercritical dense

Assumption: the background medium extends out to a sufficiently long
distances to be supercritical.

Example: for B=3 uG and n=1 cm3, a length L > 230 pc is supercritical.




4. Combining compressions, MHD and thermodynamics:
*  Magnetic criticality condition (Nakano & Nakamura 1978):

* Thisis to the column density threshold for transition from
atomic to molecular gas, N ~ 102" cm2 ~ 8 M, pc? (Franco & Cox 1986;

van Dishoek & Black 1988; van Dishoek & Blake 1998; Hartmann et al. 2001; Bergin et
al. 2004; Blitz et al. 2007).

*  When taking into account the magnetic criticality of the dense gas
only (the one that produces the weight), expect the clouds to be:

— subcritical while they are atomic (consistent with observations of atomic gas,
e.g., Heiles & Troland 2005)

— supercritical when they become molecular (consistent with observations of
molecular gas; Bourke et al. 2001; Crutcher, Heiles & Troland 2003).

* A consequence of mass accretion and a phase transition from WWNM
to CNM and H2, not AD (Vazquez-Semadeni et al. 2011).



I1l. MAGNETIC MOLECULAR CLOUD FORMATION

(Banerjee et al. 2009,
MNRAS, 398, 1082; Vazquez-Semadeni et al. 2011, MNRAS, in press).

— Use FLASH code (AMR, MHD, self-gravity, sink particles, AD by
Duffin & Pudritz 2008).

e 11 refinement levels.

—  Similar initial conditions as non-magnetic simulations with GADGET.
—  Low-amplitude initial fluctuations =» allow global cloud collapse.

—  Add uniform field in the x-direction.

Converging flow setup
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(Banerjee, VS, Hennebelle & Klessen, 2009, MNRAS, 398,
1082).

— Ina B, =1 pG supercritical simulation, with no AD:

login [em™]) t = 22.50 Myr

log(T [E]}

Cuts through densest
point in clump.

CNM...




(Banerjee, VS, Hennebelle & Klessen, 2009, MNRAS, 398,
1082).

— Ina B, =1 pG supercritical simulation, with no AD:

login [em™]) t = 22.50 Myr log{T [E]}

Cuts through densest
point in clump.

There is a net mass
flux through clump
boundaries.

The boundaries are

, hot rigid
walls.




* Note:

— Turbulence is produced self-consistently by various instabilities

while cloud is being assembled (Vishniac 1994; Heitsch et al. 2005;
Vazquez-Semadeni et al. 20006).
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SFR
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Simulations are
globally subcritical
(note bounce), but

locally they produce
collapsing sites, due
to AD + numerical
diffusion.




* In all cases, sub- or supercritical, cloud begins
contracting after accumulating enough mass.

— In subcritical cases, cloud bounces after a while, on timescales
of 10s of Myr.

* SF shuts off when cloud bounces.
— In supercritical cases, collapse continues unimpeded.

— No turbulent support other than at very beginning !
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to-flux ratio



Wider u-PDFs for weaker
field.

Cumulative _
mass- Cumulative mass

weighted distribution exhibits power-
law behavior at low L.




_High-Nagas ______

—Wholecloud

B = 2uG
Whole cloud velume

B = 2uG

B = 3uG

Whole cloud volume

B = 4u;

Whaole ¢loud wolume

10 20 20 10
time [Myr]

Mass-to-flux ratio
is highly variable
through the
cloud, and
evolving.

SF occurs where
n>1.

Vazquez-Semadeni
et al. 2011, MNRAS







Run with B=3 pG
(u=0.9).

Like a
macroscopic
analogue of AD.

Vazquez-Semadeni et al.
2011, MNRAS




V. CONCLUSIONS

— Dynamically assembling clouds and cores involves moving
material from surroundings into a small region

Implies:
*  Cloud/clump boundaries are rigid walls
— Rather, they are , or, at most,

There exists a continuous mass flux through them.

* Masses of clouds and cores are fixed, but rather evolve (initially
increasing) in time.

*  While a cold cloud is assembled by a compression in the WNM with
a component along the magnetic field lines,
of the cold gas

* Before diffusion becomes important, core formation by compression
within a larger cloud, implies



When diffusion begins to dominate, then should recover
standard result,

In simulations of cloud formation with B and AD, p is a time-
dependent, and highly fluctuating quantity.

Although in simulations the box’s p is bounded globally, in the
actual ISM there is no such restriction (no boundaries).

SFRs should be further reduced by inclusion of stellar feedback
(Vazquez-Semadeni et al. 2010, ApJ).
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