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Outline of  the Talk
• Basic Facts

 Starlight & Emission Polarization & the ISM
• Solar Neighbourhood

 Local ISM vs. Heliosphere

• Galactic ISM
 Southern IS Pol Survey at IAG-USP
 Dark Clouds
 Fields on small & large scales
 High Galactic Latitudes

• ISM in Nearby Galaxies
 SMC dust
 SMC/LMC connection

• ISM & Stars
 Relation between Envelopes & Ambient Field

• SOUTH POL
 Survey of  the Polarized Southern Sky

• Conclusions 4
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Sky in the sub-mm
• Galactic Dust Emission

– B and grain alignment in expanding shells and fronts?
– Role of  B in cloud collapse?
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Basic Facts
• Polarization arises from

– Dust grains

aligned by

– ISM’s Magnetic Field, B

• Polarization provides info on
– Dust properties

 size distribution, composition

– Bsky

 B component projected on the sky 
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adapted from Ponthieu, Lagache; www.planck.fr

B field

http://www.planck.fr
http://www.planck.fr
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adapted from Ponthieu, Lagache; www.planck.fr

B field

In the Optical/NIR: PA    ⁄⁄    Bsky

In the Sub-mm:       PA    ⊥    Bsky

http://www.planck.fr
http://www.planck.fr
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Basic Facts
• Optical/NIR Technique

– IAGPOL polarimeter
 Rotatable waveplate

+
calcite prism
+
detector (CCD or NIR array)

κ Crucis

Magalhães et al. 2005
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Basic Facts
• Optical/NIR Technique

– IAGPOL polarimeter
 Rotatable waveplate

+
calcite prism
+
detector (CCD or NIR array)

• Counts @ waveplate angles ψi:
zi =

⇒ Q = z1 - z3 + z5 - z7 
     U = z2 - z4 + z6 - z8

κ Crucis

Magalhães et al. 2005

N1

N2
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Basic Facts
• Observational uncertainties

– Hiltner 1951, ApJ 114, 241:
 p.e. = 0.0022 mag   ⇔   σ = 0.15% (!) (photoelectric)

– Tinbergen 1982, A&A 105, 53:
 σ = .007% (photoelectric, combining data)

– Carciofi, Magalhães 2007, ApJ 671, L49:
 σ = 0.002% (CCD imaging, single obs)

(σθ = 28.6 σ/P deg)

• High accuracy now possible opens up interesting 
possibilities!

10
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Basic Facts
• B-field of  the Galaxy from stellar (optical) polarization

– Heiles (1996)
 Center of  curvature, Rcc, and direction of  center, lcc:
 Rcc = (8.8 +- 1.8) kpc,     lcc = (-7.2o +- 4.1o)

– (northern) Galactic Plane IR Polarization Survey (GPIPS)
 Clemens (2009) 11

Mathewson & Ford 1970
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Basic Facts
• B-field info from stellar 

polarization
– Statistical analysis (Fosalba et al. 

2002)
                                           

⇒

– also: Heiles (1996)

 Angular spectrum:      P = Cl ∝ l -1.5

– does reflect underlying polarized continuum
                CAVEAT EMPTOR: This is for 
                  Galactic Plane

– important for  modeling Galactic polarized
               emission in sub-mm
                 Cho & Lazarian (2010) 12

Fosalba et al. 02

u = uniform
r  = random
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Polarization by ISM Dust
• Optical polarization

– works w/ low AV
(1 - 5 mag)
 Ex., outskirts of  dark 

clouds

• Sub-mm polarization

– works w/ high Av
(10 - 100)
 Ex., central regions of  

dark clouds

adapted from Ponthieu, Lagache; www.planck.fr

B field

http://www.planck.fr
http://www.planck.fr
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Basic Facts
• Some Surveys of  the Milky Way in the sub-mm

– WMAP
 23, 33, 41, 61 & 94 GHz,  θ > 0.2° 

– BICEPS
– Bierman et al. (2011)

 100 GHz (0.93°), 150 GHz (0.6°), 220 GHz (0.42°)
 3 seasons, 3 large areas of  the Southern Sky

– Planck
 LFI: 30 - 70 GHz,        12‘ (70GHz)/ 33’(30GHz)   
 HFI: 100 - 860 GHz,     5‘ (850GHz)/ 9.2’(100GHz)   

– More to come: CMBPol (USA), COrE (ESA)
14
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Basic Facts: B-field strength
– Chandrasekhar & Fermi 

method 
– C & F (53)

 Equipartition between
kinetic & perturbed magnetic 
energies
+
isotropic rms velocity:

⇒

Falceta-Gonçalves et al. (08)

Polarization PA distributions
⇒ B estimates

Pereyra & Magalhaes 07

polarization angles and the rms velocity. Basically, assuming that
the magnetic field perturbations are Alfvénic, i.e., !v / !B

ffiffiffi
"

p
(see Appendix for discussion), and that the rms velocity is iso-
tropic we have

1

2
"!V 2

LOS ! 1

8#
!B2; ð7Þ

where !VLOS is the observational rms velocity along the LOS.
Using the small angle approximation !$ ! !B/Bu, it reduces to

Bu ¼ %
ffiffiffiffiffiffiffiffi
4#"

p !VLOS

!$
; ð8Þ

where $ is measured in radians and % is a correction factor (!0.5)
(Zweibel 1990; Myers & Goodman 1991), which depends on
medium inhomogeneities, anisotropies on velocity perturbations,
observational resolution and differential averaging along the LOS.

Ostriker et al. (2001) noticed from their numerical simulations
that the CF method (eq. [7]) was a good approximation for the
cases where !$ < 25%, i.e., when the uniform component of the
magnetic field is much larger than the random components. This
conclusion is expected fromequation (7) since it is applicable only
for small values of !$, due to the angular approximation.

If one wants to expand the applicability of the CF method for
cases where the random component of the magnetic field is com-
parable to the uniform component, or for larger inclination angles,
it is necessary to take into account two corrections in equation (7).

First, we must introduce the total magnetic field projected
in the plane of sky Bsky ! Bext

sky þ !B, where Bext
sky represents the

mean field component projected on the plane of sky. We assume
here, for the sake of simplicity, that !B is isotropic.1 Heitsch et al.
(2001) substituted !$ in the CF equation by !( tan $), where tan $
was calculated locally, to provide a correction for the small angle
approximation. However, they showed that this case lead to an
underestimation (by a factor of 100) of the magnetic field in
super-Alfvénic cases. It occurred because, as j$j ! #/2 it gives
Bmod
CF ! 0. To avoid this, they introduced a correction, which

was the geometric average of the standard BCF and the modified
value Bmod

CF . Here, we implement the correction of the small angle
approximation in a simpler way. We assume that the !B/B is a
global relation and, in this case, we may first obtain the dispersion

of $ and then calculate its tangent. Substituting !$ in equation (7)
by tan (!$) ! !B/Bsky, we obtain the modified CF equation:

Bext
sky þ !B ’

ffiffiffiffiffiffiffiffi
4#"

p !Vlos

tan !$ð Þ ; ð9Þ

which is a generalized form of equation (7). As an example, if
polarization maps give !$ ! #/4, equation (8) gives B ! !B
and Bu ! 0. This is expected for & ! 90% or MA 31.

5.3. Effects of Finite Resolution

Here we assume the obtained cubes as the real clouds subject
to observational studies. In the previous sections we presented
the expected results considering infinite observational resolution.
However, observational data analysis may be biased by the lim-
ited instrumental resolution. Therefore, we must understand its
role on the statistical analysis of the measured parameters.

We applied equation (8) to our simulated clouds, taking into
account the effects of finite resolution. Here, we intended to de-
termine the role of the resolution on the determination of the
magnetic field strength from the CF method. We calculated the
average of the density weighted rms velocity along the LOS
(!Vlos) and the dispersion of the polarization angle (!$) within
regions of R ; R pixels. To simulate a realistic cloud we chose
the mean magnetic field intensities given in Table 2.

In Figure 9 we show the averaged values of the obtained mag-
netic field for different map resolutions (2552, 312, and 72 pixels)
formodel 3with different inclinations of themagnetic field. For all
inclinations, coarser resolution calculations from the CF method
tend to overestimate the magnetic field intensity. Finer resolutions
result in the convergence to the actual values Bsky.

This trend is seen for different inclinations and models. The
following equation seems to best fit this behavior:

BCF ¼ B0
CF 1þ C

R0:5

" #
; ð10Þ

where R represents the observational resolution (total number
of pixels), C and B0

CF are constants obtained from the best fitting.
B0
CF represents the value of BCF for infinite resolution observa-

tions, i.e., the best magnetic field estimation from the CF method.
Equation (10) is shown as the dotted lines in Figure 9.

1 This assumption is not exact since the magnetic field fluctuations also
show anisotropic structures regarding the mean magnetic field. Moreover, it was
shown that the anisotropy is scale-independent (Lazarian & Pogosyan 2000;
Esquivel & Lazarian 2005).

TABLE 2

CF Method Estimates

Model

&
(deg) C B0

CF /Bext Bext
sky /Bext

a Btot /Bext
b

3...................... 0 20 ' 5 1.24 ' 0.09 1.00 1.25

3...................... 30 24 ' 5 0.98 ' 0.08 0.87 1.11

3...................... 45 25 ' 5 0.78 ' 0.07 0.71 0.96
3...................... 60 33 ' 5 0.48 ' 0.05 0.50 0.75

3...................... 90 31 ' 5 0.26 ' 0.03 0.00 0.24

1...................... 0 7 ' 5 0.97 ' 0.08 1.00 1.11

2...................... 0 10 ' 5 1.07 ' 0.07 1.00 1.16
4...................... 0 34 ' 5 1.18 ' 0.07 1.00 1.41

a Mean field adopted for the model, projected into the plane of sky, i.e.,
Bext
sky ¼ Bext cos &.
b Total field of themodel, projected into the plane of sky, i.e.,Btot ¼ Bext

sky þ !B.

Fig. 9.—CF method calculation for model 3 with different inclinations with
respect to the line of sight. The dotted lines represent the fittings using eq. (10).
The traces indicate the expected value Bm cos &.

STATISTICS OF POLARIZATION AND CF TECHNIQUE 545No. 1, 2008

Bsky + δB ≈

√

4πρ
δVlos

tan(δφ)
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Basic Facts: B-field strength
– Another approach

 Motivation: sub-mm
– Falceta-Gonçalves et al. (2008)
– Hildebrand et al. (2009)

– Construct Dispersion Function:

– One expects:

or, realistically,

16
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spatially averaged angular dispersion can be secured experi-
mentally. It would therefore be advantageous if a more general
method, which does not depend on any assumption concerning
the morphology of the large-scale magnetic field, was devised.
The method we describe in the following section allows for
the evaluation of the plane-of-the-sky turbulent angular disper-
sion in molecular clouds while avoiding inaccurate estimates of
the turbulence and corresponding inaccurate estimates of field
strengths due to distortions in polarization position angles by
large-scale nonturbulent effects. This method can lead to valid
estimates of magnetic field strengths only under conditions such
that the CF method can properly be applied: a smooth, low noise,
polarization map, precise measured densities and gas velocities
that are moderately uniform, and an adequate accounting of the
integration process implicit to polarization measurements. This
latter aspect will be addressed in a subsequent paper.

3. A FUNCTION TO DESCRIBE DISPERSION ABOUT
LARGE-SCALE FIELDS

Consider a map precisely showing the angle Φ(x) of the (two-
dimensional) plane-of-the-sky projected magnetic field vector
B(x) at many points in a molecular cloud. We obtain a measure
of the difference in angle, ∆Φ(!) ≡ Φ(x) − Φ(x + !), between
the N (!) pairs of vectors separated by displacements !, also
restricted to the plane of the sky, through the following function:

〈∆Φ2 (!)〉1/2 ≡
{

1
N (!)

N(!)∑

i=1

[Φ (x) − Φ (x + !)]2

}1/2

, (1)

where 〈· · ·〉 denotes an average and ! = |!|. The square of
Equation (1) is also often referred to as a “structure function”
(of the second order in this case; see Falceta-Gonçalves et al.
2008; Frisch 1995), but for our applications we shall refer to it
as the “dispersion function” and assume that it is isotropic (i.e.,
it only depends on the magnitude of the displacement, !, and not
its orientation). We seek to determine how this quantity varies
as a function of !.

To do so, we will assume that the magnetic field B(x)
is composed of a large-scale structured field, B0(x), and a
turbulent (or random) component, Bt(x), which are statistically
independent. We also limit ourselves to cases where δ < ! % d,
where δ is the correlation length characterizing Bt(x) and d is
the typical length scale for variations in B0(x).

Focusing on B0(x) we would expect its contribution to the
dispersion function to increase (since 〈∆Φ2(!)〉 is positive
definite) almost linearly starting at ! = 0 and for small
displacements ! % d, as would be expected from the Taylor
expansion of any smoothly varying quantity. We denote by m
the slope characterizing this linear behavior. We also expect a
contribution from the turbulent component of the magnetic field
Bt(x). This contribution will vary from zero as ! → 0 (when
the two magnetic field vectors are co-aligned) to a maximum
average value when the displacement exceeds the correlation
length δ characterizing Bt(x). More precisely, we expect that
the turbulent contribution to the angular dispersion will be a
constant, which we denote by b, as long as ! > δ. These two
contributions must be combined quadratically, since the large-
scale and turbulent fields are statistically independent, to yield

〈∆Φ2(!)〉 ' b2 + m2!2, (2)

when δ < ! % d.

Figure 1. Dispersion: idealized plots of the angular dispersion function,
〈∆Φ2(!)〉1/2, between pairs of magnetic field vectors separated by displacements
!, for values of ! % d, with d the typical length scale for variations in the large-
scale magnetic field (see Section 3). Curve A: no measurement uncertainty;
no turbulence. Curve B: with measurement uncertainty, σM. Curve C: with
turbulence. Curves D and E: accounting for correlation in polarization angles at
displacements ! smaller than the larger of the telescope beam (1.22λ/D; curve
D) or the turbulent correlation length δ (curve E).

A more formal and rigorous derivation of Equation (2) is
established in Appendix A under the further assumptions of
homogeneity and isotropy in the magnetic field strength over
space. Although these assumptions are unlikely to be realized
across molecular clouds, this level of idealization is necessary
to allow us to gain insights into, and some quantitative measure
of, the importance of the turbulent component of the magnetic
field in molecular clouds.

In reality, the measured dispersion function from a polariza-
tion map will also include a contribution, σM(!), due to mea-
surement uncertainties on the polarization angles Φ(x) that must
be added (quadratically) to Equation (2). The square of the total
measured dispersion function then becomes

〈∆Φ2(!)〉tot ' b2 + m2!2 + σ 2
M (!) , (3)

when δ < ! % d. The function 〈∆Φ2(!)〉tot, not 〈∆Φ2(!)〉, is
the one calculated from a polarization map (from an averaging
process similar to Equation (1), and will thus contain separate
components due to the large-scale structure (i.e., m!), the
turbulent dispersion about the large-scale field (i.e., b, the
quantity we wish to measure), and measurement uncertainties
(i.e., σM(!)).

If there were no turbulence and no measurement uncertainties,
then, for ! % d, the measured dispersion function would
be a straight line with zero intercept, 〈∆Φ(!)2〉1/2

tot = m! (see
Figure 1, curve A). Taking the measurement uncertainty, σM(!),
into account, the line would be displaced upward as specified by
Equation (3) (curve B, where σM was assumed to be independent
of !). Likewise when we next consider turbulence, the curve
will again be displaced upward in the same manner (curve C)
except at values of ! below the angular resolution scale at which
the observations were made (curve D), or below the turbulent
correlation scale δ (curve E). Theoretical and observational
estimates of δ for molecular clouds are on the order of 1 mpc
(Lazarian et al. 2004; Li & Houde 2008, respectively), well
below the size of the telescope beam with which the observations
presented in this paper were obtained. Although it has not yet
been feasible to resolve δ, it is now feasible to determine the
turbulent dispersion at scales comparable to the approximately
linear portion of 〈∆Φ(!)2〉1/2

tot .
Note that σM(!) can be accurately determined through the

uncertainties on the measured polarization angles of each pair
of points used in the calculation of 〈∆Φ(!)2〉tot, and by then
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spatially averaged angular dispersion can be secured experi-
mentally. It would therefore be advantageous if a more general
method, which does not depend on any assumption concerning
the morphology of the large-scale magnetic field, was devised.
The method we describe in the following section allows for
the evaluation of the plane-of-the-sky turbulent angular disper-
sion in molecular clouds while avoiding inaccurate estimates of
the turbulence and corresponding inaccurate estimates of field
strengths due to distortions in polarization position angles by
large-scale nonturbulent effects. This method can lead to valid
estimates of magnetic field strengths only under conditions such
that the CF method can properly be applied: a smooth, low noise,
polarization map, precise measured densities and gas velocities
that are moderately uniform, and an adequate accounting of the
integration process implicit to polarization measurements. This
latter aspect will be addressed in a subsequent paper.

3. A FUNCTION TO DESCRIBE DISPERSION ABOUT
LARGE-SCALE FIELDS

Consider a map precisely showing the angle Φ(x) of the (two-
dimensional) plane-of-the-sky projected magnetic field vector
B(x) at many points in a molecular cloud. We obtain a measure
of the difference in angle, ∆Φ(!) ≡ Φ(x) − Φ(x + !), between
the N (!) pairs of vectors separated by displacements !, also
restricted to the plane of the sky, through the following function:

〈∆Φ2 (!)〉1/2 ≡
{

1
N (!)

N(!)∑

i=1

[Φ (x) − Φ (x + !)]2

}1/2

, (1)

where 〈· · ·〉 denotes an average and ! = |!|. The square of
Equation (1) is also often referred to as a “structure function”
(of the second order in this case; see Falceta-Gonçalves et al.
2008; Frisch 1995), but for our applications we shall refer to it
as the “dispersion function” and assume that it is isotropic (i.e.,
it only depends on the magnitude of the displacement, !, and not
its orientation). We seek to determine how this quantity varies
as a function of !.

To do so, we will assume that the magnetic field B(x)
is composed of a large-scale structured field, B0(x), and a
turbulent (or random) component, Bt(x), which are statistically
independent. We also limit ourselves to cases where δ < ! % d,
where δ is the correlation length characterizing Bt(x) and d is
the typical length scale for variations in B0(x).

Focusing on B0(x) we would expect its contribution to the
dispersion function to increase (since 〈∆Φ2(!)〉 is positive
definite) almost linearly starting at ! = 0 and for small
displacements ! % d, as would be expected from the Taylor
expansion of any smoothly varying quantity. We denote by m
the slope characterizing this linear behavior. We also expect a
contribution from the turbulent component of the magnetic field
Bt(x). This contribution will vary from zero as ! → 0 (when
the two magnetic field vectors are co-aligned) to a maximum
average value when the displacement exceeds the correlation
length δ characterizing Bt(x). More precisely, we expect that
the turbulent contribution to the angular dispersion will be a
constant, which we denote by b, as long as ! > δ. These two
contributions must be combined quadratically, since the large-
scale and turbulent fields are statistically independent, to yield

〈∆Φ2(!)〉 ' b2 + m2!2, (2)

when δ < ! % d.

Figure 1. Dispersion: idealized plots of the angular dispersion function,
〈∆Φ2(!)〉1/2, between pairs of magnetic field vectors separated by displacements
!, for values of ! % d, with d the typical length scale for variations in the large-
scale magnetic field (see Section 3). Curve A: no measurement uncertainty;
no turbulence. Curve B: with measurement uncertainty, σM. Curve C: with
turbulence. Curves D and E: accounting for correlation in polarization angles at
displacements ! smaller than the larger of the telescope beam (1.22λ/D; curve
D) or the turbulent correlation length δ (curve E).

A more formal and rigorous derivation of Equation (2) is
established in Appendix A under the further assumptions of
homogeneity and isotropy in the magnetic field strength over
space. Although these assumptions are unlikely to be realized
across molecular clouds, this level of idealization is necessary
to allow us to gain insights into, and some quantitative measure
of, the importance of the turbulent component of the magnetic
field in molecular clouds.

In reality, the measured dispersion function from a polariza-
tion map will also include a contribution, σM(!), due to mea-
surement uncertainties on the polarization angles Φ(x) that must
be added (quadratically) to Equation (2). The square of the total
measured dispersion function then becomes

〈∆Φ2(!)〉tot ' b2 + m2!2 + σ 2
M (!) , (3)

when δ < ! % d. The function 〈∆Φ2(!)〉tot, not 〈∆Φ2(!)〉, is
the one calculated from a polarization map (from an averaging
process similar to Equation (1), and will thus contain separate
components due to the large-scale structure (i.e., m!), the
turbulent dispersion about the large-scale field (i.e., b, the
quantity we wish to measure), and measurement uncertainties
(i.e., σM(!)).

If there were no turbulence and no measurement uncertainties,
then, for ! % d, the measured dispersion function would
be a straight line with zero intercept, 〈∆Φ(!)2〉1/2

tot = m! (see
Figure 1, curve A). Taking the measurement uncertainty, σM(!),
into account, the line would be displaced upward as specified by
Equation (3) (curve B, where σM was assumed to be independent
of !). Likewise when we next consider turbulence, the curve
will again be displaced upward in the same manner (curve C)
except at values of ! below the angular resolution scale at which
the observations were made (curve D), or below the turbulent
correlation scale δ (curve E). Theoretical and observational
estimates of δ for molecular clouds are on the order of 1 mpc
(Lazarian et al. 2004; Li & Houde 2008, respectively), well
below the size of the telescope beam with which the observations
presented in this paper were obtained. Although it has not yet
been feasible to resolve δ, it is now feasible to determine the
turbulent dispersion at scales comparable to the approximately
linear portion of 〈∆Φ(!)2〉1/2

tot .
Note that σM(!) can be accurately determined through the

uncertainties on the measured polarization angles of each pair
of points used in the calculation of 〈∆Φ(!)2〉tot, and by then

568 HILDEBRAND ET AL. Vol. 696

spatially averaged angular dispersion can be secured experi-
mentally. It would therefore be advantageous if a more general
method, which does not depend on any assumption concerning
the morphology of the large-scale magnetic field, was devised.
The method we describe in the following section allows for
the evaluation of the plane-of-the-sky turbulent angular disper-
sion in molecular clouds while avoiding inaccurate estimates of
the turbulence and corresponding inaccurate estimates of field
strengths due to distortions in polarization position angles by
large-scale nonturbulent effects. This method can lead to valid
estimates of magnetic field strengths only under conditions such
that the CF method can properly be applied: a smooth, low noise,
polarization map, precise measured densities and gas velocities
that are moderately uniform, and an adequate accounting of the
integration process implicit to polarization measurements. This
latter aspect will be addressed in a subsequent paper.

3. A FUNCTION TO DESCRIBE DISPERSION ABOUT
LARGE-SCALE FIELDS

Consider a map precisely showing the angle Φ(x) of the (two-
dimensional) plane-of-the-sky projected magnetic field vector
B(x) at many points in a molecular cloud. We obtain a measure
of the difference in angle, ∆Φ(!) ≡ Φ(x) − Φ(x + !), between
the N (!) pairs of vectors separated by displacements !, also
restricted to the plane of the sky, through the following function:

〈∆Φ2 (!)〉1/2 ≡
{

1
N (!)

N(!)∑

i=1

[Φ (x) − Φ (x + !)]2

}1/2

, (1)

where 〈· · ·〉 denotes an average and ! = |!|. The square of
Equation (1) is also often referred to as a “structure function”
(of the second order in this case; see Falceta-Gonçalves et al.
2008; Frisch 1995), but for our applications we shall refer to it
as the “dispersion function” and assume that it is isotropic (i.e.,
it only depends on the magnitude of the displacement, !, and not
its orientation). We seek to determine how this quantity varies
as a function of !.

To do so, we will assume that the magnetic field B(x)
is composed of a large-scale structured field, B0(x), and a
turbulent (or random) component, Bt(x), which are statistically
independent. We also limit ourselves to cases where δ < ! % d,
where δ is the correlation length characterizing Bt(x) and d is
the typical length scale for variations in B0(x).

Focusing on B0(x) we would expect its contribution to the
dispersion function to increase (since 〈∆Φ2(!)〉 is positive
definite) almost linearly starting at ! = 0 and for small
displacements ! % d, as would be expected from the Taylor
expansion of any smoothly varying quantity. We denote by m
the slope characterizing this linear behavior. We also expect a
contribution from the turbulent component of the magnetic field
Bt(x). This contribution will vary from zero as ! → 0 (when
the two magnetic field vectors are co-aligned) to a maximum
average value when the displacement exceeds the correlation
length δ characterizing Bt(x). More precisely, we expect that
the turbulent contribution to the angular dispersion will be a
constant, which we denote by b, as long as ! > δ. These two
contributions must be combined quadratically, since the large-
scale and turbulent fields are statistically independent, to yield

〈∆Φ2(!)〉 ' b2 + m2!2, (2)

when δ < ! % d.

Figure 1. Dispersion: idealized plots of the angular dispersion function,
〈∆Φ2(!)〉1/2, between pairs of magnetic field vectors separated by displacements
!, for values of ! % d, with d the typical length scale for variations in the large-
scale magnetic field (see Section 3). Curve A: no measurement uncertainty;
no turbulence. Curve B: with measurement uncertainty, σM. Curve C: with
turbulence. Curves D and E: accounting for correlation in polarization angles at
displacements ! smaller than the larger of the telescope beam (1.22λ/D; curve
D) or the turbulent correlation length δ (curve E).

A more formal and rigorous derivation of Equation (2) is
established in Appendix A under the further assumptions of
homogeneity and isotropy in the magnetic field strength over
space. Although these assumptions are unlikely to be realized
across molecular clouds, this level of idealization is necessary
to allow us to gain insights into, and some quantitative measure
of, the importance of the turbulent component of the magnetic
field in molecular clouds.

In reality, the measured dispersion function from a polariza-
tion map will also include a contribution, σM(!), due to mea-
surement uncertainties on the polarization angles Φ(x) that must
be added (quadratically) to Equation (2). The square of the total
measured dispersion function then becomes

〈∆Φ2(!)〉tot ' b2 + m2!2 + σ 2
M (!) , (3)

when δ < ! % d. The function 〈∆Φ2(!)〉tot, not 〈∆Φ2(!)〉, is
the one calculated from a polarization map (from an averaging
process similar to Equation (1), and will thus contain separate
components due to the large-scale structure (i.e., m!), the
turbulent dispersion about the large-scale field (i.e., b, the
quantity we wish to measure), and measurement uncertainties
(i.e., σM(!)).

If there were no turbulence and no measurement uncertainties,
then, for ! % d, the measured dispersion function would
be a straight line with zero intercept, 〈∆Φ(!)2〉1/2

tot = m! (see
Figure 1, curve A). Taking the measurement uncertainty, σM(!),
into account, the line would be displaced upward as specified by
Equation (3) (curve B, where σM was assumed to be independent
of !). Likewise when we next consider turbulence, the curve
will again be displaced upward in the same manner (curve C)
except at values of ! below the angular resolution scale at which
the observations were made (curve D), or below the turbulent
correlation scale δ (curve E). Theoretical and observational
estimates of δ for molecular clouds are on the order of 1 mpc
(Lazarian et al. 2004; Li & Houde 2008, respectively), well
below the size of the telescope beam with which the observations
presented in this paper were obtained. Although it has not yet
been feasible to resolve δ, it is now feasible to determine the
turbulent dispersion at scales comparable to the approximately
linear portion of 〈∆Φ(!)2〉1/2
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Note that σM(!) can be accurately determined through the
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spatially averaged angular dispersion can be secured experi-
mentally. It would therefore be advantageous if a more general
method, which does not depend on any assumption concerning
the morphology of the large-scale magnetic field, was devised.
The method we describe in the following section allows for
the evaluation of the plane-of-the-sky turbulent angular disper-
sion in molecular clouds while avoiding inaccurate estimates of
the turbulence and corresponding inaccurate estimates of field
strengths due to distortions in polarization position angles by
large-scale nonturbulent effects. This method can lead to valid
estimates of magnetic field strengths only under conditions such
that the CF method can properly be applied: a smooth, low noise,
polarization map, precise measured densities and gas velocities
that are moderately uniform, and an adequate accounting of the
integration process implicit to polarization measurements. This
latter aspect will be addressed in a subsequent paper.

3. A FUNCTION TO DESCRIBE DISPERSION ABOUT
LARGE-SCALE FIELDS

Consider a map precisely showing the angle Φ(x) of the (two-
dimensional) plane-of-the-sky projected magnetic field vector
B(x) at many points in a molecular cloud. We obtain a measure
of the difference in angle, ∆Φ(!) ≡ Φ(x) − Φ(x + !), between
the N (!) pairs of vectors separated by displacements !, also
restricted to the plane of the sky, through the following function:

〈∆Φ2 (!)〉1/2 ≡
{

1
N (!)

N(!)∑

i=1

[Φ (x) − Φ (x + !)]2

}1/2

, (1)

where 〈· · ·〉 denotes an average and ! = |!|. The square of
Equation (1) is also often referred to as a “structure function”
(of the second order in this case; see Falceta-Gonçalves et al.
2008; Frisch 1995), but for our applications we shall refer to it
as the “dispersion function” and assume that it is isotropic (i.e.,
it only depends on the magnitude of the displacement, !, and not
its orientation). We seek to determine how this quantity varies
as a function of !.

To do so, we will assume that the magnetic field B(x)
is composed of a large-scale structured field, B0(x), and a
turbulent (or random) component, Bt(x), which are statistically
independent. We also limit ourselves to cases where δ < ! % d,
where δ is the correlation length characterizing Bt(x) and d is
the typical length scale for variations in B0(x).

Focusing on B0(x) we would expect its contribution to the
dispersion function to increase (since 〈∆Φ2(!)〉 is positive
definite) almost linearly starting at ! = 0 and for small
displacements ! % d, as would be expected from the Taylor
expansion of any smoothly varying quantity. We denote by m
the slope characterizing this linear behavior. We also expect a
contribution from the turbulent component of the magnetic field
Bt(x). This contribution will vary from zero as ! → 0 (when
the two magnetic field vectors are co-aligned) to a maximum
average value when the displacement exceeds the correlation
length δ characterizing Bt(x). More precisely, we expect that
the turbulent contribution to the angular dispersion will be a
constant, which we denote by b, as long as ! > δ. These two
contributions must be combined quadratically, since the large-
scale and turbulent fields are statistically independent, to yield

〈∆Φ2(!)〉 ' b2 + m2!2, (2)

when δ < ! % d.

Figure 1. Dispersion: idealized plots of the angular dispersion function,
〈∆Φ2(!)〉1/2, between pairs of magnetic field vectors separated by displacements
!, for values of ! % d, with d the typical length scale for variations in the large-
scale magnetic field (see Section 3). Curve A: no measurement uncertainty;
no turbulence. Curve B: with measurement uncertainty, σM. Curve C: with
turbulence. Curves D and E: accounting for correlation in polarization angles at
displacements ! smaller than the larger of the telescope beam (1.22λ/D; curve
D) or the turbulent correlation length δ (curve E).

A more formal and rigorous derivation of Equation (2) is
established in Appendix A under the further assumptions of
homogeneity and isotropy in the magnetic field strength over
space. Although these assumptions are unlikely to be realized
across molecular clouds, this level of idealization is necessary
to allow us to gain insights into, and some quantitative measure
of, the importance of the turbulent component of the magnetic
field in molecular clouds.

In reality, the measured dispersion function from a polariza-
tion map will also include a contribution, σM(!), due to mea-
surement uncertainties on the polarization angles Φ(x) that must
be added (quadratically) to Equation (2). The square of the total
measured dispersion function then becomes

〈∆Φ2(!)〉tot ' b2 + m2!2 + σ 2
M (!) , (3)

when δ < ! % d. The function 〈∆Φ2(!)〉tot, not 〈∆Φ2(!)〉, is
the one calculated from a polarization map (from an averaging
process similar to Equation (1), and will thus contain separate
components due to the large-scale structure (i.e., m!), the
turbulent dispersion about the large-scale field (i.e., b, the
quantity we wish to measure), and measurement uncertainties
(i.e., σM(!)).

If there were no turbulence and no measurement uncertainties,
then, for ! % d, the measured dispersion function would
be a straight line with zero intercept, 〈∆Φ(!)2〉1/2

tot = m! (see
Figure 1, curve A). Taking the measurement uncertainty, σM(!),
into account, the line would be displaced upward as specified by
Equation (3) (curve B, where σM was assumed to be independent
of !). Likewise when we next consider turbulence, the curve
will again be displaced upward in the same manner (curve C)
except at values of ! below the angular resolution scale at which
the observations were made (curve D), or below the turbulent
correlation scale δ (curve E). Theoretical and observational
estimates of δ for molecular clouds are on the order of 1 mpc
(Lazarian et al. 2004; Li & Houde 2008, respectively), well
below the size of the telescope beam with which the observations
presented in this paper were obtained. Although it has not yet
been feasible to resolve δ, it is now feasible to determine the
turbulent dispersion at scales comparable to the approximately
linear portion of 〈∆Φ(!)2〉1/2
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Note that σM(!) can be accurately determined through the
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of points used in the calculation of 〈∆Φ(!)2〉tot, and by then
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spatially averaged angular dispersion can be secured experi-
mentally. It would therefore be advantageous if a more general
method, which does not depend on any assumption concerning
the morphology of the large-scale magnetic field, was devised.
The method we describe in the following section allows for
the evaluation of the plane-of-the-sky turbulent angular disper-
sion in molecular clouds while avoiding inaccurate estimates of
the turbulence and corresponding inaccurate estimates of field
strengths due to distortions in polarization position angles by
large-scale nonturbulent effects. This method can lead to valid
estimates of magnetic field strengths only under conditions such
that the CF method can properly be applied: a smooth, low noise,
polarization map, precise measured densities and gas velocities
that are moderately uniform, and an adequate accounting of the
integration process implicit to polarization measurements. This
latter aspect will be addressed in a subsequent paper.

3. A FUNCTION TO DESCRIBE DISPERSION ABOUT
LARGE-SCALE FIELDS

Consider a map precisely showing the angle Φ(x) of the (two-
dimensional) plane-of-the-sky projected magnetic field vector
B(x) at many points in a molecular cloud. We obtain a measure
of the difference in angle, ∆Φ(!) ≡ Φ(x) − Φ(x + !), between
the N (!) pairs of vectors separated by displacements !, also
restricted to the plane of the sky, through the following function:

〈∆Φ2 (!)〉1/2 ≡
{

1
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N(!)∑

i=1

[Φ (x) − Φ (x + !)]2
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where 〈· · ·〉 denotes an average and ! = |!|. The square of
Equation (1) is also often referred to as a “structure function”
(of the second order in this case; see Falceta-Gonçalves et al.
2008; Frisch 1995), but for our applications we shall refer to it
as the “dispersion function” and assume that it is isotropic (i.e.,
it only depends on the magnitude of the displacement, !, and not
its orientation). We seek to determine how this quantity varies
as a function of !.

To do so, we will assume that the magnetic field B(x)
is composed of a large-scale structured field, B0(x), and a
turbulent (or random) component, Bt(x), which are statistically
independent. We also limit ourselves to cases where δ < ! % d,
where δ is the correlation length characterizing Bt(x) and d is
the typical length scale for variations in B0(x).

Focusing on B0(x) we would expect its contribution to the
dispersion function to increase (since 〈∆Φ2(!)〉 is positive
definite) almost linearly starting at ! = 0 and for small
displacements ! % d, as would be expected from the Taylor
expansion of any smoothly varying quantity. We denote by m
the slope characterizing this linear behavior. We also expect a
contribution from the turbulent component of the magnetic field
Bt(x). This contribution will vary from zero as ! → 0 (when
the two magnetic field vectors are co-aligned) to a maximum
average value when the displacement exceeds the correlation
length δ characterizing Bt(x). More precisely, we expect that
the turbulent contribution to the angular dispersion will be a
constant, which we denote by b, as long as ! > δ. These two
contributions must be combined quadratically, since the large-
scale and turbulent fields are statistically independent, to yield

〈∆Φ2(!)〉 ' b2 + m2!2, (2)

when δ < ! % d.

Figure 1. Dispersion: idealized plots of the angular dispersion function,
〈∆Φ2(!)〉1/2, between pairs of magnetic field vectors separated by displacements
!, for values of ! % d, with d the typical length scale for variations in the large-
scale magnetic field (see Section 3). Curve A: no measurement uncertainty;
no turbulence. Curve B: with measurement uncertainty, σM. Curve C: with
turbulence. Curves D and E: accounting for correlation in polarization angles at
displacements ! smaller than the larger of the telescope beam (1.22λ/D; curve
D) or the turbulent correlation length δ (curve E).

A more formal and rigorous derivation of Equation (2) is
established in Appendix A under the further assumptions of
homogeneity and isotropy in the magnetic field strength over
space. Although these assumptions are unlikely to be realized
across molecular clouds, this level of idealization is necessary
to allow us to gain insights into, and some quantitative measure
of, the importance of the turbulent component of the magnetic
field in molecular clouds.

In reality, the measured dispersion function from a polariza-
tion map will also include a contribution, σM(!), due to mea-
surement uncertainties on the polarization angles Φ(x) that must
be added (quadratically) to Equation (2). The square of the total
measured dispersion function then becomes

〈∆Φ2(!)〉tot ' b2 + m2!2 + σ 2
M (!) , (3)

when δ < ! % d. The function 〈∆Φ2(!)〉tot, not 〈∆Φ2(!)〉, is
the one calculated from a polarization map (from an averaging
process similar to Equation (1), and will thus contain separate
components due to the large-scale structure (i.e., m!), the
turbulent dispersion about the large-scale field (i.e., b, the
quantity we wish to measure), and measurement uncertainties
(i.e., σM(!)).

If there were no turbulence and no measurement uncertainties,
then, for ! % d, the measured dispersion function would
be a straight line with zero intercept, 〈∆Φ(!)2〉1/2

tot = m! (see
Figure 1, curve A). Taking the measurement uncertainty, σM(!),
into account, the line would be displaced upward as specified by
Equation (3) (curve B, where σM was assumed to be independent
of !). Likewise when we next consider turbulence, the curve
will again be displaced upward in the same manner (curve C)
except at values of ! below the angular resolution scale at which
the observations were made (curve D), or below the turbulent
correlation scale δ (curve E). Theoretical and observational
estimates of δ for molecular clouds are on the order of 1 mpc
(Lazarian et al. 2004; Li & Houde 2008, respectively), well
below the size of the telescope beam with which the observations
presented in this paper were obtained. Although it has not yet
been feasible to resolve δ, it is now feasible to determine the
turbulent dispersion at scales comparable to the approximately
linear portion of 〈∆Φ(!)2〉1/2

tot .
Note that σM(!) can be accurately determined through the
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spatially averaged angular dispersion can be secured experi-
mentally. It would therefore be advantageous if a more general
method, which does not depend on any assumption concerning
the morphology of the large-scale magnetic field, was devised.
The method we describe in the following section allows for
the evaluation of the plane-of-the-sky turbulent angular disper-
sion in molecular clouds while avoiding inaccurate estimates of
the turbulence and corresponding inaccurate estimates of field
strengths due to distortions in polarization position angles by
large-scale nonturbulent effects. This method can lead to valid
estimates of magnetic field strengths only under conditions such
that the CF method can properly be applied: a smooth, low noise,
polarization map, precise measured densities and gas velocities
that are moderately uniform, and an adequate accounting of the
integration process implicit to polarization measurements. This
latter aspect will be addressed in a subsequent paper.

3. A FUNCTION TO DESCRIBE DISPERSION ABOUT
LARGE-SCALE FIELDS

Consider a map precisely showing the angle Φ(x) of the (two-
dimensional) plane-of-the-sky projected magnetic field vector
B(x) at many points in a molecular cloud. We obtain a measure
of the difference in angle, ∆Φ(!) ≡ Φ(x) − Φ(x + !), between
the N (!) pairs of vectors separated by displacements !, also
restricted to the plane of the sky, through the following function:

〈∆Φ2 (!)〉1/2 ≡
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1
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, (1)

where 〈· · ·〉 denotes an average and ! = |!|. The square of
Equation (1) is also often referred to as a “structure function”
(of the second order in this case; see Falceta-Gonçalves et al.
2008; Frisch 1995), but for our applications we shall refer to it
as the “dispersion function” and assume that it is isotropic (i.e.,
it only depends on the magnitude of the displacement, !, and not
its orientation). We seek to determine how this quantity varies
as a function of !.

To do so, we will assume that the magnetic field B(x)
is composed of a large-scale structured field, B0(x), and a
turbulent (or random) component, Bt(x), which are statistically
independent. We also limit ourselves to cases where δ < ! % d,
where δ is the correlation length characterizing Bt(x) and d is
the typical length scale for variations in B0(x).

Focusing on B0(x) we would expect its contribution to the
dispersion function to increase (since 〈∆Φ2(!)〉 is positive
definite) almost linearly starting at ! = 0 and for small
displacements ! % d, as would be expected from the Taylor
expansion of any smoothly varying quantity. We denote by m
the slope characterizing this linear behavior. We also expect a
contribution from the turbulent component of the magnetic field
Bt(x). This contribution will vary from zero as ! → 0 (when
the two magnetic field vectors are co-aligned) to a maximum
average value when the displacement exceeds the correlation
length δ characterizing Bt(x). More precisely, we expect that
the turbulent contribution to the angular dispersion will be a
constant, which we denote by b, as long as ! > δ. These two
contributions must be combined quadratically, since the large-
scale and turbulent fields are statistically independent, to yield

〈∆Φ2(!)〉 ' b2 + m2!2, (2)

when δ < ! % d.

Figure 1. Dispersion: idealized plots of the angular dispersion function,
〈∆Φ2(!)〉1/2, between pairs of magnetic field vectors separated by displacements
!, for values of ! % d, with d the typical length scale for variations in the large-
scale magnetic field (see Section 3). Curve A: no measurement uncertainty;
no turbulence. Curve B: with measurement uncertainty, σM. Curve C: with
turbulence. Curves D and E: accounting for correlation in polarization angles at
displacements ! smaller than the larger of the telescope beam (1.22λ/D; curve
D) or the turbulent correlation length δ (curve E).

A more formal and rigorous derivation of Equation (2) is
established in Appendix A under the further assumptions of
homogeneity and isotropy in the magnetic field strength over
space. Although these assumptions are unlikely to be realized
across molecular clouds, this level of idealization is necessary
to allow us to gain insights into, and some quantitative measure
of, the importance of the turbulent component of the magnetic
field in molecular clouds.

In reality, the measured dispersion function from a polariza-
tion map will also include a contribution, σM(!), due to mea-
surement uncertainties on the polarization angles Φ(x) that must
be added (quadratically) to Equation (2). The square of the total
measured dispersion function then becomes

〈∆Φ2(!)〉tot ' b2 + m2!2 + σ 2
M (!) , (3)

when δ < ! % d. The function 〈∆Φ2(!)〉tot, not 〈∆Φ2(!)〉, is
the one calculated from a polarization map (from an averaging
process similar to Equation (1), and will thus contain separate
components due to the large-scale structure (i.e., m!), the
turbulent dispersion about the large-scale field (i.e., b, the
quantity we wish to measure), and measurement uncertainties
(i.e., σM(!)).

If there were no turbulence and no measurement uncertainties,
then, for ! % d, the measured dispersion function would
be a straight line with zero intercept, 〈∆Φ(!)2〉1/2

tot = m! (see
Figure 1, curve A). Taking the measurement uncertainty, σM(!),
into account, the line would be displaced upward as specified by
Equation (3) (curve B, where σM was assumed to be independent
of !). Likewise when we next consider turbulence, the curve
will again be displaced upward in the same manner (curve C)
except at values of ! below the angular resolution scale at which
the observations were made (curve D), or below the turbulent
correlation scale δ (curve E). Theoretical and observational
estimates of δ for molecular clouds are on the order of 1 mpc
(Lazarian et al. 2004; Li & Houde 2008, respectively), well
below the size of the telescope beam with which the observations
presented in this paper were obtained. Although it has not yet
been feasible to resolve δ, it is now feasible to determine the
turbulent dispersion at scales comparable to the approximately
linear portion of 〈∆Φ(!)2〉1/2
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spatially averaged angular dispersion can be secured experi-
mentally. It would therefore be advantageous if a more general
method, which does not depend on any assumption concerning
the morphology of the large-scale magnetic field, was devised.
The method we describe in the following section allows for
the evaluation of the plane-of-the-sky turbulent angular disper-
sion in molecular clouds while avoiding inaccurate estimates of
the turbulence and corresponding inaccurate estimates of field
strengths due to distortions in polarization position angles by
large-scale nonturbulent effects. This method can lead to valid
estimates of magnetic field strengths only under conditions such
that the CF method can properly be applied: a smooth, low noise,
polarization map, precise measured densities and gas velocities
that are moderately uniform, and an adequate accounting of the
integration process implicit to polarization measurements. This
latter aspect will be addressed in a subsequent paper.

3. A FUNCTION TO DESCRIBE DISPERSION ABOUT
LARGE-SCALE FIELDS

Consider a map precisely showing the angle Φ(x) of the (two-
dimensional) plane-of-the-sky projected magnetic field vector
B(x) at many points in a molecular cloud. We obtain a measure
of the difference in angle, ∆Φ(!) ≡ Φ(x) − Φ(x + !), between
the N (!) pairs of vectors separated by displacements !, also
restricted to the plane of the sky, through the following function:
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where 〈· · ·〉 denotes an average and ! = |!|. The square of
Equation (1) is also often referred to as a “structure function”
(of the second order in this case; see Falceta-Gonçalves et al.
2008; Frisch 1995), but for our applications we shall refer to it
as the “dispersion function” and assume that it is isotropic (i.e.,
it only depends on the magnitude of the displacement, !, and not
its orientation). We seek to determine how this quantity varies
as a function of !.

To do so, we will assume that the magnetic field B(x)
is composed of a large-scale structured field, B0(x), and a
turbulent (or random) component, Bt(x), which are statistically
independent. We also limit ourselves to cases where δ < ! % d,
where δ is the correlation length characterizing Bt(x) and d is
the typical length scale for variations in B0(x).

Focusing on B0(x) we would expect its contribution to the
dispersion function to increase (since 〈∆Φ2(!)〉 is positive
definite) almost linearly starting at ! = 0 and for small
displacements ! % d, as would be expected from the Taylor
expansion of any smoothly varying quantity. We denote by m
the slope characterizing this linear behavior. We also expect a
contribution from the turbulent component of the magnetic field
Bt(x). This contribution will vary from zero as ! → 0 (when
the two magnetic field vectors are co-aligned) to a maximum
average value when the displacement exceeds the correlation
length δ characterizing Bt(x). More precisely, we expect that
the turbulent contribution to the angular dispersion will be a
constant, which we denote by b, as long as ! > δ. These two
contributions must be combined quadratically, since the large-
scale and turbulent fields are statistically independent, to yield

〈∆Φ2(!)〉 ' b2 + m2!2, (2)

when δ < ! % d.

Figure 1. Dispersion: idealized plots of the angular dispersion function,
〈∆Φ2(!)〉1/2, between pairs of magnetic field vectors separated by displacements
!, for values of ! % d, with d the typical length scale for variations in the large-
scale magnetic field (see Section 3). Curve A: no measurement uncertainty;
no turbulence. Curve B: with measurement uncertainty, σM. Curve C: with
turbulence. Curves D and E: accounting for correlation in polarization angles at
displacements ! smaller than the larger of the telescope beam (1.22λ/D; curve
D) or the turbulent correlation length δ (curve E).

A more formal and rigorous derivation of Equation (2) is
established in Appendix A under the further assumptions of
homogeneity and isotropy in the magnetic field strength over
space. Although these assumptions are unlikely to be realized
across molecular clouds, this level of idealization is necessary
to allow us to gain insights into, and some quantitative measure
of, the importance of the turbulent component of the magnetic
field in molecular clouds.

In reality, the measured dispersion function from a polariza-
tion map will also include a contribution, σM(!), due to mea-
surement uncertainties on the polarization angles Φ(x) that must
be added (quadratically) to Equation (2). The square of the total
measured dispersion function then becomes

〈∆Φ2(!)〉tot ' b2 + m2!2 + σ 2
M (!) , (3)

when δ < ! % d. The function 〈∆Φ2(!)〉tot, not 〈∆Φ2(!)〉, is
the one calculated from a polarization map (from an averaging
process similar to Equation (1), and will thus contain separate
components due to the large-scale structure (i.e., m!), the
turbulent dispersion about the large-scale field (i.e., b, the
quantity we wish to measure), and measurement uncertainties
(i.e., σM(!)).

If there were no turbulence and no measurement uncertainties,
then, for ! % d, the measured dispersion function would
be a straight line with zero intercept, 〈∆Φ(!)2〉1/2

tot = m! (see
Figure 1, curve A). Taking the measurement uncertainty, σM(!),
into account, the line would be displaced upward as specified by
Equation (3) (curve B, where σM was assumed to be independent
of !). Likewise when we next consider turbulence, the curve
will again be displaced upward in the same manner (curve C)
except at values of ! below the angular resolution scale at which
the observations were made (curve D), or below the turbulent
correlation scale δ (curve E). Theoretical and observational
estimates of δ for molecular clouds are on the order of 1 mpc
(Lazarian et al. 2004; Li & Houde 2008, respectively), well
below the size of the telescope beam with which the observations
presented in this paper were obtained. Although it has not yet
been feasible to resolve δ, it is now feasible to determine the
turbulent dispersion at scales comparable to the approximately
linear portion of 〈∆Φ(!)2〉1/2
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spatially averaged angular dispersion can be secured experi-
mentally. It would therefore be advantageous if a more general
method, which does not depend on any assumption concerning
the morphology of the large-scale magnetic field, was devised.
The method we describe in the following section allows for
the evaluation of the plane-of-the-sky turbulent angular disper-
sion in molecular clouds while avoiding inaccurate estimates of
the turbulence and corresponding inaccurate estimates of field
strengths due to distortions in polarization position angles by
large-scale nonturbulent effects. This method can lead to valid
estimates of magnetic field strengths only under conditions such
that the CF method can properly be applied: a smooth, low noise,
polarization map, precise measured densities and gas velocities
that are moderately uniform, and an adequate accounting of the
integration process implicit to polarization measurements. This
latter aspect will be addressed in a subsequent paper.

3. A FUNCTION TO DESCRIBE DISPERSION ABOUT
LARGE-SCALE FIELDS

Consider a map precisely showing the angle Φ(x) of the (two-
dimensional) plane-of-the-sky projected magnetic field vector
B(x) at many points in a molecular cloud. We obtain a measure
of the difference in angle, ∆Φ(!) ≡ Φ(x) − Φ(x + !), between
the N (!) pairs of vectors separated by displacements !, also
restricted to the plane of the sky, through the following function:

〈∆Φ2 (!)〉1/2 ≡
{

1
N (!)

N(!)∑

i=1

[Φ (x) − Φ (x + !)]2

}1/2

, (1)

where 〈· · ·〉 denotes an average and ! = |!|. The square of
Equation (1) is also often referred to as a “structure function”
(of the second order in this case; see Falceta-Gonçalves et al.
2008; Frisch 1995), but for our applications we shall refer to it
as the “dispersion function” and assume that it is isotropic (i.e.,
it only depends on the magnitude of the displacement, !, and not
its orientation). We seek to determine how this quantity varies
as a function of !.

To do so, we will assume that the magnetic field B(x)
is composed of a large-scale structured field, B0(x), and a
turbulent (or random) component, Bt(x), which are statistically
independent. We also limit ourselves to cases where δ < ! % d,
where δ is the correlation length characterizing Bt(x) and d is
the typical length scale for variations in B0(x).

Focusing on B0(x) we would expect its contribution to the
dispersion function to increase (since 〈∆Φ2(!)〉 is positive
definite) almost linearly starting at ! = 0 and for small
displacements ! % d, as would be expected from the Taylor
expansion of any smoothly varying quantity. We denote by m
the slope characterizing this linear behavior. We also expect a
contribution from the turbulent component of the magnetic field
Bt(x). This contribution will vary from zero as ! → 0 (when
the two magnetic field vectors are co-aligned) to a maximum
average value when the displacement exceeds the correlation
length δ characterizing Bt(x). More precisely, we expect that
the turbulent contribution to the angular dispersion will be a
constant, which we denote by b, as long as ! > δ. These two
contributions must be combined quadratically, since the large-
scale and turbulent fields are statistically independent, to yield

〈∆Φ2(!)〉 ' b2 + m2!2, (2)

when δ < ! % d.

Figure 1. Dispersion: idealized plots of the angular dispersion function,
〈∆Φ2(!)〉1/2, between pairs of magnetic field vectors separated by displacements
!, for values of ! % d, with d the typical length scale for variations in the large-
scale magnetic field (see Section 3). Curve A: no measurement uncertainty;
no turbulence. Curve B: with measurement uncertainty, σM. Curve C: with
turbulence. Curves D and E: accounting for correlation in polarization angles at
displacements ! smaller than the larger of the telescope beam (1.22λ/D; curve
D) or the turbulent correlation length δ (curve E).

A more formal and rigorous derivation of Equation (2) is
established in Appendix A under the further assumptions of
homogeneity and isotropy in the magnetic field strength over
space. Although these assumptions are unlikely to be realized
across molecular clouds, this level of idealization is necessary
to allow us to gain insights into, and some quantitative measure
of, the importance of the turbulent component of the magnetic
field in molecular clouds.

In reality, the measured dispersion function from a polariza-
tion map will also include a contribution, σM(!), due to mea-
surement uncertainties on the polarization angles Φ(x) that must
be added (quadratically) to Equation (2). The square of the total
measured dispersion function then becomes

〈∆Φ2(!)〉tot ' b2 + m2!2 + σ 2
M (!) , (3)

when δ < ! % d. The function 〈∆Φ2(!)〉tot, not 〈∆Φ2(!)〉, is
the one calculated from a polarization map (from an averaging
process similar to Equation (1), and will thus contain separate
components due to the large-scale structure (i.e., m!), the
turbulent dispersion about the large-scale field (i.e., b, the
quantity we wish to measure), and measurement uncertainties
(i.e., σM(!)).

If there were no turbulence and no measurement uncertainties,
then, for ! % d, the measured dispersion function would
be a straight line with zero intercept, 〈∆Φ(!)2〉1/2

tot = m! (see
Figure 1, curve A). Taking the measurement uncertainty, σM(!),
into account, the line would be displaced upward as specified by
Equation (3) (curve B, where σM was assumed to be independent
of !). Likewise when we next consider turbulence, the curve
will again be displaced upward in the same manner (curve C)
except at values of ! below the angular resolution scale at which
the observations were made (curve D), or below the turbulent
correlation scale δ (curve E). Theoretical and observational
estimates of δ for molecular clouds are on the order of 1 mpc
(Lazarian et al. 2004; Li & Houde 2008, respectively), well
below the size of the telescope beam with which the observations
presented in this paper were obtained. Although it has not yet
been feasible to resolve δ, it is now feasible to determine the
turbulent dispersion at scales comparable to the approximately
linear portion of 〈∆Φ(!)2〉1/2

tot .
Note that σM(!) can be accurately determined through the

uncertainties on the measured polarization angles of each pair
of points used in the calculation of 〈∆Φ(!)2〉tot, and by then
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spatially averaged angular dispersion can be secured experi-
mentally. It would therefore be advantageous if a more general
method, which does not depend on any assumption concerning
the morphology of the large-scale magnetic field, was devised.
The method we describe in the following section allows for
the evaluation of the plane-of-the-sky turbulent angular disper-
sion in molecular clouds while avoiding inaccurate estimates of
the turbulence and corresponding inaccurate estimates of field
strengths due to distortions in polarization position angles by
large-scale nonturbulent effects. This method can lead to valid
estimates of magnetic field strengths only under conditions such
that the CF method can properly be applied: a smooth, low noise,
polarization map, precise measured densities and gas velocities
that are moderately uniform, and an adequate accounting of the
integration process implicit to polarization measurements. This
latter aspect will be addressed in a subsequent paper.

3. A FUNCTION TO DESCRIBE DISPERSION ABOUT
LARGE-SCALE FIELDS

Consider a map precisely showing the angle Φ(x) of the (two-
dimensional) plane-of-the-sky projected magnetic field vector
B(x) at many points in a molecular cloud. We obtain a measure
of the difference in angle, ∆Φ(!) ≡ Φ(x) − Φ(x + !), between
the N (!) pairs of vectors separated by displacements !, also
restricted to the plane of the sky, through the following function:
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where 〈· · ·〉 denotes an average and ! = |!|. The square of
Equation (1) is also often referred to as a “structure function”
(of the second order in this case; see Falceta-Gonçalves et al.
2008; Frisch 1995), but for our applications we shall refer to it
as the “dispersion function” and assume that it is isotropic (i.e.,
it only depends on the magnitude of the displacement, !, and not
its orientation). We seek to determine how this quantity varies
as a function of !.

To do so, we will assume that the magnetic field B(x)
is composed of a large-scale structured field, B0(x), and a
turbulent (or random) component, Bt(x), which are statistically
independent. We also limit ourselves to cases where δ < ! % d,
where δ is the correlation length characterizing Bt(x) and d is
the typical length scale for variations in B0(x).

Focusing on B0(x) we would expect its contribution to the
dispersion function to increase (since 〈∆Φ2(!)〉 is positive
definite) almost linearly starting at ! = 0 and for small
displacements ! % d, as would be expected from the Taylor
expansion of any smoothly varying quantity. We denote by m
the slope characterizing this linear behavior. We also expect a
contribution from the turbulent component of the magnetic field
Bt(x). This contribution will vary from zero as ! → 0 (when
the two magnetic field vectors are co-aligned) to a maximum
average value when the displacement exceeds the correlation
length δ characterizing Bt(x). More precisely, we expect that
the turbulent contribution to the angular dispersion will be a
constant, which we denote by b, as long as ! > δ. These two
contributions must be combined quadratically, since the large-
scale and turbulent fields are statistically independent, to yield

〈∆Φ2(!)〉 ' b2 + m2!2, (2)

when δ < ! % d.

Figure 1. Dispersion: idealized plots of the angular dispersion function,
〈∆Φ2(!)〉1/2, between pairs of magnetic field vectors separated by displacements
!, for values of ! % d, with d the typical length scale for variations in the large-
scale magnetic field (see Section 3). Curve A: no measurement uncertainty;
no turbulence. Curve B: with measurement uncertainty, σM. Curve C: with
turbulence. Curves D and E: accounting for correlation in polarization angles at
displacements ! smaller than the larger of the telescope beam (1.22λ/D; curve
D) or the turbulent correlation length δ (curve E).

A more formal and rigorous derivation of Equation (2) is
established in Appendix A under the further assumptions of
homogeneity and isotropy in the magnetic field strength over
space. Although these assumptions are unlikely to be realized
across molecular clouds, this level of idealization is necessary
to allow us to gain insights into, and some quantitative measure
of, the importance of the turbulent component of the magnetic
field in molecular clouds.

In reality, the measured dispersion function from a polariza-
tion map will also include a contribution, σM(!), due to mea-
surement uncertainties on the polarization angles Φ(x) that must
be added (quadratically) to Equation (2). The square of the total
measured dispersion function then becomes

〈∆Φ2(!)〉tot ' b2 + m2!2 + σ 2
M (!) , (3)

when δ < ! % d. The function 〈∆Φ2(!)〉tot, not 〈∆Φ2(!)〉, is
the one calculated from a polarization map (from an averaging
process similar to Equation (1), and will thus contain separate
components due to the large-scale structure (i.e., m!), the
turbulent dispersion about the large-scale field (i.e., b, the
quantity we wish to measure), and measurement uncertainties
(i.e., σM(!)).

If there were no turbulence and no measurement uncertainties,
then, for ! % d, the measured dispersion function would
be a straight line with zero intercept, 〈∆Φ(!)2〉1/2

tot = m! (see
Figure 1, curve A). Taking the measurement uncertainty, σM(!),
into account, the line would be displaced upward as specified by
Equation (3) (curve B, where σM was assumed to be independent
of !). Likewise when we next consider turbulence, the curve
will again be displaced upward in the same manner (curve C)
except at values of ! below the angular resolution scale at which
the observations were made (curve D), or below the turbulent
correlation scale δ (curve E). Theoretical and observational
estimates of δ for molecular clouds are on the order of 1 mpc
(Lazarian et al. 2004; Li & Houde 2008, respectively), well
below the size of the telescope beam with which the observations
presented in this paper were obtained. Although it has not yet
been feasible to resolve δ, it is now feasible to determine the
turbulent dispersion at scales comparable to the approximately
linear portion of 〈∆Φ(!)2〉1/2

tot .
Note that σM(!) can be accurately determined through the
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of points used in the calculation of 〈∆Φ(!)2〉tot, and by then
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spatially averaged angular dispersion can be secured experi-
mentally. It would therefore be advantageous if a more general
method, which does not depend on any assumption concerning
the morphology of the large-scale magnetic field, was devised.
The method we describe in the following section allows for
the evaluation of the plane-of-the-sky turbulent angular disper-
sion in molecular clouds while avoiding inaccurate estimates of
the turbulence and corresponding inaccurate estimates of field
strengths due to distortions in polarization position angles by
large-scale nonturbulent effects. This method can lead to valid
estimates of magnetic field strengths only under conditions such
that the CF method can properly be applied: a smooth, low noise,
polarization map, precise measured densities and gas velocities
that are moderately uniform, and an adequate accounting of the
integration process implicit to polarization measurements. This
latter aspect will be addressed in a subsequent paper.

3. A FUNCTION TO DESCRIBE DISPERSION ABOUT
LARGE-SCALE FIELDS

Consider a map precisely showing the angle Φ(x) of the (two-
dimensional) plane-of-the-sky projected magnetic field vector
B(x) at many points in a molecular cloud. We obtain a measure
of the difference in angle, ∆Φ(!) ≡ Φ(x) − Φ(x + !), between
the N (!) pairs of vectors separated by displacements !, also
restricted to the plane of the sky, through the following function:

〈∆Φ2 (!)〉1/2 ≡
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1
N (!)

N(!)∑
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where 〈· · ·〉 denotes an average and ! = |!|. The square of
Equation (1) is also often referred to as a “structure function”
(of the second order in this case; see Falceta-Gonçalves et al.
2008; Frisch 1995), but for our applications we shall refer to it
as the “dispersion function” and assume that it is isotropic (i.e.,
it only depends on the magnitude of the displacement, !, and not
its orientation). We seek to determine how this quantity varies
as a function of !.

To do so, we will assume that the magnetic field B(x)
is composed of a large-scale structured field, B0(x), and a
turbulent (or random) component, Bt(x), which are statistically
independent. We also limit ourselves to cases where δ < ! % d,
where δ is the correlation length characterizing Bt(x) and d is
the typical length scale for variations in B0(x).

Focusing on B0(x) we would expect its contribution to the
dispersion function to increase (since 〈∆Φ2(!)〉 is positive
definite) almost linearly starting at ! = 0 and for small
displacements ! % d, as would be expected from the Taylor
expansion of any smoothly varying quantity. We denote by m
the slope characterizing this linear behavior. We also expect a
contribution from the turbulent component of the magnetic field
Bt(x). This contribution will vary from zero as ! → 0 (when
the two magnetic field vectors are co-aligned) to a maximum
average value when the displacement exceeds the correlation
length δ characterizing Bt(x). More precisely, we expect that
the turbulent contribution to the angular dispersion will be a
constant, which we denote by b, as long as ! > δ. These two
contributions must be combined quadratically, since the large-
scale and turbulent fields are statistically independent, to yield

〈∆Φ2(!)〉 ' b2 + m2!2, (2)

when δ < ! % d.

Figure 1. Dispersion: idealized plots of the angular dispersion function,
〈∆Φ2(!)〉1/2, between pairs of magnetic field vectors separated by displacements
!, for values of ! % d, with d the typical length scale for variations in the large-
scale magnetic field (see Section 3). Curve A: no measurement uncertainty;
no turbulence. Curve B: with measurement uncertainty, σM. Curve C: with
turbulence. Curves D and E: accounting for correlation in polarization angles at
displacements ! smaller than the larger of the telescope beam (1.22λ/D; curve
D) or the turbulent correlation length δ (curve E).

A more formal and rigorous derivation of Equation (2) is
established in Appendix A under the further assumptions of
homogeneity and isotropy in the magnetic field strength over
space. Although these assumptions are unlikely to be realized
across molecular clouds, this level of idealization is necessary
to allow us to gain insights into, and some quantitative measure
of, the importance of the turbulent component of the magnetic
field in molecular clouds.

In reality, the measured dispersion function from a polariza-
tion map will also include a contribution, σM(!), due to mea-
surement uncertainties on the polarization angles Φ(x) that must
be added (quadratically) to Equation (2). The square of the total
measured dispersion function then becomes

〈∆Φ2(!)〉tot ' b2 + m2!2 + σ 2
M (!) , (3)

when δ < ! % d. The function 〈∆Φ2(!)〉tot, not 〈∆Φ2(!)〉, is
the one calculated from a polarization map (from an averaging
process similar to Equation (1), and will thus contain separate
components due to the large-scale structure (i.e., m!), the
turbulent dispersion about the large-scale field (i.e., b, the
quantity we wish to measure), and measurement uncertainties
(i.e., σM(!)).

If there were no turbulence and no measurement uncertainties,
then, for ! % d, the measured dispersion function would
be a straight line with zero intercept, 〈∆Φ(!)2〉1/2

tot = m! (see
Figure 1, curve A). Taking the measurement uncertainty, σM(!),
into account, the line would be displaced upward as specified by
Equation (3) (curve B, where σM was assumed to be independent
of !). Likewise when we next consider turbulence, the curve
will again be displaced upward in the same manner (curve C)
except at values of ! below the angular resolution scale at which
the observations were made (curve D), or below the turbulent
correlation scale δ (curve E). Theoretical and observational
estimates of δ for molecular clouds are on the order of 1 mpc
(Lazarian et al. 2004; Li & Houde 2008, respectively), well
below the size of the telescope beam with which the observations
presented in this paper were obtained. Although it has not yet
been feasible to resolve δ, it is now feasible to determine the
turbulent dispersion at scales comparable to the approximately
linear portion of 〈∆Φ(!)2〉1/2

tot .
Note that σM(!) can be accurately determined through the

uncertainties on the measured polarization angles of each pair
of points used in the calculation of 〈∆Φ(!)2〉tot, and by then
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spatially averaged angular dispersion can be secured experi-
mentally. It would therefore be advantageous if a more general
method, which does not depend on any assumption concerning
the morphology of the large-scale magnetic field, was devised.
The method we describe in the following section allows for
the evaluation of the plane-of-the-sky turbulent angular disper-
sion in molecular clouds while avoiding inaccurate estimates of
the turbulence and corresponding inaccurate estimates of field
strengths due to distortions in polarization position angles by
large-scale nonturbulent effects. This method can lead to valid
estimates of magnetic field strengths only under conditions such
that the CF method can properly be applied: a smooth, low noise,
polarization map, precise measured densities and gas velocities
that are moderately uniform, and an adequate accounting of the
integration process implicit to polarization measurements. This
latter aspect will be addressed in a subsequent paper.

3. A FUNCTION TO DESCRIBE DISPERSION ABOUT
LARGE-SCALE FIELDS

Consider a map precisely showing the angle Φ(x) of the (two-
dimensional) plane-of-the-sky projected magnetic field vector
B(x) at many points in a molecular cloud. We obtain a measure
of the difference in angle, ∆Φ(!) ≡ Φ(x) − Φ(x + !), between
the N (!) pairs of vectors separated by displacements !, also
restricted to the plane of the sky, through the following function:

〈∆Φ2 (!)〉1/2 ≡
{

1
N (!)

N(!)∑
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[Φ (x) − Φ (x + !)]2
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, (1)

where 〈· · ·〉 denotes an average and ! = |!|. The square of
Equation (1) is also often referred to as a “structure function”
(of the second order in this case; see Falceta-Gonçalves et al.
2008; Frisch 1995), but for our applications we shall refer to it
as the “dispersion function” and assume that it is isotropic (i.e.,
it only depends on the magnitude of the displacement, !, and not
its orientation). We seek to determine how this quantity varies
as a function of !.

To do so, we will assume that the magnetic field B(x)
is composed of a large-scale structured field, B0(x), and a
turbulent (or random) component, Bt(x), which are statistically
independent. We also limit ourselves to cases where δ < ! % d,
where δ is the correlation length characterizing Bt(x) and d is
the typical length scale for variations in B0(x).

Focusing on B0(x) we would expect its contribution to the
dispersion function to increase (since 〈∆Φ2(!)〉 is positive
definite) almost linearly starting at ! = 0 and for small
displacements ! % d, as would be expected from the Taylor
expansion of any smoothly varying quantity. We denote by m
the slope characterizing this linear behavior. We also expect a
contribution from the turbulent component of the magnetic field
Bt(x). This contribution will vary from zero as ! → 0 (when
the two magnetic field vectors are co-aligned) to a maximum
average value when the displacement exceeds the correlation
length δ characterizing Bt(x). More precisely, we expect that
the turbulent contribution to the angular dispersion will be a
constant, which we denote by b, as long as ! > δ. These two
contributions must be combined quadratically, since the large-
scale and turbulent fields are statistically independent, to yield

〈∆Φ2(!)〉 ' b2 + m2!2, (2)

when δ < ! % d.

Figure 1. Dispersion: idealized plots of the angular dispersion function,
〈∆Φ2(!)〉1/2, between pairs of magnetic field vectors separated by displacements
!, for values of ! % d, with d the typical length scale for variations in the large-
scale magnetic field (see Section 3). Curve A: no measurement uncertainty;
no turbulence. Curve B: with measurement uncertainty, σM. Curve C: with
turbulence. Curves D and E: accounting for correlation in polarization angles at
displacements ! smaller than the larger of the telescope beam (1.22λ/D; curve
D) or the turbulent correlation length δ (curve E).

A more formal and rigorous derivation of Equation (2) is
established in Appendix A under the further assumptions of
homogeneity and isotropy in the magnetic field strength over
space. Although these assumptions are unlikely to be realized
across molecular clouds, this level of idealization is necessary
to allow us to gain insights into, and some quantitative measure
of, the importance of the turbulent component of the magnetic
field in molecular clouds.

In reality, the measured dispersion function from a polariza-
tion map will also include a contribution, σM(!), due to mea-
surement uncertainties on the polarization angles Φ(x) that must
be added (quadratically) to Equation (2). The square of the total
measured dispersion function then becomes

〈∆Φ2(!)〉tot ' b2 + m2!2 + σ 2
M (!) , (3)

when δ < ! % d. The function 〈∆Φ2(!)〉tot, not 〈∆Φ2(!)〉, is
the one calculated from a polarization map (from an averaging
process similar to Equation (1), and will thus contain separate
components due to the large-scale structure (i.e., m!), the
turbulent dispersion about the large-scale field (i.e., b, the
quantity we wish to measure), and measurement uncertainties
(i.e., σM(!)).

If there were no turbulence and no measurement uncertainties,
then, for ! % d, the measured dispersion function would
be a straight line with zero intercept, 〈∆Φ(!)2〉1/2

tot = m! (see
Figure 1, curve A). Taking the measurement uncertainty, σM(!),
into account, the line would be displaced upward as specified by
Equation (3) (curve B, where σM was assumed to be independent
of !). Likewise when we next consider turbulence, the curve
will again be displaced upward in the same manner (curve C)
except at values of ! below the angular resolution scale at which
the observations were made (curve D), or below the turbulent
correlation scale δ (curve E). Theoretical and observational
estimates of δ for molecular clouds are on the order of 1 mpc
(Lazarian et al. 2004; Li & Houde 2008, respectively), well
below the size of the telescope beam with which the observations
presented in this paper were obtained. Although it has not yet
been feasible to resolve δ, it is now feasible to determine the
turbulent dispersion at scales comparable to the approximately
linear portion of 〈∆Φ(!)2〉1/2
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spatially averaged angular dispersion can be secured experi-
mentally. It would therefore be advantageous if a more general
method, which does not depend on any assumption concerning
the morphology of the large-scale magnetic field, was devised.
The method we describe in the following section allows for
the evaluation of the plane-of-the-sky turbulent angular disper-
sion in molecular clouds while avoiding inaccurate estimates of
the turbulence and corresponding inaccurate estimates of field
strengths due to distortions in polarization position angles by
large-scale nonturbulent effects. This method can lead to valid
estimates of magnetic field strengths only under conditions such
that the CF method can properly be applied: a smooth, low noise,
polarization map, precise measured densities and gas velocities
that are moderately uniform, and an adequate accounting of the
integration process implicit to polarization measurements. This
latter aspect will be addressed in a subsequent paper.

3. A FUNCTION TO DESCRIBE DISPERSION ABOUT
LARGE-SCALE FIELDS

Consider a map precisely showing the angle Φ(x) of the (two-
dimensional) plane-of-the-sky projected magnetic field vector
B(x) at many points in a molecular cloud. We obtain a measure
of the difference in angle, ∆Φ(!) ≡ Φ(x) − Φ(x + !), between
the N (!) pairs of vectors separated by displacements !, also
restricted to the plane of the sky, through the following function:
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where 〈· · ·〉 denotes an average and ! = |!|. The square of
Equation (1) is also often referred to as a “structure function”
(of the second order in this case; see Falceta-Gonçalves et al.
2008; Frisch 1995), but for our applications we shall refer to it
as the “dispersion function” and assume that it is isotropic (i.e.,
it only depends on the magnitude of the displacement, !, and not
its orientation). We seek to determine how this quantity varies
as a function of !.

To do so, we will assume that the magnetic field B(x)
is composed of a large-scale structured field, B0(x), and a
turbulent (or random) component, Bt(x), which are statistically
independent. We also limit ourselves to cases where δ < ! % d,
where δ is the correlation length characterizing Bt(x) and d is
the typical length scale for variations in B0(x).

Focusing on B0(x) we would expect its contribution to the
dispersion function to increase (since 〈∆Φ2(!)〉 is positive
definite) almost linearly starting at ! = 0 and for small
displacements ! % d, as would be expected from the Taylor
expansion of any smoothly varying quantity. We denote by m
the slope characterizing this linear behavior. We also expect a
contribution from the turbulent component of the magnetic field
Bt(x). This contribution will vary from zero as ! → 0 (when
the two magnetic field vectors are co-aligned) to a maximum
average value when the displacement exceeds the correlation
length δ characterizing Bt(x). More precisely, we expect that
the turbulent contribution to the angular dispersion will be a
constant, which we denote by b, as long as ! > δ. These two
contributions must be combined quadratically, since the large-
scale and turbulent fields are statistically independent, to yield

〈∆Φ2(!)〉 ' b2 + m2!2, (2)

when δ < ! % d.

Figure 1. Dispersion: idealized plots of the angular dispersion function,
〈∆Φ2(!)〉1/2, between pairs of magnetic field vectors separated by displacements
!, for values of ! % d, with d the typical length scale for variations in the large-
scale magnetic field (see Section 3). Curve A: no measurement uncertainty;
no turbulence. Curve B: with measurement uncertainty, σM. Curve C: with
turbulence. Curves D and E: accounting for correlation in polarization angles at
displacements ! smaller than the larger of the telescope beam (1.22λ/D; curve
D) or the turbulent correlation length δ (curve E).

A more formal and rigorous derivation of Equation (2) is
established in Appendix A under the further assumptions of
homogeneity and isotropy in the magnetic field strength over
space. Although these assumptions are unlikely to be realized
across molecular clouds, this level of idealization is necessary
to allow us to gain insights into, and some quantitative measure
of, the importance of the turbulent component of the magnetic
field in molecular clouds.

In reality, the measured dispersion function from a polariza-
tion map will also include a contribution, σM(!), due to mea-
surement uncertainties on the polarization angles Φ(x) that must
be added (quadratically) to Equation (2). The square of the total
measured dispersion function then becomes

〈∆Φ2(!)〉tot ' b2 + m2!2 + σ 2
M (!) , (3)

when δ < ! % d. The function 〈∆Φ2(!)〉tot, not 〈∆Φ2(!)〉, is
the one calculated from a polarization map (from an averaging
process similar to Equation (1), and will thus contain separate
components due to the large-scale structure (i.e., m!), the
turbulent dispersion about the large-scale field (i.e., b, the
quantity we wish to measure), and measurement uncertainties
(i.e., σM(!)).

If there were no turbulence and no measurement uncertainties,
then, for ! % d, the measured dispersion function would
be a straight line with zero intercept, 〈∆Φ(!)2〉1/2

tot = m! (see
Figure 1, curve A). Taking the measurement uncertainty, σM(!),
into account, the line would be displaced upward as specified by
Equation (3) (curve B, where σM was assumed to be independent
of !). Likewise when we next consider turbulence, the curve
will again be displaced upward in the same manner (curve C)
except at values of ! below the angular resolution scale at which
the observations were made (curve D), or below the turbulent
correlation scale δ (curve E). Theoretical and observational
estimates of δ for molecular clouds are on the order of 1 mpc
(Lazarian et al. 2004; Li & Houde 2008, respectively), well
below the size of the telescope beam with which the observations
presented in this paper were obtained. Although it has not yet
been feasible to resolve δ, it is now feasible to determine the
turbulent dispersion at scales comparable to the approximately
linear portion of 〈∆Φ(!)2〉1/2

tot .
Note that σM(!) can be accurately determined through the

uncertainties on the measured polarization angles of each pair
of points used in the calculation of 〈∆Φ(!)2〉tot, and by then
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subtracting its square to obtain 〈∆Φ(!)2〉. As the number and
precision of the vectors improve, Equation (2) can be fitted to
the data for δ < ! # d, and the intercept at ! = 0 provides us
with the turbulent contribution, b2, to the square of the angular
dispersion.

The CF method for evaluating strength of the plane-of-the-
sky component of the large-scale magnetic field (Chandrasekhar
& Fermi 1953) implies that

δB

B0
$ σ (v)

VA
, (4)

where δB stands for the variation in the magnetic field about
the large-scale field B0, σ (v) is the one-dimensional velocity
dispersion of the gas (of mass density ρ) coupled to the magnetic
field, and

VA = B0√
4πρ

(5)

is the Alfvén speed. It is further assumed that the dispersion,
σΦ, in the polarization angles Φ(x) across a map is given by

σΦ $ δB

B0
. (6)

The combination of Equations (4)–(6) allows for the aforemen-
tioned determination of the plane-of-the-sky component of the
large-scale magnetic field strength as a function of ρ, σ (v) (de-
termined from the width of appropriate spectral line profiles),
and σΦ (determined from polarization measurements).

It is shown with Equation (A24) in Appendix A that the ratio
of the turbulent to large-scale magnetic field strength is given
by

〈
B2

t

〉1/2

B0
= b√

2 − b2
. (7)

It is therefore apparent that we should make the correspondence
〈B2

t 〉1/2 → δB and that

B0 $
√

(2 − b2)4πρ
σ (v)

b

$
√

8πρ
σ (v)

b
, (8)

where the last equation applies when Bt # B0. The fact that the
turbulent dispersion, b, is to be divided by approximately

√
2

before being inserted the CF equation is readily understood by
the fact that (neglecting the contribution of the large-scale field)

〈∆Φ2(!)〉 = 〈[Φ(x) − Φ(x + !)]2〉
= 2(〈Φ2〉 − 〈Φ〉2)
= 2σ 2

Φ,

when ! > δ. Since we also know that 〈∆Φ2(!)〉 = b2 at these
scales, we then find that b2 = 2σ 2

Φ, which is consistent with
Equations (6) and (7).

It should be noted that the combination of Equations (7) and
(8) allows, in principle, for the determination of both the large-
scale and turbulent magnetic fields’ strength from polarization
and spectroscopy data.

Figure 2. Angular dispersion function, 〈∆Φ2(!)〉1/2, for M17, DR21(Main), and
OMC-1. The turbulent contribution to the total angular dispersion is determined
by the zero intercept of the fit to the data at ! = 0. The measurement uncertainties
were removed prior to operating the fits to the corresponding data sets. The
results are given in Table 1.

4. APPLICATIONS TO THE MOLECULAR CLOUDS
OMC-1, M17, AND DR21(MAIN)

Using data from the Hertz polarimeter (Dowell et al. 1998)
at the Caltech Submillimeter Observatory at 350 µm, we have
measured dispersion functions for the molecular clouds OMC-
1, M17, and DR21(Main). These data are discussed in detail in
Houde et al. (2004) for OMC-1, Houde et al. (2002) for M17,
and Kirby (2009) for DR21(Main). Figure 2 shows the results
for all sources. More details on the data analysis will be found
in Appendix B.

For each object, we show 〈∆Φ2(!)〉1/2 over the cloud along
with the best fit from Equation (2) using the first three data points
to ensure that ! # d as much as possible. The measurement
uncertainties were removed prior to operating the fits to the
corresponding data sets. The turbulent contribution to the total
angular dispersion is determined by the zero intercept of the
fit to the data at ! = 0. The net turbulent component, b, is
0.18 ± 0.01 rad (10◦.4 ± 0◦.6), 0.12 ± 0.02 rad (6◦.8 ± 1◦.3), and
0.15±0.01 rad (8◦.3±0◦.3) for M17, DR21(Main), and OMC-1,
respectively.

Although large variations in density within the observed
regions prevent a reliable estimate in the field strength at
precise locations, it is still possible to give some average
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at the Caltech Submillimeter Observatory at 350 µm, we have
measured dispersion functions for the molecular clouds OMC-
1, M17, and DR21(Main). These data are discussed in detail in
Houde et al. (2004) for OMC-1, Houde et al. (2002) for M17,
and Kirby (2009) for DR21(Main). Figure 2 shows the results
for all sources. More details on the data analysis will be found
in Appendix B.

For each object, we show 〈∆Φ2(!)〉1/2 over the cloud along
with the best fit from Equation (2) using the first three data points
to ensure that ! # d as much as possible. The measurement
uncertainties were removed prior to operating the fits to the
corresponding data sets. The turbulent contribution to the total
angular dispersion is determined by the zero intercept of the
fit to the data at ! = 0. The net turbulent component, b, is
0.18 ± 0.01 rad (10◦.4 ± 0◦.6), 0.12 ± 0.02 rad (6◦.8 ± 1◦.3), and
0.15±0.01 rad (8◦.3±0◦.3) for M17, DR21(Main), and OMC-1,
respectively.
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spatially averaged angular dispersion can be secured experi-
mentally. It would therefore be advantageous if a more general
method, which does not depend on any assumption concerning
the morphology of the large-scale magnetic field, was devised.
The method we describe in the following section allows for
the evaluation of the plane-of-the-sky turbulent angular disper-
sion in molecular clouds while avoiding inaccurate estimates of
the turbulence and corresponding inaccurate estimates of field
strengths due to distortions in polarization position angles by
large-scale nonturbulent effects. This method can lead to valid
estimates of magnetic field strengths only under conditions such
that the CF method can properly be applied: a smooth, low noise,
polarization map, precise measured densities and gas velocities
that are moderately uniform, and an adequate accounting of the
integration process implicit to polarization measurements. This
latter aspect will be addressed in a subsequent paper.

3. A FUNCTION TO DESCRIBE DISPERSION ABOUT
LARGE-SCALE FIELDS

Consider a map precisely showing the angle Φ(x) of the (two-
dimensional) plane-of-the-sky projected magnetic field vector
B(x) at many points in a molecular cloud. We obtain a measure
of the difference in angle, ∆Φ(!) ≡ Φ(x) − Φ(x + !), between
the N (!) pairs of vectors separated by displacements !, also
restricted to the plane of the sky, through the following function:

〈∆Φ2 (!)〉1/2 ≡
{

1
N (!)

N(!)∑

i=1

[Φ (x) − Φ (x + !)]2

}1/2

, (1)

where 〈· · ·〉 denotes an average and ! = |!|. The square of
Equation (1) is also often referred to as a “structure function”
(of the second order in this case; see Falceta-Gonçalves et al.
2008; Frisch 1995), but for our applications we shall refer to it
as the “dispersion function” and assume that it is isotropic (i.e.,
it only depends on the magnitude of the displacement, !, and not
its orientation). We seek to determine how this quantity varies
as a function of !.

To do so, we will assume that the magnetic field B(x)
is composed of a large-scale structured field, B0(x), and a
turbulent (or random) component, Bt(x), which are statistically
independent. We also limit ourselves to cases where δ < ! % d,
where δ is the correlation length characterizing Bt(x) and d is
the typical length scale for variations in B0(x).

Focusing on B0(x) we would expect its contribution to the
dispersion function to increase (since 〈∆Φ2(!)〉 is positive
definite) almost linearly starting at ! = 0 and for small
displacements ! % d, as would be expected from the Taylor
expansion of any smoothly varying quantity. We denote by m
the slope characterizing this linear behavior. We also expect a
contribution from the turbulent component of the magnetic field
Bt(x). This contribution will vary from zero as ! → 0 (when
the two magnetic field vectors are co-aligned) to a maximum
average value when the displacement exceeds the correlation
length δ characterizing Bt(x). More precisely, we expect that
the turbulent contribution to the angular dispersion will be a
constant, which we denote by b, as long as ! > δ. These two
contributions must be combined quadratically, since the large-
scale and turbulent fields are statistically independent, to yield

〈∆Φ2(!)〉 ' b2 + m2!2, (2)

when δ < ! % d.

Figure 1. Dispersion: idealized plots of the angular dispersion function,
〈∆Φ2(!)〉1/2, between pairs of magnetic field vectors separated by displacements
!, for values of ! % d, with d the typical length scale for variations in the large-
scale magnetic field (see Section 3). Curve A: no measurement uncertainty;
no turbulence. Curve B: with measurement uncertainty, σM. Curve C: with
turbulence. Curves D and E: accounting for correlation in polarization angles at
displacements ! smaller than the larger of the telescope beam (1.22λ/D; curve
D) or the turbulent correlation length δ (curve E).

A more formal and rigorous derivation of Equation (2) is
established in Appendix A under the further assumptions of
homogeneity and isotropy in the magnetic field strength over
space. Although these assumptions are unlikely to be realized
across molecular clouds, this level of idealization is necessary
to allow us to gain insights into, and some quantitative measure
of, the importance of the turbulent component of the magnetic
field in molecular clouds.

In reality, the measured dispersion function from a polariza-
tion map will also include a contribution, σM(!), due to mea-
surement uncertainties on the polarization angles Φ(x) that must
be added (quadratically) to Equation (2). The square of the total
measured dispersion function then becomes

〈∆Φ2(!)〉tot ' b2 + m2!2 + σ 2
M (!) , (3)

when δ < ! % d. The function 〈∆Φ2(!)〉tot, not 〈∆Φ2(!)〉, is
the one calculated from a polarization map (from an averaging
process similar to Equation (1), and will thus contain separate
components due to the large-scale structure (i.e., m!), the
turbulent dispersion about the large-scale field (i.e., b, the
quantity we wish to measure), and measurement uncertainties
(i.e., σM(!)).

If there were no turbulence and no measurement uncertainties,
then, for ! % d, the measured dispersion function would
be a straight line with zero intercept, 〈∆Φ(!)2〉1/2

tot = m! (see
Figure 1, curve A). Taking the measurement uncertainty, σM(!),
into account, the line would be displaced upward as specified by
Equation (3) (curve B, where σM was assumed to be independent
of !). Likewise when we next consider turbulence, the curve
will again be displaced upward in the same manner (curve C)
except at values of ! below the angular resolution scale at which
the observations were made (curve D), or below the turbulent
correlation scale δ (curve E). Theoretical and observational
estimates of δ for molecular clouds are on the order of 1 mpc
(Lazarian et al. 2004; Li & Houde 2008, respectively), well
below the size of the telescope beam with which the observations
presented in this paper were obtained. Although it has not yet
been feasible to resolve δ, it is now feasible to determine the
turbulent dispersion at scales comparable to the approximately
linear portion of 〈∆Φ(!)2〉1/2

tot .
Note that σM(!) can be accurately determined through the

uncertainties on the measured polarization angles of each pair
of points used in the calculation of 〈∆Φ(!)2〉tot, and by then
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subtracting its square to obtain 〈∆Φ(!)2〉. As the number and
precision of the vectors improve, Equation (2) can be fitted to
the data for δ < ! # d, and the intercept at ! = 0 provides us
with the turbulent contribution, b2, to the square of the angular
dispersion.

The CF method for evaluating strength of the plane-of-the-
sky component of the large-scale magnetic field (Chandrasekhar
& Fermi 1953) implies that

δB

B0
$ σ (v)

VA
, (4)

where δB stands for the variation in the magnetic field about
the large-scale field B0, σ (v) is the one-dimensional velocity
dispersion of the gas (of mass density ρ) coupled to the magnetic
field, and

VA = B0√
4πρ

(5)

is the Alfvén speed. It is further assumed that the dispersion,
σΦ, in the polarization angles Φ(x) across a map is given by

σΦ $ δB

B0
. (6)

The combination of Equations (4)–(6) allows for the aforemen-
tioned determination of the plane-of-the-sky component of the
large-scale magnetic field strength as a function of ρ, σ (v) (de-
termined from the width of appropriate spectral line profiles),
and σΦ (determined from polarization measurements).

It is shown with Equation (A24) in Appendix A that the ratio
of the turbulent to large-scale magnetic field strength is given
by

〈
B2

t

〉1/2

B0
= b√

2 − b2
. (7)

It is therefore apparent that we should make the correspondence
〈B2

t 〉1/2 → δB and that

B0 $
√

(2 − b2)4πρ
σ (v)

b

$
√

8πρ
σ (v)

b
, (8)

where the last equation applies when Bt # B0. The fact that the
turbulent dispersion, b, is to be divided by approximately

√
2

before being inserted the CF equation is readily understood by
the fact that (neglecting the contribution of the large-scale field)

〈∆Φ2(!)〉 = 〈[Φ(x) − Φ(x + !)]2〉
= 2(〈Φ2〉 − 〈Φ〉2)
= 2σ 2

Φ,

when ! > δ. Since we also know that 〈∆Φ2(!)〉 = b2 at these
scales, we then find that b2 = 2σ 2

Φ, which is consistent with
Equations (6) and (7).

It should be noted that the combination of Equations (7) and
(8) allows, in principle, for the determination of both the large-
scale and turbulent magnetic fields’ strength from polarization
and spectroscopy data.

Figure 2. Angular dispersion function, 〈∆Φ2(!)〉1/2, for M17, DR21(Main), and
OMC-1. The turbulent contribution to the total angular dispersion is determined
by the zero intercept of the fit to the data at ! = 0. The measurement uncertainties
were removed prior to operating the fits to the corresponding data sets. The
results are given in Table 1.

4. APPLICATIONS TO THE MOLECULAR CLOUDS
OMC-1, M17, AND DR21(MAIN)

Using data from the Hertz polarimeter (Dowell et al. 1998)
at the Caltech Submillimeter Observatory at 350 µm, we have
measured dispersion functions for the molecular clouds OMC-
1, M17, and DR21(Main). These data are discussed in detail in
Houde et al. (2004) for OMC-1, Houde et al. (2002) for M17,
and Kirby (2009) for DR21(Main). Figure 2 shows the results
for all sources. More details on the data analysis will be found
in Appendix B.

For each object, we show 〈∆Φ2(!)〉1/2 over the cloud along
with the best fit from Equation (2) using the first three data points
to ensure that ! # d as much as possible. The measurement
uncertainties were removed prior to operating the fits to the
corresponding data sets. The turbulent contribution to the total
angular dispersion is determined by the zero intercept of the
fit to the data at ! = 0. The net turbulent component, b, is
0.18 ± 0.01 rad (10◦.4 ± 0◦.6), 0.12 ± 0.02 rad (6◦.8 ± 1◦.3), and
0.15±0.01 rad (8◦.3±0◦.3) for M17, DR21(Main), and OMC-1,
respectively.

Although large variations in density within the observed
regions prevent a reliable estimate in the field strength at
precise locations, it is still possible to give some average
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subtracting its square to obtain 〈∆Φ(!)2〉. As the number and
precision of the vectors improve, Equation (2) can be fitted to
the data for δ < ! # d, and the intercept at ! = 0 provides us
with the turbulent contribution, b2, to the square of the angular
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Figure 2. Angular dispersion function, 〈∆Φ2(!)〉1/2, for M17, DR21(Main), and
OMC-1. The turbulent contribution to the total angular dispersion is determined
by the zero intercept of the fit to the data at ! = 0. The measurement uncertainties
were removed prior to operating the fits to the corresponding data sets. The
results are given in Table 1.

4. APPLICATIONS TO THE MOLECULAR CLOUDS
OMC-1, M17, AND DR21(MAIN)

Using data from the Hertz polarimeter (Dowell et al. 1998)
at the Caltech Submillimeter Observatory at 350 µm, we have
measured dispersion functions for the molecular clouds OMC-
1, M17, and DR21(Main). These data are discussed in detail in
Houde et al. (2004) for OMC-1, Houde et al. (2002) for M17,
and Kirby (2009) for DR21(Main). Figure 2 shows the results
for all sources. More details on the data analysis will be found
in Appendix B.

For each object, we show 〈∆Φ2(!)〉1/2 over the cloud along
with the best fit from Equation (2) using the first three data points
to ensure that ! # d as much as possible. The measurement
uncertainties were removed prior to operating the fits to the
corresponding data sets. The turbulent contribution to the total
angular dispersion is determined by the zero intercept of the
fit to the data at ! = 0. The net turbulent component, b, is
0.18 ± 0.01 rad (10◦.4 ± 0◦.6), 0.12 ± 0.02 rad (6◦.8 ± 1◦.3), and
0.15±0.01 rad (8◦.3±0◦.3) for M17, DR21(Main), and OMC-1,
respectively.

Although large variations in density within the observed
regions prevent a reliable estimate in the field strength at
precise locations, it is still possible to give some average
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Table 1
Results for the Dispersion, the Turbulent-to-Mean Magnetic Field Strength

Ratio, the Line Widths, and the Mean Field Strength

Object ba 〈B2
t 〉1/2/B0

b σ (v) B0
c

(deg) (km s−1) (mG)

OMC-1 8.3 ± 0.3 0.10 ± 0.01 1.85 3.8
M17 10.4 ± 0.6 0.13 ± 0.01 1.66 2.9
DR21(Main) 6.8 ± 1.3 0.08 ± 0.02 4.09 10.6

Notes.
a Turbulent dispersion (i.e., the dispersion limit as " → 0).
b Calculated with Equation (7).
c Calculated with Equation (8), assumes a density of 105 cm−3 and a mean
molecular weight of 2.3. These estimates are not precise to better than a factor
of a few. The process of signal integration through the thickness of the cloud
and across the telescope beam inherent to the polarization measurements has
also not been taken into account.

value for the large-scale and turbulent field strengths. To do so
we use representative line width measurements from H13CO+

J = 3 → 2 detections within the three clouds. For OMC-
1 and M17 we have used the corresponding measurements
published in Houde et al. (2000; more precisely, an average of
the variances obtained at the two positions listed for M17), while
for DR21(Main) we have used previously unpublished data. This
molecular species is well suited for this as the effective density
needed for line detection with the aforementioned transition
(neff ∼ 105 cm−3; see Evans 1999) is close to the densities
at which dust continuum emission is detected at the measured
wavelength. Also, the corresponding spectral lines are likely to
be optically thin (like the dust continuum) and an ion molecule
such as this one is better coupled to the magnetic field (and
the dust) than corresponding neutral species (e.g., H13CN for
the same rotational transition) over the whole turbulent energy
density spectrum (Li & Houde 2008). Therefore, using a density
of 105 cm−3 and a mean molecular weight of 2.3 we obtain
the results shown in Table 1. As a simple comparison, the
values of dispersion shown in the table are approximately three
times lower than would be obtained if one naively calculated
the dispersions about the global mean field (i.e., the field
direction defined by the mean of all polarization vectors in the
corresponding map). More precisely, we get dispersions of 27◦.2,
21◦.0, and 26◦.8 about the global mean field orientation for M17,
DR21(Main), and OMC-1, respectively.

We wish to emphasize the fact that the quoted values for B0
could not be precise to better than a factor of a few due to a lack of
precise gas density numbers. Moreover, the values for the large-
scale magnetic field strength we derived are up to an order of
magnitude higher than those obtained with other observational
means (e.g., the results of Crutcher et al. 1999 for OMC-1
and M17 using CN Zeeman measurements). These high values
are in part the result of the smaller angular dispersions obtained
using our technique as compared with more common methods
used when applying the CF equation (e.g., model fits to large-
scale fields). One must keep in mind, however, that the process
of signal integration through the thickness of the cloud and
across the telescope beam that is inherent to polarization
measurements has not been taken into account. We will show
in a subsequent publication how this situation is rectified when
these considerations (and others) are carefully taken into account
(Myers & Goodman 1991; Ostriker et al. 2001; Wiebe & Watson
2004). Nevertheless, the turbulent to large-scale magnetic field
strength ratio is precisely evaluated through our Equation (7).

5. SUMMARY

We have described a method to estimate plane-of-the-sky
turbulent dispersion in molecular clouds while avoiding inac-
curate estimates of the turbulence and corresponding inaccurate
estimates of field strengths due to distortions in polarization
position angles by large-scale nonturbulent effects. The method
does not depend on any model of the large-scale field. We plot
a “dispersion function,” the mean absolute difference in angle
between pairs of vectors as a function of their displacement
", and show that this function increases approximately linearly
for displacements greater than the instrument resolution, greater
than the correlation length, δ, and less than the typical length
scale, d, for variations in the large-scale magnetic field (Section
4). We emphasize that this method can lead to valid estimates
of magnetic field strengths only under conditions such that the
CF method can be properly applied: a smooth, low-noise, po-
larization map, precise measured densities and gas velocities
that are moderately uniform, and an adequate accounting of the
integration process implicit to polarization measurements. This
method, however, provides accurate estimates of the turbulent
to large-scale magnetic field strength ratio.

Although the resolution of the instruments now available is
not adequate to directly determine the correlation length, δ,
one can still determine the dispersion in the fields at scales
where δ < " ' d for the angular dispersion function. We have
successfully done this for the OMC-1, M17, and DR21(Main)
molecular clouds.
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APPENDIX A

DISPERSION RELATION DERIVATION

A.1. Analysis in Three Dimensions

Let us define the total magnetic field B(x) as being composed
of a deterministic, B0(x), and a turbulent (or random), Bt(x),
component such that

B(x) =B0(x) + Bt (x). (A1)

These quantities have the following averages at points x and
y:

〈B0 (x)〉 = B0 (x)
〈B0 (x) · B0 (y)〉 = B0 (x) · B0 (y)

〈Bt (x)〉 = 0
〈B0 (x) · Bt (y)〉 = 〈B0 (x)〉 · 〈Bt (y)〉 = 0. (A2)

We will further assume homogeneity in the field strength over
space. That is,

〈
B2

0 (x)
〉

=
〈
B2

0 (y)
〉
= B2

0〈
B2

t (x)
〉

=
〈
B2

t (y)
〉
=

〈
B2

t

〉
. (A3)
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subtracting its square to obtain 〈∆Φ(!)2〉. As the number and
precision of the vectors improve, Equation (2) can be fitted to
the data for δ < ! # d, and the intercept at ! = 0 provides us
with the turbulent contribution, b2, to the square of the angular
dispersion.

The CF method for evaluating strength of the plane-of-the-
sky component of the large-scale magnetic field (Chandrasekhar
& Fermi 1953) implies that

δB

B0
$ σ (v)

VA
, (4)

where δB stands for the variation in the magnetic field about
the large-scale field B0, σ (v) is the one-dimensional velocity
dispersion of the gas (of mass density ρ) coupled to the magnetic
field, and

VA = B0√
4πρ

(5)

is the Alfvén speed. It is further assumed that the dispersion,
σΦ, in the polarization angles Φ(x) across a map is given by

σΦ $ δB

B0
. (6)

The combination of Equations (4)–(6) allows for the aforemen-
tioned determination of the plane-of-the-sky component of the
large-scale magnetic field strength as a function of ρ, σ (v) (de-
termined from the width of appropriate spectral line profiles),
and σΦ (determined from polarization measurements).

It is shown with Equation (A24) in Appendix A that the ratio
of the turbulent to large-scale magnetic field strength is given
by

〈
B2

t

〉1/2

B0
= b√

2 − b2
. (7)

It is therefore apparent that we should make the correspondence
〈B2

t 〉1/2 → δB and that

B0 $
√

(2 − b2)4πρ
σ (v)

b

$
√

8πρ
σ (v)

b
, (8)

where the last equation applies when Bt # B0. The fact that the
turbulent dispersion, b, is to be divided by approximately

√
2

before being inserted the CF equation is readily understood by
the fact that (neglecting the contribution of the large-scale field)

〈∆Φ2(!)〉 = 〈[Φ(x) − Φ(x + !)]2〉
= 2(〈Φ2〉 − 〈Φ〉2)
= 2σ 2

Φ,

when ! > δ. Since we also know that 〈∆Φ2(!)〉 = b2 at these
scales, we then find that b2 = 2σ 2

Φ, which is consistent with
Equations (6) and (7).

It should be noted that the combination of Equations (7) and
(8) allows, in principle, for the determination of both the large-
scale and turbulent magnetic fields’ strength from polarization
and spectroscopy data.

Figure 2. Angular dispersion function, 〈∆Φ2(!)〉1/2, for M17, DR21(Main), and
OMC-1. The turbulent contribution to the total angular dispersion is determined
by the zero intercept of the fit to the data at ! = 0. The measurement uncertainties
were removed prior to operating the fits to the corresponding data sets. The
results are given in Table 1.

4. APPLICATIONS TO THE MOLECULAR CLOUDS
OMC-1, M17, AND DR21(MAIN)

Using data from the Hertz polarimeter (Dowell et al. 1998)
at the Caltech Submillimeter Observatory at 350 µm, we have
measured dispersion functions for the molecular clouds OMC-
1, M17, and DR21(Main). These data are discussed in detail in
Houde et al. (2004) for OMC-1, Houde et al. (2002) for M17,
and Kirby (2009) for DR21(Main). Figure 2 shows the results
for all sources. More details on the data analysis will be found
in Appendix B.

For each object, we show 〈∆Φ2(!)〉1/2 over the cloud along
with the best fit from Equation (2) using the first three data points
to ensure that ! # d as much as possible. The measurement
uncertainties were removed prior to operating the fits to the
corresponding data sets. The turbulent contribution to the total
angular dispersion is determined by the zero intercept of the
fit to the data at ! = 0. The net turbulent component, b, is
0.18 ± 0.01 rad (10◦.4 ± 0◦.6), 0.12 ± 0.02 rad (6◦.8 ± 1◦.3), and
0.15±0.01 rad (8◦.3±0◦.3) for M17, DR21(Main), and OMC-1,
respectively.

Although large variations in density within the observed
regions prevent a reliable estimate in the field strength at
precise locations, it is still possible to give some average

Hildebrand et al. 2009
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Figure 1. Identification of the observed 46 lines of sight overplotted on the dust extinction map of the Pipe nebula obtained by Lombardi et al. (2006). The small
squares roughly indicate the observed CCD field of view, which in our case corresponds to about 12′ ×12′. The large rectangles demarcate the areas detailed separately
in Figures 5–9.
(A color version of this figure is available in the online journal.)

the well-studied ones in Chamaeleon, Taurus, and ρ Ophiuchus,
respectively.

In Paper I, we described the global polarimetric properties of
the Pipe nebula as obtained from mean values of polarization
degree and dispersion in polarization angles calculated for stars
having P/σP ! 10. In the present paper, we introduce the
details of our data sample collected for 46 CCD fields, which
are exactly the same as the one used in the previous work,
and analyze the polarimetric properties of the Pipe nebula at
core scales. In order to increase the statistical sample for each
investigated field, we were less strict in our selection criteria
accepting stars with P/σP ! 5.

2. OBSERVATIONS

2.1. Data Acquisition and Reductions

The polarimetric data were collected with the 1.6 m and
the IAG 60 cm telescopes at Observatório do Pico dos Dias
(LNA/MCT, Brazil) in missions conducted from 2005 to
2007. These data were obtained with the use of a specially
adapted CCD camera to allow polarimetric measurements—for
a suitable description of the polarimeter see Magalhães et al.
(1996). R-band linear polarimetry was obtained for 46 fields
(with field of view of about 12′ × 12′ each) distributed over
more than 7◦ (17 pc in projection) covering the main body of the
Pipe nebula. The observing lines of sight were visually selected
from an inspection of the IRAS 100 µm emission image of the
Pipe nebula prior to the publication by Lombardi et al. (2006) of
the dust extinction map of this cloud complex. In our selection,
we chose directions toward high dust emission as well as some
directions pointing to positions presenting lower emission but
close to the main body of the complex as defined by the 100 µm

image. After that, Alves et al. (2007) published their list of
dense cores and some of our selected fields turned out either to
completely include one of these cores or part of its outskirts. In
Figure 1, the observed lines of sight are overplotted on the dust
extinction map of the Pipe nebula obtained by Lombardi et al.
(2006). The small squares roughly indicate the areas covered by
the observed frames.

When in the linear polarization mode, the polarimeter incor-
porates a rotatable, achromatic half-wave retarder followed by
a calcite Savart plate. The half-wave retarder can be rotated in
steps of 22.◦5, and one polarization modulation cycle is cov-
ered for every 90◦ rotation of this wave plate. This arrangement
provides two images of each object on the CCD with perpen-
dicular polarizations (the ordinary, fo, and the extraordinary, fe,
beams). Rotating the half-wave plate by 45◦ yields in a rota-
tion of the polarization direction of 90◦. Thus, at the CCD area
where fo was first detected, now fe is imaged and vice versa.
Combining all four intensities reduces flat-field irregularities.
In addition, the simultaneous imaging of the two beams allows
observing under non-photometric conditions and, at the same
time, the sky polarization is practically canceled. Eight CCD im-
ages were taken for each field with the polarizer rotated through
two modulation cycles of 0◦, 22.◦5, 45◦, and 67.◦5 in rotation
angle.

Among the 46 sky positions, 12 were observed at the IAG
60 cm telescope. At this telescope, the integration time was set
to 120 s and five frames were collected and co-added for each
position of the half-wave plate (totalizing 600 s per waveplate
position). The remaining 34 fields were observed at the 1.6 m
telescope, where the integration time for most of the observed
positions was also set to 120 s, being that only one frame was
acquired for each position of the half-wave plate. In order to
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Figure 1. Identification of the observed 46 lines of sight overplotted on the dust extinction map of the Pipe nebula obtained by Lombardi et al. (2006). The small
squares roughly indicate the observed CCD field of view, which in our case corresponds to about 12′ ×12′. The large rectangles demarcate the areas detailed separately
in Figures 5–9.
(A color version of this figure is available in the online journal.)

the well-studied ones in Chamaeleon, Taurus, and ρ Ophiuchus,
respectively.

In Paper I, we described the global polarimetric properties of
the Pipe nebula as obtained from mean values of polarization
degree and dispersion in polarization angles calculated for stars
having P/σP ! 10. In the present paper, we introduce the
details of our data sample collected for 46 CCD fields, which
are exactly the same as the one used in the previous work,
and analyze the polarimetric properties of the Pipe nebula at
core scales. In order to increase the statistical sample for each
investigated field, we were less strict in our selection criteria
accepting stars with P/σP ! 5.

2. OBSERVATIONS

2.1. Data Acquisition and Reductions

The polarimetric data were collected with the 1.6 m and
the IAG 60 cm telescopes at Observatório do Pico dos Dias
(LNA/MCT, Brazil) in missions conducted from 2005 to
2007. These data were obtained with the use of a specially
adapted CCD camera to allow polarimetric measurements—for
a suitable description of the polarimeter see Magalhães et al.
(1996). R-band linear polarimetry was obtained for 46 fields
(with field of view of about 12′ × 12′ each) distributed over
more than 7◦ (17 pc in projection) covering the main body of the
Pipe nebula. The observing lines of sight were visually selected
from an inspection of the IRAS 100 µm emission image of the
Pipe nebula prior to the publication by Lombardi et al. (2006) of
the dust extinction map of this cloud complex. In our selection,
we chose directions toward high dust emission as well as some
directions pointing to positions presenting lower emission but
close to the main body of the complex as defined by the 100 µm

image. After that, Alves et al. (2007) published their list of
dense cores and some of our selected fields turned out either to
completely include one of these cores or part of its outskirts. In
Figure 1, the observed lines of sight are overplotted on the dust
extinction map of the Pipe nebula obtained by Lombardi et al.
(2006). The small squares roughly indicate the areas covered by
the observed frames.

When in the linear polarization mode, the polarimeter incor-
porates a rotatable, achromatic half-wave retarder followed by
a calcite Savart plate. The half-wave retarder can be rotated in
steps of 22.◦5, and one polarization modulation cycle is cov-
ered for every 90◦ rotation of this wave plate. This arrangement
provides two images of each object on the CCD with perpen-
dicular polarizations (the ordinary, fo, and the extraordinary, fe,
beams). Rotating the half-wave plate by 45◦ yields in a rota-
tion of the polarization direction of 90◦. Thus, at the CCD area
where fo was first detected, now fe is imaged and vice versa.
Combining all four intensities reduces flat-field irregularities.
In addition, the simultaneous imaging of the two beams allows
observing under non-photometric conditions and, at the same
time, the sky polarization is practically canceled. Eight CCD im-
ages were taken for each field with the polarizer rotated through
two modulation cycles of 0◦, 22.◦5, 45◦, and 67.◦5 in rotation
angle.

Among the 46 sky positions, 12 were observed at the IAG
60 cm telescope. At this telescope, the integration time was set
to 120 s and five frames were collected and co-added for each
position of the half-wave plate (totalizing 600 s per waveplate
position). The remaining 34 fields were observed at the 1.6 m
telescope, where the integration time for most of the observed
positions was also set to 120 s, being that only one frame was
acquired for each position of the half-wave plate. In order to
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Figure 15. Same as Figure 14 for Field 26.
(A color version of this figure is available in the online journal.)

that the northern part of this field probes a more diffuse part of
the interstellar material, like what happens in the case of Field
27 (see below), while the southern stars have line of sight toward
a volume presenting higher extinction. One of the cores studied
by Frau et al. (2010), who used the IRAM 30 m telescope to
carry out a continuum and molecular survey toward four of the
starless cores from the list of Alves et al. (2007), is Core 48,
which is associated to the higher interstellar absorption shown
in Figure 15. The radio data indicate that, although being very
diffuse, this core has a strong dust emission, and their molecular
analysis suggests that chemically it seems to be in a very early
stage of evolution.

5.3. Field 27

There is no dense core associated to the volume probed by
this field, and it is other of the fields having a mean polarization
angle not fitting into the main pattern of mean position angles,
as defined in Figure 10. The distribution of polarization vectors
shown in Figure 16 (see also the histogram of polarization
angles shown in Figure 7) clearly shows a bimodal distribution
with mean angles values centered on ∼135◦ and ∼155◦. Both
components seem to be well distributed all over the surveyed
field.

5.4. Distribution of Polarization and Position Angles as a
Function of the 2MASS KS Magnitude for Fields 26 and 27

The top panels of Figure 17 display the measured polarization
angles as a function of the 2MASS KS magnitude for Fields
26 and 27. An interesting result emerges from these diagrams.
One clearly notices that the distribution shown by Field 27
(right panel) is rather defined by the stellar KS magnitude
and occupies different regions of the diagram. Stars having
KS ! 12 mag, that is statistically populated by main-sequence
stars, as already mentioned in Section 3.3, are mainly associated
with the component having higher mean angle, while stars
having KS " 12 mag, statistically populated by giant stars,
are basically associated with the component having lower mean
angle. This is indicated by the horizontal and vertical dashed
lines positioned at θ = 150◦ and KS = 12.0 mag, respectively.
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Figure 16. Same as Figure 14 for Field 27.
(A color version of this figure is available in the online journal.)

The distribution presented by Field 26 is rather different
but shows some of the characteristics presented by Field 27.
For the sake of comparison, we have represented the same
horizontal and vertical dashed lines in both diagrams. While
the polarization angles observed for Field 27 are restricted
between θ ∼ 120◦ and 170◦, Field 26 presents basically all
values of polarization angles. However, as observed for Field
27, most of the stars in Field 26 fainter than KS = 12 mag have a
polarization angle larger than ∼140◦–150◦, suggesting that the
same kind of interstellar structures may be present toward both
line of sights, which are separated about 20′ from each other.

It is also interesting to compare the distribution of degree
of polarization as a function of the stellar magnitude (bottom
panels). First of all, one notices that although Figure 7 seems
to indicate that the line of sight toward Field 27 is less
affected by interstellar absorption than that toward Field 26,
the measured polarization for the latter is generally smaller than
the one obtained for stars in the former field—it must be noted,
however, that the estimated average interstellar absorption in
Section 3.3 is essentially the same for both fields (see Table 3).
The KS − (J − KS) CMD for the observed stars in Field 27
suggests that the interstellar absorption toward this line of sight
is rather more uniform than the one probed by stars in Field 26,
as one should expect from the dust extinction map obtained by
Lombardi et al. (2006) and shown in detail by our Figure 7. Thus,
the estimated average interstellar absorption for Field 27 is more
representative of what we have over all of the surveyed volume,
while the one estimated for Field 26 is a mean between regions
showing rather high absorptions, e.g., toward the southern area
of the CCD field, with regions not as absorbed probed by the
stars located in the northern area of the CCD field.

5.5. Comments on the Fields with High Mean Polarization
Degree

Five of the observed fields have a mean degree of polarization
〈P 〉 # 10%; they all lay in the bowl and are Fields 35, 37, 38,
40, and 41. In Figure 9, these fields are almost aligned along
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Table 4
Structure Function Parameters for the Pipe Nebula

Region a0 a1 δt (δB2
t /B2

0 )a Fields(
radian2

pc

)
(radian2) (mpc)

B 59 0.44 0.025 2.1 0.4 1–8
Stem 0.08 0.021 4.8 0.2 9–19, 21–25
Stem–Bowl 0.38 0.054 !2.1 0.8 20, 26, 27
Bowl 0.01 0.008 4.4 0.1 28–46

Note. a Estimated for N = 30 (see the text).

for the rest of the regions. Nevertheless, a high value of N will
also significantly reduce the observed polarization level. But
all the bowl fields and many of the stem fields have polarization
levels of 4%–15% and 3%–4%, respectively. Therefore, the case
of a high N is unlikely, at least, for these two regions. Indeed,
Myers & Goodman (1991) estimated that for optical polarization
observations, N is expected to not be larger than !14. Houde
et al. (2009) found N ! 21 for OMC-1 from submillimeter dust
polarization observations that trace significantly larger column
densities. Therefore, we tentatively adopt a relatively high value
of N = 30. For this case, the magnetic field appears to be
energetically dominant with respect to turbulence in the Pipe
nebula except for the “stem–bowl border,” where magnetic and
turbulence energy appear to be in equipartition (see Table 4).

6.4. Comparison with Falceta-Gonçalves et al. (2008)

Falceta-Gonçalves et al. (2008) carried out simulation of
turbulent and magnetized molecular clouds computing the effect
on the dust polarization vectors in the plane of the sky for
cases with super-Alfvénic and sub-Alfvénic turbulence (i.e.,
clouds energetically dominated by turbulence and magnetic
fields, respectively). They computed the SF derived from dust
polarized emission as well as from optical polarization using
background stars for the different sub- and super-Alfvénic cases,
and for different angles of the magnetic field with respect to the
line of sight (see Figures 6 and 11 of their paper). The SF
for super-Alfvénic turbulence is clearly higher than the one for
sub-Alfvénic turbulence: the SF ranges from 0.4 at the smallest
scales up to !1.0 to the highest scales (see the central panel of
Figure 6 from Falceta-Gonçalves et al. 2008). For the case of
sub-Alfvénic turbulence, such high values of the SF are reached
only in the cases where the magnetic field direction is close to
the line of sight. For the other cases of sub-Alfvénic turbulence,
SF ! 0.5. Comparing the SF obtained in the four Pipe nebula
regions (Figure 22) with the results of Falceta-Gonçalves et al.
(2008) it is clear that B 59, the stem, and the bowl are compatible
with the presence of sub-Alfvénic turbulence. The behavior of
the SF for the stem–bowl border (SF from 0.1 at the smallest
scale to "1.0 at the larger scales) may indicate the case of
sub-Alfvénic turbulence with a magnetic field near the line of
sight rather than super-Alfvénic turbulence. Indeed, the only
individual field in the Pipe nebula that at all scales have an SF
compatible with the super-Alfvénic turbulence is Field 26.

6.5. Summary of the SF Analysis

The comparison of the SF derived from our optical polar-
ization data with the ones derived in the works by Houde
et al. (2009) and Falceta-Gonçalves et al. (2008), indicated that
the Pipe nebula is a magnetically dominated molecular cloud
complex and that the turbulence appears to be sub-Alfvénic.
Only the region we call the stem–bowl border, in particular

Figure 23. Plot of the set of the solutions for the δt and a1 parameters of the
SF. The inner and outer contours show the 63.3% and 99% confidence regions
of the χ2, respectively.

Field 26, appears to have a behavior that is compatible with
super-Alfvénic turbulence. A similar situation seems to apply
to the well-investigated low-mass star-forming region in the
Taurus complex where there is evidence for a molecular gas
substrate with sub-Alfvénic turbulence and magnetically sub-
critical (Heyer et al. 2008; Nakamura & Li 2008). Hily-Blant
& Falgarone (2007) also found that in Taurus, the magnetic
fields are dynamical important, although they found that they
are trans-Alfvénic. In addition, analyzing the polarization angles
at different scales using optical and submillimeter observations
in several molecular clouds led Li et al. (2009) to suggest that
these clouds are also sub-Alfvénic.

7. SUMMARY

The Pipe nebula has proved to be an interesting interstel-
lar complex where to investigate the physical processes that
forestall the stellar formation phases. The polarimetric survey
analyzed in this work covers only a small fraction of the entire
Pipe nebula complex, and there is no doubt that new data are
highly desired in order to verify some of the speculations set-
tled in this investigation. In Paper I, we suggested that the Pipe
nebula, a conglomerate of filamentary clouds and dense cores,
is possibly experiencing different stages of evolution. From the
point of view of the global polarimetric data alone, we proposed
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Figure 1. Identification of the observed 46 lines of sight overplotted on the dust extinction map of the Pipe nebula obtained by Lombardi et al. (2006). The small
squares roughly indicate the observed CCD field of view, which in our case corresponds to about 12′ ×12′. The large rectangles demarcate the areas detailed separately
in Figures 5–9.
(A color version of this figure is available in the online journal.)

the well-studied ones in Chamaeleon, Taurus, and ρ Ophiuchus,
respectively.

In Paper I, we described the global polarimetric properties of
the Pipe nebula as obtained from mean values of polarization
degree and dispersion in polarization angles calculated for stars
having P/σP ! 10. In the present paper, we introduce the
details of our data sample collected for 46 CCD fields, which
are exactly the same as the one used in the previous work,
and analyze the polarimetric properties of the Pipe nebula at
core scales. In order to increase the statistical sample for each
investigated field, we were less strict in our selection criteria
accepting stars with P/σP ! 5.

2. OBSERVATIONS

2.1. Data Acquisition and Reductions

The polarimetric data were collected with the 1.6 m and
the IAG 60 cm telescopes at Observatório do Pico dos Dias
(LNA/MCT, Brazil) in missions conducted from 2005 to
2007. These data were obtained with the use of a specially
adapted CCD camera to allow polarimetric measurements—for
a suitable description of the polarimeter see Magalhães et al.
(1996). R-band linear polarimetry was obtained for 46 fields
(with field of view of about 12′ × 12′ each) distributed over
more than 7◦ (17 pc in projection) covering the main body of the
Pipe nebula. The observing lines of sight were visually selected
from an inspection of the IRAS 100 µm emission image of the
Pipe nebula prior to the publication by Lombardi et al. (2006) of
the dust extinction map of this cloud complex. In our selection,
we chose directions toward high dust emission as well as some
directions pointing to positions presenting lower emission but
close to the main body of the complex as defined by the 100 µm

image. After that, Alves et al. (2007) published their list of
dense cores and some of our selected fields turned out either to
completely include one of these cores or part of its outskirts. In
Figure 1, the observed lines of sight are overplotted on the dust
extinction map of the Pipe nebula obtained by Lombardi et al.
(2006). The small squares roughly indicate the areas covered by
the observed frames.

When in the linear polarization mode, the polarimeter incor-
porates a rotatable, achromatic half-wave retarder followed by
a calcite Savart plate. The half-wave retarder can be rotated in
steps of 22.◦5, and one polarization modulation cycle is cov-
ered for every 90◦ rotation of this wave plate. This arrangement
provides two images of each object on the CCD with perpen-
dicular polarizations (the ordinary, fo, and the extraordinary, fe,
beams). Rotating the half-wave plate by 45◦ yields in a rota-
tion of the polarization direction of 90◦. Thus, at the CCD area
where fo was first detected, now fe is imaged and vice versa.
Combining all four intensities reduces flat-field irregularities.
In addition, the simultaneous imaging of the two beams allows
observing under non-photometric conditions and, at the same
time, the sky polarization is practically canceled. Eight CCD im-
ages were taken for each field with the polarizer rotated through
two modulation cycles of 0◦, 22.◦5, 45◦, and 67.◦5 in rotation
angle.

Among the 46 sky positions, 12 were observed at the IAG
60 cm telescope. At this telescope, the integration time was set
to 120 s and five frames were collected and co-added for each
position of the half-wave plate (totalizing 600 s per waveplate
position). The remaining 34 fields were observed at the 1.6 m
telescope, where the integration time for most of the observed
positions was also set to 120 s, being that only one frame was
acquired for each position of the half-wave plate. In order to
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Figure 4. Same as Figure 3, except quantities are plotted in galactic coordinates
and centered on the galactic center. The best fit to the ISMF in the galactic
coordinate system, Bi=best, is directed toward !, b = 38◦, 23◦.

and 4, together with the range of data quality, suggest that a more
accurate uncertainty for the best fit is ±35◦. Figures 3 and 4 also
display (only) the polarization position angles that were used in
the ISMF fitting process.

Several tests of the fitting process were made. When the stellar
data set was restricted to stars within 35 pc, the best fit ISMF
direction changed by ∼10◦–20◦ because four measurements
near the ecliptic equator were removed from the sample, leaving
a bimodal sample biased toward stars in the northern ecliptic
hemisphere. The fitting function based on F

′′

i = sin(θ2
j,i) was

also tried, and it gave a best-fitting ISMF direction toward
!,b = 53◦, 25◦; however, this function overweights position
angle values near the equator of the rotated ISMF, and so seems
less suitable for this small set of data. The fitting procedure was
repeated by varying the initial coordinate system used in the fit
(e.g., equatorial, ecliptic, or galactic), and the results agreed to
within ∼1◦. Another check was made by omitting the step of
converting the rotated θj,i values to the range 0◦–180◦, yielding
as expected the same result.

The polarization position angles in the rotated frame have
been constrained to be between 0o and 180o, so that the best fit
value Fmin = 0.46 corresponds to mean position angles of 27o.
When the standard deviation of the position angles is included,
the best-fit mean position angle in the rotated frame is 27+23

−19 deg.
In principle, the dispersion in the position angles for the best-
fitting ISMF direction could either be due to variations in the
global configuration of the nearby ISMF over scale lengths
comparable to typical scales of energy injection, or to small-
scale turbulence at scale lengths typical of the plasma and
magnetic properties of the partially ionized gas. However, the
intrinsic measurement accuracies of the data from the northern
versus southern hemisphere data sets differ substantially, so
that understanding small-scale magnetic turbulence will require
higher precision data in the southern hemisphere.

For a uniform distribution of interstellar dust near the Sun, and
constant grain alignment efficiency, the polarization strengths
will increase as the angular distance between the star and the
poles of the ISMF increase, i.e., the polarizations are strongest
where the sight line is more perpendicular to the ISMF direction.
These data do not show such an effect (Figure 5). Instead, stars
with ecliptic latitudes β > +10◦ consistently show much smaller
polarizations than stars with ecliptic latitudes below +10o. This

Table 1
Best-fitting Magnetic Field Pole a

Coordinate Longitude Latitude
System

Polarization data–interstellar magnetic
field:
Galacticb 38◦ 23◦

Ecliptic 263◦ 37◦

Center of Ribbon arc:
Galactic 33◦ 55◦

Eclipticc 221◦ 39◦

Notes.
a Galactic coordinates are denoted by !, b and ecliptic coordinates by
λ, β. The estimated uncertainties on the best-fit direction are ±35◦,
based on the broad minimum for the best-fit function, Fi.
b This direction makes an angle of ∼71◦ with respect to the vector
motion of the flow of ambient local ISM past the Sun, in the LSR,
which is from !, b = 331o,−5o with a velocity of −19.4 km s−1

(Frisch & Slavin 2006).
c This direction makes an angle of ∼46◦ with respect to the
heliocentric vector motion of the flow of interstellar He0 into the
heliosphere, which is from λ,β ∼ 255◦, 5◦ with a velocity of
−26.3 km s−1 (Witte 2004).

statement is also nearly true when galactic latitudes are used
instead. All stars with polarizations less than 0.01% have ecliptic
latitudes greater than β = 10o. All stars with polarizations larger
than 0.01%, except for HD 150997, are located at more negative
latitudes, β < 10◦. This effect follows from the distribution of
ISM very close to the Sun, within ∼15 pc, which has higher
column densities toward negative galactic latitudes than toward
positive galactic latitudes in the galactic center hemisphere (e.g.,
Frisch et al. 2009). The ecliptic latitude of HD 150997 is +60o,
and it is 26o from the ISMF pole at ! = 38o, b = 23o. A single
isolated clump of dust toward HD 150997 is possible, or the
polarization may be intrinsic to the stellar system. In Figure 5,
the stars used in the fit are color coded according to the data
source. Other significant data points, with polarizations larger
than the 3σ data uncertainties but not used in the fit are plotted
as open squares.

Based on the above discussions we estimate uncertainties of
±35◦ on the best-fit ISMF direction of λ,β ∼ 263◦, 37◦ in
ecliptic coordinates, or !, b ∼ 38◦, 23◦ in galactic coordinates.
This direction is 33◦ from the ISMF direction at the heliosphere
determined from the arc of the IBEX Ribbon.

3. DISCUSSION

The ISMF direction of !, b ∼ 38◦, 23◦, found from local
polarization data, is directed toward the tangential region of
Loop I at the North Polar Spur (NPS), that rises 50o vertically
from the galactic plane near ! ∼ 30◦–40◦. The NPS is a
region of radio intense synchrotron emission, that Wolleben
(2007) attributes to the collision of the S1 and S2 subshells of
Loop I. Positive Faraday rotation measures for distant pulsars
and extragalactic sources toward the NPS indicate an ISMF that
is directed toward the Sun (Taylor et al. 2009). However, at
the southern galactic latitudes for the same longitudes, where
Wolleben’s model suggests the S1 subshell has expanded to
the solar location, Faraday rotation measures are negative as
is consistent with an ISMF direction pointing away from the
Sun and toward the azimuthal field direction ! ∼ 83◦. Salvati
(2010) analyzed Faraday rotation measure and dispersion data
toward four pulsars, 150–300 pc away in the low-density
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Figure 4. Same as Figure 3, except quantities are plotted in galactic coordinates
and centered on the galactic center. The best fit to the ISMF in the galactic
coordinate system, Bi=best, is directed toward !, b = 38◦, 23◦.

and 4, together with the range of data quality, suggest that a more
accurate uncertainty for the best fit is ±35◦. Figures 3 and 4 also
display (only) the polarization position angles that were used in
the ISMF fitting process.

Several tests of the fitting process were made. When the stellar
data set was restricted to stars within 35 pc, the best fit ISMF
direction changed by ∼10◦–20◦ because four measurements
near the ecliptic equator were removed from the sample, leaving
a bimodal sample biased toward stars in the northern ecliptic
hemisphere. The fitting function based on F

′′

i = sin(θ2
j,i) was

also tried, and it gave a best-fitting ISMF direction toward
!,b = 53◦, 25◦; however, this function overweights position
angle values near the equator of the rotated ISMF, and so seems
less suitable for this small set of data. The fitting procedure was
repeated by varying the initial coordinate system used in the fit
(e.g., equatorial, ecliptic, or galactic), and the results agreed to
within ∼1◦. Another check was made by omitting the step of
converting the rotated θj,i values to the range 0◦–180◦, yielding
as expected the same result.

The polarization position angles in the rotated frame have
been constrained to be between 0o and 180o, so that the best fit
value Fmin = 0.46 corresponds to mean position angles of 27o.
When the standard deviation of the position angles is included,
the best-fit mean position angle in the rotated frame is 27+23

−19 deg.
In principle, the dispersion in the position angles for the best-
fitting ISMF direction could either be due to variations in the
global configuration of the nearby ISMF over scale lengths
comparable to typical scales of energy injection, or to small-
scale turbulence at scale lengths typical of the plasma and
magnetic properties of the partially ionized gas. However, the
intrinsic measurement accuracies of the data from the northern
versus southern hemisphere data sets differ substantially, so
that understanding small-scale magnetic turbulence will require
higher precision data in the southern hemisphere.

For a uniform distribution of interstellar dust near the Sun, and
constant grain alignment efficiency, the polarization strengths
will increase as the angular distance between the star and the
poles of the ISMF increase, i.e., the polarizations are strongest
where the sight line is more perpendicular to the ISMF direction.
These data do not show such an effect (Figure 5). Instead, stars
with ecliptic latitudes β > +10◦ consistently show much smaller
polarizations than stars with ecliptic latitudes below +10o. This

Table 1
Best-fitting Magnetic Field Pole a

Coordinate Longitude Latitude
System

Polarization data–interstellar magnetic
field:
Galacticb 38◦ 23◦

Ecliptic 263◦ 37◦

Center of Ribbon arc:
Galactic 33◦ 55◦

Eclipticc 221◦ 39◦

Notes.
a Galactic coordinates are denoted by !, b and ecliptic coordinates by
λ, β. The estimated uncertainties on the best-fit direction are ±35◦,
based on the broad minimum for the best-fit function, Fi.
b This direction makes an angle of ∼71◦ with respect to the vector
motion of the flow of ambient local ISM past the Sun, in the LSR,
which is from !, b = 331o,−5o with a velocity of −19.4 km s−1

(Frisch & Slavin 2006).
c This direction makes an angle of ∼46◦ with respect to the
heliocentric vector motion of the flow of interstellar He0 into the
heliosphere, which is from λ,β ∼ 255◦, 5◦ with a velocity of
−26.3 km s−1 (Witte 2004).

statement is also nearly true when galactic latitudes are used
instead. All stars with polarizations less than 0.01% have ecliptic
latitudes greater than β = 10o. All stars with polarizations larger
than 0.01%, except for HD 150997, are located at more negative
latitudes, β < 10◦. This effect follows from the distribution of
ISM very close to the Sun, within ∼15 pc, which has higher
column densities toward negative galactic latitudes than toward
positive galactic latitudes in the galactic center hemisphere (e.g.,
Frisch et al. 2009). The ecliptic latitude of HD 150997 is +60o,
and it is 26o from the ISMF pole at ! = 38o, b = 23o. A single
isolated clump of dust toward HD 150997 is possible, or the
polarization may be intrinsic to the stellar system. In Figure 5,
the stars used in the fit are color coded according to the data
source. Other significant data points, with polarizations larger
than the 3σ data uncertainties but not used in the fit are plotted
as open squares.

Based on the above discussions we estimate uncertainties of
±35◦ on the best-fit ISMF direction of λ,β ∼ 263◦, 37◦ in
ecliptic coordinates, or !, b ∼ 38◦, 23◦ in galactic coordinates.
This direction is 33◦ from the ISMF direction at the heliosphere
determined from the arc of the IBEX Ribbon.

3. DISCUSSION

The ISMF direction of !, b ∼ 38◦, 23◦, found from local
polarization data, is directed toward the tangential region of
Loop I at the North Polar Spur (NPS), that rises 50o vertically
from the galactic plane near ! ∼ 30◦–40◦. The NPS is a
region of radio intense synchrotron emission, that Wolleben
(2007) attributes to the collision of the S1 and S2 subshells of
Loop I. Positive Faraday rotation measures for distant pulsars
and extragalactic sources toward the NPS indicate an ISMF that
is directed toward the Sun (Taylor et al. 2009). However, at
the southern galactic latitudes for the same longitudes, where
Wolleben’s model suggests the S1 subshell has expanded to
the solar location, Faraday rotation measures are negative as
is consistent with an ISMF direction pointing away from the
Sun and toward the azimuthal field direction ! ∼ 83◦. Salvati
(2010) analyzed Faraday rotation measure and dispersion data
toward four pulsars, 150–300 pc away in the low-density
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Optical/IR Survey of  ISM Polarization

• Conducted at IAG-USP
– LNA observatory (22 deg South)
– initially in V
– now at H (1.65μm) band

 point sources & extended objects
 http://www.astro.iag.usp.br/~polarimetria/survey

– Data being reduced & will become public

• Main Goal
– Improve our knowledge of:

 Magnetic Field Structure of  the Diffuse ISM
 Ratio between random & uniform components of  B
 Scale Length, L, of  the Magnetic Field

http://www.astro.iag.usp.br/~antonio/survey
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– B and grain alignment in expanding shells and fronts?
– Role of  B in cloud collapse?

Musca Dark Cloud Feitzinger & Stuve 84
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Magnetic Field in Dark Clouds 

– What is the role of  B in cloud collapse?

• Mapping the Musca Dark 
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– Pereyra & Magalhães 04

1,363 objects with P/σ ≥ 10
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Collapsing Dark Clouds
• Magnetic Field in Dark 

Clouds 
– What is the role of  B in cloud 

collapse?

• Mapping the Musca Dark 
Cloud

– Collapse along B
 |B| ~ 0.03 mG - 0.15 mG
 Mcloud ~ 140 M⊙

Pereyra & Magalhaes 04 
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through a standard V filter. For each field, 5 minute exposures
were made at each of the eight half–wave plate positions. In
1996 we observed 19 fields with an EEV 770! 1152 pixel
CCD that covered an area of "80 ! 120 on the sky. In the
1997 run, this CCD, along with a Photometrics 1024! 1024
pixel CCD, was used. The latter covered an area of "100 !
100. A total of 16 CCD fields were collected in this second
run. A summary of the CCD characteristics is shown in
Table 1. In Table 2 we show the equatorial coordinates for the
mosaic of fields and their respective runs. For better visuali-
zation, we divided the MDC into three regions of "1# ! 1#,
north, central, and south, shown in the optical image of
Figure 1. This image was obtained from the Digitized Sky
Survey (DSS), itself from a Schmidt plate and the combination
emulsion/filter IIaD/GG495, centered on 5650 Å (Lasker et al.
1990). Figure 22 shows the positions of Table 2 along with

a distribution map of the IRAS 100 !m emission of the MDC
region.
After bias and flat-field corrections, we performed pho-

tometry on the pairs of polarized stellar images in each of the
eight frames of a given field using the IRAF3 DAOPHOT
package. This creates a set of data files containing magnitude
data for each image field. From then on, we used a set of
specially developed IRAF tasks to study the polarization data
in (eventually crowded) stellar fields (PCCDPACK package;
Pereyra 2000). They included a special purpose FORTRAN
routine that reads these data files and calculates the normalized
linear polarization from a least-squares solution. This yields
the percent linear polarization (P), the polarization position
angle (", measured from north to east), and the percent Stokes
parameters Q and U, as well as the theoretical (i.e., the photon
noise) and measured (#P) errors. The latter are obtained from

Fig. 2.—Numbers describing the positions of each CCD field across the MDC region (see Table 2). Each field covers an area of approximately 100 ! 100. The
region shown is the same as that in Fig. 1. We also plot the 100 !m IRAS intensity across the MDC, obtained from the SkyView Web site. The contours are from 24
to 36 MJy sr$1 in steps of 2 MJy sr$1. Positions with high extinction (see x 4.1) are indicated by numbers in bold.

2 The data in Fig. 2 were obtained from the SkyView Web page at http://
skyview.gsfc.nasa.gov/skyview.html.

3 IRAF is distributed by the National Optical Astronomy Observatory,
which is operated by the Association of Universities for Research in Astron-
omy, Inc., under cooperative agreement with the National Science Foundation.

PEREYRA & MAGALHÃES586 Vol. 603
Observed Fields in the Optical

Pereyra & Magalhaes 04 
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Fig. 5b

589

Optical Near IR (1.65µm)

Near IR Polarimetry confirms optical PA
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 2 embedded YSOs
 intermediate mass star formation

site
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http://www.cfa.harvard.edu/rg/star_and_planet_formation/
young_stellar_objects.html

YSO =
Young
Stellar
Object

http://www.cfa.harvard.edu/rg/star_and_planet_formation/young_stellar_objects.html
http://www.cfa.harvard.edu/rg/star_and_planet_formation/young_stellar_objects.html
http://www.cfa.harvard.edu/rg/star_and_planet_formation/young_stellar_objects.html
http://www.cfa.harvard.edu/rg/star_and_planet_formation/young_stellar_objects.html
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– Polarization maps
 optical 
 sub-mm
 contours:

850μm (353 GHz)

– Stars near the border
 PAopt ≈ PAsub-mm

– Optical:
 Av ~ 0.3 - 1.8

– Sub-mm:
 N~1022 cm-2 ⇒ Av ~ 10

Observations of Bok globules 3

Figure 1. Polarization map of CB3. The thin vectors are the optical polarisation vectors from Sen et al. (2000). The thick vectors are
the submm polarisation vectors from SCUBAPOL (Matthews et al. 2009), which have been rotated through 90 degrees to illustrate the
magnetic field orientation in the same manner as the optical polarisation vectors (see text for discussion). The underlying greyscale image
is the optical image of the region, taken from the digitized sky survey (Lasker 1994), obtained using the SkyView interface (McGlynn
& Scollick 1994). The contours are isophotal contours of 850-µm continuum emission as mapped by SCUBA. Note the good agreement
between the field orientations inferred independently from the optical and submm polarisation data.

packed, bolometer arrays that could take data at 850 and
450 microns simultaneously, using a dichroic beam-splitter
(Holland et al. 1999). SCUBA polarisation measurements
were taken with the SCUBA polarimeter, SCUBAPOL
(Greaves et al. 2003), which used a rotating half-waveplate
and fixed analyser.

The waveplate was stepped through 16 positions (each
offset from the last by 22.5◦) and a Nyquist-sampled image
(using a 16-point jiggle pattern) was taken at each waveplate
position (Holland et al. 1996; Greaves et al. 2003). The ob-
servations were carried out whilst chopping the secondary
mirror 120 arcsec in azimuth at 7 Hz and synchronously
detecting the signal, thus rejecting sky emission. The in-
tegration time per point in the jiggle cycle was 1 sec, in
each of the left and right beams of the dual-beam telescope
chop. The total on-source integration time per complete cy-

cle was 512 sec. Only 850-micron data have been used in
this paper. The instrumental polarization (IP) was removed
using the measured value of Greaves et al. (2003). This
was 0.92±0.05% at a position angle of 163±2 degrees. This
was measured on planets and found to be stable with time.
The main cause of the IP was believed to be the telescope
wind blind. SCUBA and SCUBAPOL suspended operations
in 2006, pending the commissioning of the next generation
SCUBA2 instrument.

Di Francesco et al. (2008) and Matthews et al. (2009)
have released near-complete legacy datasets for SCUBA and
SCUBAPOL respectively. The SCUBA polarisation data
presented in this paper come from the Matthews et al.
(2009) legacy data set. The data were originally taken on
1998 August 10. The Stokes I, Q & U maps were calculated
by Matthews et al. (2009) by fitting a sinusoid to the inten-

Obs: PAsub-mm rotated by 90°
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magnetic field orientation in the same manner as the optical polarisation vectors (see text for discussion). The underlying greyscale image
is the optical image of the region, taken from the digitized sky survey (Lasker 1994), obtained using the SkyView interface (McGlynn
& Scollick 1994). The contours are isophotal contours of 850-µm continuum emission as mapped by SCUBA. Note the good agreement
between the field orientations inferred independently from the optical and submm polarisation data.

packed, bolometer arrays that could take data at 850 and
450 microns simultaneously, using a dichroic beam-splitter
(Holland et al. 1999). SCUBA polarisation measurements
were taken with the SCUBA polarimeter, SCUBAPOL
(Greaves et al. 2003), which used a rotating half-waveplate
and fixed analyser.

The waveplate was stepped through 16 positions (each
offset from the last by 22.5◦) and a Nyquist-sampled image
(using a 16-point jiggle pattern) was taken at each waveplate
position (Holland et al. 1996; Greaves et al. 2003). The ob-
servations were carried out whilst chopping the secondary
mirror 120 arcsec in azimuth at 7 Hz and synchronously
detecting the signal, thus rejecting sky emission. The in-
tegration time per point in the jiggle cycle was 1 sec, in
each of the left and right beams of the dual-beam telescope
chop. The total on-source integration time per complete cy-

cle was 512 sec. Only 850-micron data have been used in
this paper. The instrumental polarization (IP) was removed
using the measured value of Greaves et al. (2003). This
was 0.92±0.05% at a position angle of 163±2 degrees. This
was measured on planets and found to be stable with time.
The main cause of the IP was believed to be the telescope
wind blind. SCUBA and SCUBAPOL suspended operations
in 2006, pending the commissioning of the next generation
SCUBA2 instrument.

Di Francesco et al. (2008) and Matthews et al. (2009)
have released near-complete legacy datasets for SCUBA and
SCUBAPOL respectively. The SCUBA polarisation data
presented in this paper come from the Matthews et al.
(2009) legacy data set. The data were originally taken on
1998 August 10. The Stokes I, Q & U maps were calculated
by Matthews et al. (2009) by fitting a sinusoid to the inten-

Obs: PAsub-mm girado de 90deg
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Polarization by ISM Dust
• Optical polarization

– works w/ low AV
(1 - 5 mag)
 Ex., outskirts of  dark 

clouds

• Sub-mm polarization

– works w/ high Av
(10 - 100)
 Ex., central regions of  

dark clouds

adapted from Ponthieu, Lagache; www.planck.fr

B field

Important role of telescopes like:

JCMT,  APEX

LLAMA (proposed)

http://www.planck.fr
http://www.planck.fr
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Polarization by ISM Dust
• In summary:

– From Optical/NIR
 B-field in the ISM & collapsing cloud periphery

– From JCMT, APEX, (LLAMA)...
 B-field in the denser parts of  the dark cloud

– From ALMA, SMA...
(+ ALMA/LLAMA)
 B-field in cloud cores

43
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Collapsing Dark Clouds
• Magnetic Field in Dark Clouds 

– B and grain alignment in expanding shells and fronts?
– Role of  B in cloud collapse?

Feitzinger & Stuve 84IRAS Vela Shell
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Collapsing Dark Clouds
• Magnetic Field in Dark Clouds 

– B in expanding shells and fronts?
• Mapping the IRAS Vela Shell

– Churchwell et al. 96 (in CS) 
ζ Pup

γ Vel

IRAS 100µm
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Collapsing Dark Clouds
Magnetic Field in Dark Clouds 

– B in expanding shells and fronts?

• Mapping the IRAS Vela Shell

– Mass-to-Flux Ratio, λ

 All regions sub-critical

 They join smoothly w/
molecular cloud data
of  Crutcher 04

Pereyra & Magalhaes 07

λ ≡
(M/Φ)actual

(M/Φ)crit

= 7.6 × 10−21
N(H2)

B
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Large Scale Magnetic Field

• 42 General ISM fields observed

– 2-3 integrations/field
– ~102 objects/field with σP/P ≥ 10

• Observed pointings
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Large Scale Magnetic Field

General ISM

Estimates of  B-strength (preliminary)

Marcelo Rubinho

1

Campo AR2000 (h m s) DEC2000 (o ’ ”) P (%) V (mag) δB (µG) Bsky cold/warm(µG) Observador Data

06 7 55 52.85 -28 37 46.56 1.37 10 2.5 6.8(9)/6.8(9) Antonio Abr00

08 08 25 39.19 -38 46 35.04 1.96 10 2.5 6.8(5)/6.8(5) An Abr00

09 09 13 11.77 -50 06 25.20 5.48 10.9 2.5 17.0(3)/17.1(3) An (c), R (l) Abr00

14 12 44 25.53 -64 03 18.72 2.9 10 2.5 10.8(9)/10.8(9) An (c), R (l) Abr00

18 13 29 34.29 -61 11 35.88 1.42 10 2.5 9.7(9)/9.7(9) AM Abr00

20 15 40 22.52 -45 46 50.52 2.04 10.7 2.5 18.0(5)/18.1(5) AM (c), An (l) Abr00

22 15 55 39.60 -54 38 36.60 2.5 10.4 2.5 22(1)/22(1) AM, L (i) Abr00, 3Jul03



22/Ago/11 MFU III - Zakopane

Optical/NIR Polarization of  Starlight Polarization

Magalhaes

52

Large Scale Magnetic Field

• Future:
– Use of  data w/

Parallax missions
 Gaia:

⇒ 3D-Map of  Galactic Magnetic Field
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Small Scale Magnetic Field

• Open Clusters

– allow study of  the field structure on smaller scales

Paris
4.6x109 AU
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Small Scale Magnetic Field

Open Clusters

	
 	
 κ Crucis

 CCD Image with

  λ/2-plate + calcite prism

               Magalhães et al. 05
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Small Scale Magnetic Field

Open Clusters

       k Crucis

– distance = 1900 pc

– angular decorrelation size
 for Bunif:

α0~ 8’

⇒ L ≤ 4.6 pc

Magalhaes et al 2005
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Small Scale Magnetic Field

• Open Clusters

– L ≾ few pc

– L ≪ values from the General ISM data
 1 kpc (Jones et al. 92; Heiles 96)
 not unexpectedly though...

– L ≈ values from Faraday rotation
 from Extragalactic sources (Minter & Spangler 1996; Haverkorn 08)

– L: Input to CMB Foreground Polarization
 L away from the Plane has to be determined 56

Ferreira & Magalhães 2009

Cluster l (o) b (o) Distance (pc) L (‘) < L (pc) <

C1115-624

C1250-600

C1714-429

C1828-192

C1836+054

292 -2 1240 5.5 2

303 3 1980 8 4.6

345 -3 1000 6.8 2

14 -4 620 21 3.8

36 5 480 33 4.6

Decorrelation length
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MHD Turbulence Simulations
 Supersonic, sub-alfvenic

– B on the plane of  the sky

– Pol. vectors show the 
effects of  Bsky

57

Falceta-Gonçalves,  Gouveia Dal Pino
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MHD Turbulence Simulations
 Supersonic, sub-alfvenic

– B along l.o.s

– Polarization vectors 
show effects of  Brand

58

Falceta-Gonçalves,  Gouveia Dal Pino
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MHD Turbulence Simulations
• Polarization vs. Density

59

Falceta-Gonçalves,  Gouveia Dal Pino

Bsky Brand
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MHD Turbulence Simulations
• Structure functions

60

Polarization Position Angle Polarization

Brand

Bsky
Bsky

Brand

Falceta-Gonçalves,  Gouveia Dal Pino
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Optical/IR Survey of  ISM Polarization

High Latitude Clouds
– Regions from COBE/DIRBE (Reach et al. 98)
– Hipparcos stars towards each cloud
– short + long exposures
– For 10 HLCs:

 High-resolution spectra for the HIP stars
  distance estimates to these clouds

• 24 HLCs observed thus far
 104 HIP stars
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High Latitude Clouds

62

Fields towards DIR313-29

Cassia Fernandez

Magnetic field along
ISM filaments ⇒
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General ISM - The IAG Survey
High Latitude Clouds

– By-products:

 Zero-point of    P vs. column density

 Position angles away from the Plane

– Important for CMB!
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SMC Magnetic Field
• Early optical polarization observations

– Mathewson & Ford (70)
– Schmidt (76)
– Magalhaes et al. (90)

⇒ Suggestion of  a
Pan-Magellanic field

64

7/28/08 7:37 AM0000256.000.gif 629!954 pixels

Page 1 of 1http://articles.adsabs.harvard.edu/cache/seri/IAUS./0140/600/0000256.000.gif

Magalhaes et al. (90)
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SMC Magnetic Field
• Magnetic Field intensity

– From dispersion of  position angles:

 n ~ 10-1 cm-3 , δVlos ~ 22 km s-1  

– Estimating 

⇒ 

– Formal uncertainty not too bad (~20%)
 but answer probably within a factor of  a few...

65

Bsky + δB ≈ 5.2 × 10
−6

G

δB ≈ 3.5 × 10
−6

G

Bsky ≈ 1.7 × 10
−6

G

Mao et al. (08, synchrotron):   3.2 × 10-6 G

Mao et al. (08, synchrotron):  (1.6 ± 0.4)×10-6 G
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SMC Magnetic Field
• On-going program

– Imaging polarimetry

– 8’x8’ CCD fields

66

Gomes & Magalhães 2009
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SMC Magnetic Field
• On-going program

– Imaging polarimetry

– 8’x8’ fields

67

Gomes & Magalhães 2009
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SMC Magnetic Field
• On-going program

– Imaging polarimetry

– Preliminary
results

68

20 40 60 80 100 120 140 160 180 200

SMC Magnetic field along
SMC-LMC direction ⇒
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SMC Magnetic Field
• On-going program

– Imaging polarimetry

– Preliminary
results

69

20 40 60 80 100 120 140 160 180 200

SMC Magnetic field along
SMC-LMC direction ⇒

Poster by Aiara Gomes
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Orientation of  Stellar Envelopes
• Polarimetry of  Herbig Ae/Be objects

 Pre-MS, intermediate mass stars

 Comparison of
Polar. Position Angle with ISM Magnetic Field direction

 i.e.,
Envelope Orientation vs. ISM B-field

 Statistics of  
Δθ = Intrinsic PA  -  ISM Pol PA
can be done.

70

06/04/09 AGA 5731

AGA 5731 – 4. Polarização

12

Introdução

• Exemplo de um feixe de luz parcialmente polarizado:

    

– Fluxo direto da estrela, não-polarizado: In

– Fluxo espalhado pelo envelope, polarizado: Ip

– Grau de polarização p resultante: 

(adptado de Nordsieck 91)

Nordsieck (91)

Net Polarization

⊥   to

disk orientation
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Orientation of  Stellar Envelopes
• Polarimetry of  Herbig Ae/Be objects

 Statistics of  
Δθ = Intrinsic PA  -  ISM Pol PA

71

– 9 –

Fig. 1.— Cumulative frequency distribution of the difference between the intrinsic and

interstellar polarization angle, ∆θ, for our HAeBe sample.

Rodrigues et al. 2009

Text
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Orientation of  Stellar Envelopes
• Polarimetry of  Herbig Ae/Be objects

 Statistics of  
Δθ = Intrinsic PA  -  ISM Pol PA

– For the more highly
polarized stars:

Δθ → parallel

to ambient B-Field

72

– 9 –

Fig. 1.— Cumulative frequency distribution of the difference between the intrinsic and

interstellar polarization angle, ∆θ, for our HAeBe sample.

Rodrigues et al. 2009

{

Envelopes have memory
of  ISM B-field !
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Orientation of  Stellar Envelopes
• Origin of  Earth’s Magnetic 

Field?
– Dynamo from Earth’s rotation

– Earth’s rotation derived from 
Protosolar Nebula

– Nebula probably had memory of  
ISM B field

73
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SOUTH POL
• SOUTH POL:

– Survey of  the Polarized Southern Sky in the Optical

• Goal:
– Polarimetric accuracy of  0.1% at V=15-16

• First epoch:

– Sky South of  Dec -15° 
– Completed in ~ 2 years

• It will steadly progress Northwards
74
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Optical Polarization by Dust
• SOUTH POL:

– Survey of  the Polarized Southern Sky
 Support: FAPESP

• Goal:
– Polarimetric accuracy of  0.1% at V=15-16

• First epoch:

– Sky South of  Dec -15° 
– Completed in ~ 2 years

75
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SOUTH POL
• 80cm Robotic Telescope

 TR-80S PI: C. M. de Oliveira

– Instalation: 2012
 CTIO, Chile

– CCD:
 EEV, 9k x 9k, 92mm
 2.0 deg2 (!)

76
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SOUTH POL
• Polarimeter

77
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SOUTH POL - How?...
• Combination of

– Southern 80cm Robotic Telescope in Chile
 just  funded by FAPESP

– Large field Imaging Polarimeter
 2.0 sq.deg.

78

IAGPOL
footprint
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SOUTH POL - How?...
• Combination of

– Southern 80cm Robotic Telescope in Chile
 just  funded by FAPESP

– Large field Imaging Polarimeter
 2.0 sq.deg.

79

South Pol
footprint
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Como?...
• High Galactic Latitude 

Clouds
– Need V~15-16

in order to map B

– Av~0.3 typically

⇒ PV ≲ 3.AV~ 0.1-1.0%

– For P/σP = 5,

if  P~0.5%

⇒ σP = 0.1%
80
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SOUTH POL - Overall impact 
• Extragalactic Astronomy

– Many blazars will probably be discovered

– EGRET & FERMI sources down to V~19
 will be identified

– Magnetic Field structure of  interacting systems
 eg., Magellanic Clouds
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SOUTH POL - Overall impact 
• Galaxy, Interstellar Medium & Star Formation

– Magnetic Field structure of  the Galaxy
 with paralaxes from GAIA
 Large (~kpc) & small (≲ pc) scales

– Grain alignment theory

– Magnetic Field topology across Molecular Clouds
 From less dense regions (optical, SOUTH POL)

to denser regions (sub-mm, Planck)
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SOUTH POL - Overall impact 
• Stellar Astrophysics

– Statistics & Time evolution of  explosive phenomena
 GRBs
 SNe

– Circumstellar environments
 YSOs
 Evolved objects

– Galaxy & Magellanic Clouds

– Census of  magnetic White Dwarfs
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SOUTH POL - Overall impact 
• Solar System

– Asteroids
 Determinação de albedos, hence sizes

 Inventory & size distribution

 Curves of  Polarization vs. phase:
clarify population divisions among Main Belt, NEOs, etc.
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SOUTH POL
• SOUTH POL

– unprecedented undertaking in the optical

– will impact several areas
 from Cosmology to Solar System studies

– accuracy of  0.1% down to V=15-16

– will cover   -15° < dec < 90°  in first 2 yrs
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Conclusions
• Stellar polarimetry provides information on

– The general Galactic B field
 at large scales (≿ 100 pc)
 at small scales (≾ 1 pc)

– B field structure in collapsing clouds of  the ISM

– Relation of  circumstellar disks & Ambient ISM field

– B field structure of  Interacting galaxies (Magellanic Clouds)

– The Polarized Foreground for CMBR studies.
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