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I. INTRODUCTION

• The interstellar medium (ISM) is turbulent, magnetized (e.g., Heiles 
& Troland 2003, 2005), and self-gravitating. 

• Turbulence and gravity in the ISM lead to the formation of density 
enhancements that constitute clouds, and clumps and cores 
within them (Sasao 1973; Elmegreen 1993; Ballesteros-Paredes et al. 1999).

• This talk (Vázquez-Semadeni et al. 2011, MNRAS):

– Outline of underlying physical processes.

– Results from cloud-formation simulations including MHD and 
ambipolar diffusion (AD).
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II. BASIC PHYSICAL PROCESSES
1. Fundamental fact:

A density enhancement requires an accumulation of initially distant 
material into a more compact region.

i.e., need to movemove  the material from the surroundings into the 
region.

u
dt
d ⋅∇−= ρρ

Large
n

Small
n

With self-gravity

Vázquez-Semadeni et al. 
2008, MNRAS
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2. ISM thermodynamics.

2.1. A key property of the atomic ISM is that it is thermally bistable.

• The balance between the various heating and cooling processes 
affecting the ISM…

             Heating
             Cooling

Wolfire et al. 1995
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… causes its atomic component to be thermally bistablethermally bistable.

– A warm, diffuse phase (WNM, T ~ 8000 K, n ~ 0.4 cm-3) can be 
in a stablestable pressure equilibrium with a cold, dense (CNM, T ~ 80 
K, n ~ 40 cm-3) phase (Field et al 1969; Wolfire et al 1995, 2003).

Wolfire et al. 1995

WNM
(stable)

CNM
(stable)Mean ISM 

thermal 
pressure

Peq, at which 
heating Γ equals 
cooling nΛ.

Thermally 
unstable range
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– This is the famous two-phase modeltwo-phase model of the ISM (Field et al 1969).

– The presence of turbulence and magnetic fields makes the 
problem more complex.

• Transonic compressions in the linearly stable WNM can nonlinearly 
trigger a transition to the CNM… (Hennebelle & Pérault 1999).

• … and, aided by gravity, an overshoot to molecular cloud conditions 
(Vázquez-Semadeni et al 2007; Heitsch & Hartmann 2008).

• This constitutes a fundamental process for molecular cloud molecular cloud 
formationformation out of the WNM.
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3. Compressions and the mass-to-flux ratio in ideal MHD.

– An object can only collapse gravitationally if it is magnetically 
supercritical (µ = [M/φ]/[M/φ]crit > 1) and Jeans unstable.

– The usual notion is that, if a (Lagrangian) object is subcritical, it 
can only collapse if it sheds enough magnetic flux φ  to become 
supercritical.

– However, µ  is actually not an absolute quantity, but rather 
depends on the boundary conditions.
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3.1. Under idealideal  MHD conditions, and for a fixed cloud massfixed cloud mass, the 
mass-to-flux ratio µ  of a clump of size r within an initially uniform 
cloud of size R is expected to range within:

where µ0  is the mass-to-flux ratio of the parent cloud (Vázquez-

Semadeni et al. 2005, ApJ 618, 344).

00 µµµ ≤≤
R
r

mass = M
size = R
flux = φ

size = r
mass = (r/R)3 M

flux = (r/R)2 φ
µblob = (r/R) µ0

Consider two limitinglimiting cases under ideal MHD:
a) A subregion of a uniform cloud with a uniform field:
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b) A full compression of the region into a smaller volume:

Thus, under ideal MHD conditions, the mass-to flux ratio of a fragmentfragment 
of a cloud must be smaller or equal than that of the whole cloud. 

mass = M, 
φ=φ0, µ=µ0

mass = M, 
φ=φ0,
µblob = µ0
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b) A full compression of the region into a smaller volume:

Thus, under ideal MHD conditions, the mass-to flux ratio of a fragmentfragment 
of a cloud must be smaller or equal than that of the whole cloud. 

But note: if the magnetic field lines continue, so does the density field.
– Where is the boundary???
–  µ is a boundary condition, not a physical property of the “cloud”!

mass = M, 
φ=φ0, µ=µ0

mass = M, 
φ=φ0,
µblob = µ0
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Numerical dissipation has started 
to act, increasing µ  in the densest 
regions.

Clumps in a subregion of an ideal-MHD simulation of a 4-pc box with 
global mass-to-flux ratio µ=2.8 by Vázquez-Semadeni et al. 2005, ApJ, 618, 
344 (see also Luttmila et al. 2009).

t = 0.24 τff t = 0.32 τff
10 n0

40 n0

100 n0

J ~ 1.3
µ ~ 1.7

J ~ 0.5
µ~ 0.9
each

J ~ 1.45
µ~ 2.0

J ~ 1.5
µ ~ 2.0

1.28 pc

1.0 pc



13

• Crutcher et al. 2009

The core has lower 
µ than the envelope.

core

envelope
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• Thus, for uniform ρ and B, the farther away the boundary is 
along the field, the larger µ is.

• The usual solution is to appeal to a warm, diffuse confining 
medium, but...
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supercritical dense

ρv ρvBB

subcritical diffuse

supercritical diffuse

subcritical dense

supercritical diffuse

ρv ρv

supercritical dense

Assumption:  the background medium extends out to a sufficiently long 
distances to be supercritical.

Example: for B=3 µG and n=1 cm-3, a length L > 230 pc is supercritical.

3.2. If a cloud (i.e., a dense region) is formed by a compression with a 
component along the field lines, the cloud’s observed mass and 
mass-to-flux ratio increase togetherincrease together  (Mestel 1985; Hennebelle & 
Pérault 2000; Hartmann et al. 2001; Shu et al. 2007; VS et al. 2011).
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4. Combining compressions, MHD and thermodynamics:
• Magnetic criticality condition (Nakano & Nakamura 1978):

• This is very similarvery similar to the column density threshold for transition from 
atomic to molecular gas, N ~ 1021 cm-2 ~ 8 Msun pc-2 (Franco & Cox 1986; 
van Dishoek & Black 1988; van Dishoek & Blake 1998; Hartmann et al. 2001; Bergin et 
al. 2004; Blitz et al. 2007).

• When taking into account the magnetic criticality of the dense gas 
only (the one that produces the weight), expect the clouds to be:
– subcritical while they are atomic  (consistent with observations of atomic gas, 

e.g., Heiles & Troland 2005)
– supercritical when they become molecular  (consistent with observations of 

molecular gas; Bourke et al. 2001; Crutcher, Heiles & Troland 2003).

• A consequence of mass accretion and a phase transition from WNM 
to CNM and H2, not AD (Vázquez-Semadeni et al. 2011).

2

2
2

4π
BGN =

221
crit cm

G5
105.1 −





×≈

µ
BN


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III. MAGNETIC MOLECULAR CLOUD FORMATION
• Numerical simulations of molecular cloud formation with 

magnetic fields, self-gravity and sink particles (Banerjee et al. 2009, 
MNRAS, 398, 1082;   Vázquez-Semadeni et al. 2011, MNRAS, in press).

– Use FLASH code (AMR, MHD, self-gravity, sink particles, AD by 
Duffin & Pudritz 2008).

• 11 refinement levels.
– Similar initial conditions as non-magnetic simulations with GADGET.

– Low-amplitude initial fluctuations  allow global cloud collapse.
– Add uniform field in the x-direction.

Converging flow setup

Lbox

Linflow

Rinf

B
See also Inoue & Inutsuka 
(2008) for configuration with B 
perpendicular to compression.

Lbox = 256 pc
Linflow = 112 pc
∆xmin = 0.03 pc
max res = 81923

Ms,inf = 1.2, 2.4
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Structure
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• Dense clump structure (Banerjee, VS, Hennebelle & Klessen, 2009, MNRAS, 398, 
1082).

– In a B0 = 1 µG supercritical simulation, with no AD:

lo
g 

n 
[c

m
-3
]

lo
g 

T 
[K

]

lo
g 

P
 [K

 c
m

-3
]

B
 [µ

G
]

Cuts through densest 
point in clump.

Sharp boundaries 
between WNM and 
CNM…
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• Dense clump structure (Banerjee, VS, Hennebelle & Klessen, 2009, MNRAS, 398, 
1082).

– In a B0 = 1 µG supercritical simulation, with no AD:

lo
g 

n 
[c

m
-3
]

lo
g 

T 
[K

]

lo
g 

P
 [K

 c
m

-3
]

B
 [µ

G
]

Cuts through densest 
point in clump.

But... gas flows But... gas flows 
from diffuse from diffuse 
medium into dense medium into dense 
clumps.clumps.

There is a net mass 
flux through clump 
boundaries.

The boundaries are 
“phase transition “phase transition 
fronts”fronts”, not rigid 
walls.
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• Note: 
– Turbulence is produced self-consistently by various instabilities 

while cloud is being assembled (Vishniac 1994; Heitsch et al. 2005; 
Vázquez-Semadeni et al. 2006).
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Correlations between 
variables
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B-n correlation

n1/2

B-v correlation

B-histogram in dense gas (n > 100 cm-3)

(Banerjee et al.  2009, 
MNRAS, 398, 1082)

(See also Hennebelle et 
al. 2008, A&A)

Large B scatter in 
dense clumps.

B and v tend to be 
aligned, even though 
B is weak (~ 1 µG).



24

Global evolution and the 
SFR
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Three simulations 
with µ = 1.3, 0.9, and 

0.7, including AD. 

Face-on view of 
column density.

Dots are sink 
particles.

µ = 1.3
B=2 µG

µ = 0.9
B=3 µG

µ = 0.7
B=4 µG

Vázquez-Semadeni et al. 
2011, MNRAS

Simulations are 
globally subcritical 
(note bounce), but 

locally they produce 
collapsing sites, due 
to AD + numerical 

diffusion.



26

• In all cases, sub- or supercritical, cloud begins 
contracting after accumulating enough mass.

– In subcritical cases, cloud bounces after a while, on timescales 
of 10s of Myr.

• SF shuts off when cloud bounces.

– In supercritical cases, collapse continues unimpeded.

– No turbulent support other than at very beginning !
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Evolution of gaseous and stellar masses, and of the SFR.

When global 
contraction 
ceases, so does 
the SF.

Vázquez-Semadeni et al. 2011, MNRAS
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Evolution and 
distribution of the mass-

to-flux ratio
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µ-PDF

Cumulative 
mass-

weighted 
DF

Wider µ-PDFs for weaker 
field.

Cumulative mass 
distribution exhibits power-
law behavior at low µ.
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Evolution of the mean and 3σ values of µ = M/φ.

Whole cloud High-N gas

µ = 0.9

µ = 0.7

µ = 1.3

Vázquez-Semadeni 
et al. 2011, MNRAS 

Mass-to-flux ratio 
is highly variable 
through the 
cloud, and 
evolving.

SF occurs where 
µ > 1.
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A bonus result
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Low-µ gas develops buoyancy

Run with B=3 µG 
(µ = 0.9).

Like a 
macroscopic 
analogue of AD.

Vázquez-Semadeni et al. 
2011, MNRAS
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V. CONCLUSIONS
– Dynamically assembling clouds and cores involves moving 

material from surroundings into a small region 

Implies:
• Cloud/clump boundaries are notnot rigid walls

– Rather, they are arbitraryarbitrary, or, at most, phase transition fronts:phase transition fronts:
There exists a continuous mass flux through them.

• Masses of clouds and cores are notnot fixed, but rather evolve (initially 
increasing) in time.

• While a cold cloud is assembled by a compression in the WNM with 
a component along the magnetic field lines, the mass-to-flux ratio the mass-to-flux ratio 
of the cold gas increases.  increases. 

• Before diffusion becomes important, core formation by compression 
within a larger cloud, implies

u
dt
d ⋅∇−= ρρ

cloudcore µµ ≤
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– When  diffusion begins to dominate, then should recover 
standard result,

– In simulations of cloud formation with B and AD, µ  is a time-
dependent, and highly fluctuating quantity.

– Although  in simulations the box’s µ  is bounded globally, in the 
actual ISM there is  no such restriction (no boundaries).

– SFRs should be further reduced by inclusion of stellar feedback 
(Vázquez-Semadeni et al. 2010, ApJ).

cloudcore µµ >
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THE END
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