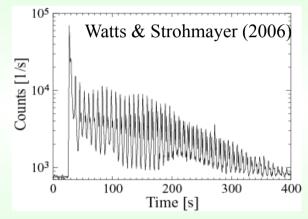
<u>Magnetic Oscillations</u> in Magnetars

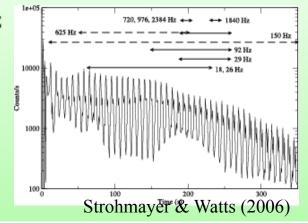
Hajime SOTANI University of Tuebingen

Collaborated with K.D.Kokkotas

Observations

- Soft gamma Repeaters and Anomalous X-ray Pulsars are candidates of **Magnetars**, which are neutron stars with strong magnetic fields.
- Soft gamma Repeaters (SGRs)
 - radiating sporadic X- and gamma-ray bursts (~ 10⁴¹ erg/s)
- **Giant Flare from SGRs** (10⁴⁴-10⁴⁶ ergs/s)
 - SGR 0526–66 in March.5.1979
 - SGR 1900+14 in August.27.1998
 - SGR 1806–20 in December.27.2004
- In the decaying tail after the flare, **QPOs** are found !!
 - → Barat et.al. (1983); Israel et.al. (2005); Watts & Strohmayer (2005, 2006)
 - SGR 0526-66 : **23ms (43Hz)**, $B \sim 4 \times 10^{14}$ G, $L \sim 10^{44}$ ergs/s
 - SGR 1900+14 : $B > 4 \times 10^{14}$ G, **28, 54, 84, and 155 Hz**
 - SGR 1806–20 : B ~ 8 ×10¹⁴G, L ~ 10⁴⁶ ergs/s
 18, 26, 30, 92.5, 150, 626.5, and 1837 Hz
 (also 720Hz ?? and 2384 Hz ??)





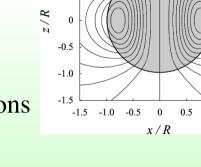
17-21/May/2010

Models of Magnetar

- Ideal MHD approximation
 - \rightarrow Electric fields are zero for comoving observer.
- The stellar deformation due to the magnetic fields are neglect.
 - Magnetic energy / gravitational energy ~ $10^{-4} (B/10^{16}[G])^2$
 - Equilibrium configuration : static spherically symmetric
- Axisymmetric poloidal magnetic fields

Perturbations

- Linearizing the equation of motion and Maxwell equations
 - Axisymmetric perturbation (m = 0)
 - \rightarrow polar perturbation is independent from axial perturbation
 - Cowling approximation ($\delta g_{\mu\nu} = 0$)



1.5

1.0 0.5

1.0 1.5

How to explain QPOs

- **QPOs of SGRs are due to the crust torsional oscillations ??**
 - In Newtonian; Hansen & Cioffi (1980), McDermott et al. (1998), Carroll et al. (1986), Storhmayer (1991), ...
 - \rightarrow the case without magnetic fields

$$_{\ell}t_0 \sim \frac{\sqrt{\ell(\ell+1)\mu/\rho}}{2\pi R} \sim 16\sqrt{\ell(\ell+1)} \text{ Hz} \quad _{\ell}t_n \sim \frac{\sqrt{\mu/\rho}}{2\Delta r} \sim 500 \times n \text{ Hz}$$

- → $_{2}t_{0} = 39$, $_{3}t_{0} = 55$, $_{4}t_{0} = 72$, $_{5}t_{0} = 88$, $_{6}t_{0} = 104$, ..., $_{\ell}t_{1} = 500$, ...
 - In GR; Schumaker & Thone (1983), Leins (1994),
 Samuelsson & Andersson (2006), Sotani, Kokkotas & Stergioulas(2007)
- This attempt was *partially* successful.
 - The stellar models with stiff EOS and massive star are favored.
 - However, it is found the difficulty to explain all observed frequencies of QPOs.
 - Explanation for lower frequencies could be impossible with only using the crust torsional oscillations.
 - \rightarrow Observed frequencies in SGR 1806-20; 18, 26, and 30Hz
 - → The interval of observed frequencies is much smaller than that expected by the torsional oscillation with different values of l.

How to explain QPOs

- Alfven oscillations in the core region ??
 - Levin(2006), Glampedakis et al. (2006)
 - Levin(2007) : the QPO frequencies are enhanced at their edges or turning point.
 - Sotani et al. (2008) : find the two families in Alfven QPOs
 - Colaiuda et al. (2009), Cerda-Duran et al. (2009) : more detailed studies
- Time evolution of two dimensional wave equations
 - Spectrum of Alfven oscillation becomes *continuum*.
 - There exist two families; *upper and lower QPOs*.
 - $-f_{Ln} \approx 0.6 \times f_{Un}, f_{Un} \approx (\mathbf{n+1}) \times f_{U0}, f_{Ln} \approx (\mathbf{n+1}) \times f_{L0}, f \propto B.$
- Observed frequencies of QPOs in SGRs
 - SGR 1900+14 : 28, 54, 84, <u>155</u> Hz
 - ×2 ×3 ^r crust torsional oscillation ? or polar ones ??
 - SGR 1806-20 :18, <u>26</u>, <u>30</u>, 92.5, 150 Hz

x3 x5
crust torsional oscillation ?

→ ex) EOS L: $_{2}t_{0}$ =25.8; f_{L0} =17.5, f_{U0} =30.0, f_{U3} =90.1, f_{U5} = 50.2 Hz; B=2.94×10¹⁵ G

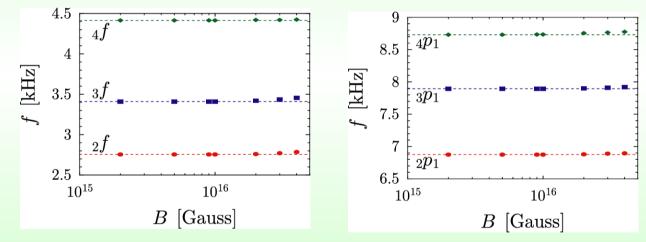
Observed QPOs restrict on the stellar model and/or magnetic field strength !

How about Polar Oscillations ?

- Previous works for polar oscillations in magnetized stars
 - Sibahashi & Takata (1993) : only fluid oscillations in Ap stars
 - Rincon & Rieutord (2003) : oscillations in spherical *incompressible* shell
 - Lee (2007) : oscillations in crust region of Newtonian models
- These previous discussions have not studied in detail of spectrum of *polar Alfven oscillations* in relativistic stellar models.
- In order to know the spectrum feature of the polar Alfven oscillations, we check two points;
 - *FFT* at the various points inside the star
 - *Phase* of the specific frequencies in FFT
- We can find that *the polar Alfven oscillations could be discrete ones*.
 - The frequencies of peak in FFT are independent of the observer positions.
 - Phase with the frequency of peak in FFT is constant.

Polar Oscillations in Magnetars

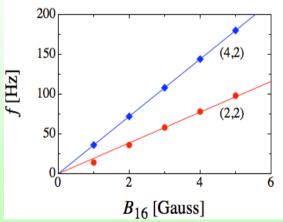
- Dependence of polar Alfven modes:
 - Typical frequencies are *around a few hundred Hz*.
 - These might be possible to explain the observed higher frequencies of QPOs.
- Dependence of fluid modes frequencies:



- We can see the effect of the magnetic field lager than 10^{16} G.
- That deviation is only less than a few %.

Non-axisymmetric Oscillations ?

- The axial oscillations are coupled with the polar ones even for non-rotating magnetars.
 - As a first step, we consider the only axial type oscillations.
- Non-axisymmetric axial Alfven oscillations are discrete oscillations.
- Those frequencies are smaller than that of axial Alfven oscillations.
 - Axisymmetric axial; minimum frequency is around 15 Hz for $B=4\times10^{15}$ G
 - Non-axisymmetric axial; f_{22} =7.7 and f_{42} =14.4Hz for B=4×10¹⁵G
- This type of oscillations could be important to explain theoretically the observed evidence of QPOs in the SGR
 - To fit the possible stellar model with the observations in SGRs, it is necessary to produce more oscillation frequencies with different value of (*l*,*m*) for the stellar models constructed with different EOSs.



Conclusion

- QPOs are found in the SGRs.
- Crust torsional oscillations is partially successful to explain the observed frequencies, still those are impossible to explain the all.
- Taking into account the axial Alfven oscillations, it could be possible to explain the all, whose spectrum could be continuum.
- Polar Alfven oscillations are not continuum but discrete modes.
- Fluid modes in magnetar are almost independent from the magnetic field strength.
- Frequencies of non-axisymmetric axial Alfven oscillations become smaller than those of axisymmetric axial ones.
- Dependence of the toroidal magnetic field on the oscillation frequency ??
- Still, there is open problem for the oscillation spectra in magnetars when the **crust effect** would be taken into account.
- Coupling between the axial and polar oscillations.

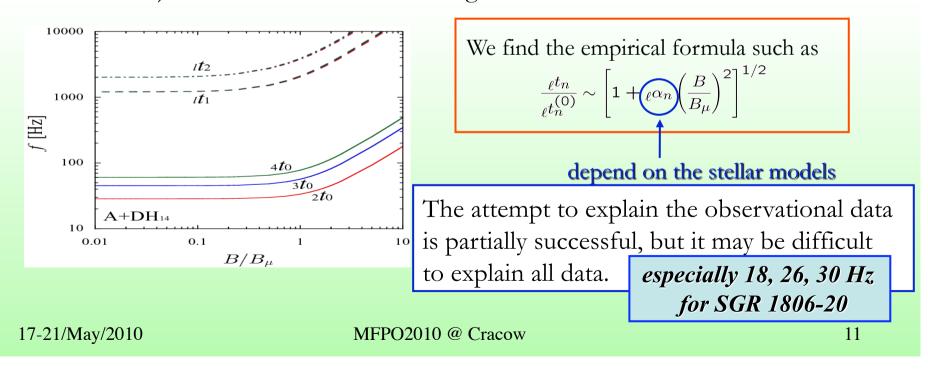
Thanks for your attentions

17-21/May/2010

Crust torsional oscillations

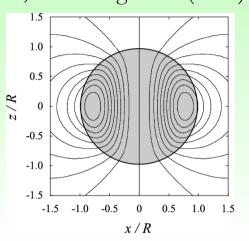
H.S., K.D.Kokkotas, & N.Stergioulas (2007)

- We examine the torsional oscillations *restricted in the crust region*.
 → we omit the coupling with the core oscillations.
- We can see the magnetic effect for $B > B_{\mu}$, where $B_{\mu} = 4 \times 10^{15}$ G.
- Frequencies for fundamental mode **depend strongly** on the stellar properties, where they change in $30 \sim 50 \%$
- Frequencies for overtones are **independent** from the harmonic index ℓ .
 - Frequencies depend strongly on the both EOS of crust and core. \rightarrow ex) first overtones are in the range of 500 – 1200 Hz.



Calculations for Alfven Oscillations H.S., K.D.Kokkotas, & N.Stergioulas (2008)

- We calculate the Alfven oscillations
 - On the whole star without the crust regions
 - Axisymmetric poloidal magnetic fields
 - 2D evolutions for axisymmetric torsional oscillations with numerical viscosity (Kreiss-Oliger dissipation)
- Perturbed variable : $\delta u^{\phi} = e^{-\Phi} \partial_t \mathcal{Y}(t, r, \theta)$
- Two dimensional evolutionary equations



$$\mathcal{A}_{tt}\frac{\partial^2 \mathcal{Y}}{\partial t^2} = \mathcal{A}_{20}\frac{\partial^2 \mathcal{Y}}{\partial r^2} + \mathcal{A}_{11}\frac{\partial^2 \mathcal{Y}}{\partial r\partial \theta} + \mathcal{A}_{02}\frac{\partial^2 \mathcal{Y}}{\partial \theta^2} + \mathcal{A}_{10}\frac{\partial \mathcal{Y}}{\partial r} + \mathcal{A}_{01}\frac{\partial \mathcal{Y}}{\partial \theta} + \varepsilon_D \mathcal{D}_4 \mathcal{Y}$$

Boundary conditions

4th-order Kreiss-Oliger dissipation

 $-\mathcal{Y} = 0$ at r = 0 (regularity condition) $_{-} \mathcal{Y}_{,r} = 0$ at r = R (vanishing traction) _ $\mathcal{Y}_{,\theta} = 0$ at $\theta = 0$ (axisymmetry)

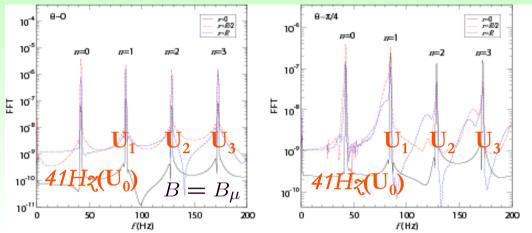
 $\mathcal{Y} = 0$ at $\theta = \pi/2$ (equatorial symmetry of even ℓ)

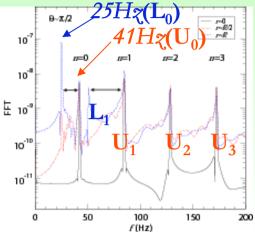
* more detail studies : Colaiuda, et al. (arXiv:0902.1401) Cerda-Duran, et al. (arXiv:0902.1472)

17-21/May/2010

Feature of Oscillations

• FFT on the different position in the magnetar





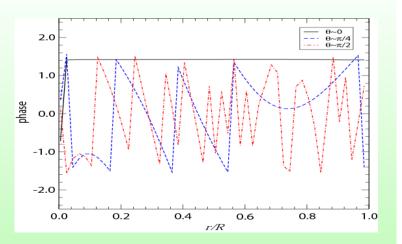
 The both edges of continuum are enhanced, which are corresponding to 25 and 41 Hz for the fundamental QPOs.

→ two families; **upper and lower QPOs**

 The oscillations on the axis are same phase, but those on the other stellar location have different phase

→ not normal-modes but continuum

- we can find that the feature of continuum arise near the equatorial plane.



Empirical Formula

• The lower and upper Alfven QPO frequencies with realistic stellar models

	± ±			\rightarrow				
Model	M/R	f_{L_0} (Hz)	f_{U_0} (Hz)	ratio	f_{L_1} (Hz)	f_{U_1} (Hz)	ratio	f_{U_2} (Hz)
$A+DH_{14}$	0.218	15.4	25.0	0.616	30.7	49.4	0.621	74.4
$A+DH_{16}$	0.264	11.7	18.3	0.639	23.5	35.7	0.658	54.0
WFF3+DH ₁₄	0.191	17.9	29.8	0.601	36.2	59.2	0.611	89.8
WFF3+DH ₁₈	0.265	11.7	18.0	0.650	23.5	35.5	0.662	53.3
$APR+DH_{14}$	0.171	20.4	34.1	0.598	41.3	68.6	0.602	104.6
$APR+DH_{20}$	0.248	12.8	20.6	0.621	26.0	40.3	0.645	61.0
$L+DH_{14}$	0.141	23.7	40.8	0.581	47.5	81.6	0.582	123.8
$L+DH_{20}$	0.199	16.4	27.8	0.590	33.1	54.7	0.605	82.6

- the ratio of f_{L_n}/f_{U_n} are almost **0.6** independently of the stellar models.

- the frequencies of overtones are nearly integer multiplies of the fundamental one; $f_{L_n} \simeq (n+1) f_{L_0}, \ f_{U_n} \simeq (n+1) f_{U_0}$
- the frequencies are proportional to the magnetic field strength.
- **Empirical formula** for the frequencies of lower and upper Alfven QPOs

$$\int_{U_n}^{U_n} \frac{L_0}{U_0} = \int_{U_n}^{U_n} \frac{L_0}{U_n} = \frac{L_0}{U_n} =$$

17-21/May/2010

36

0.12 0.1

M/R

Attempt to fit to Observational data

• Now we have empirical formula for the frequencies of Alfven QPOs and of crust torsional modes.

• crust torsional modes :
$$\frac{\ell t_n}{\ell t_n^{(0)}} \sim \left[1 + \ell \alpha_n \left(\frac{B}{B_\mu}\right)^2\right]^{1/2}$$

• lower Alfven QPOs : $f_{L_n}(Hz) \simeq 48.9(n+1) \left[1 - 4.51 \left(\frac{M}{R}\right) + 6.18 \left(\frac{M}{R}\right)^2\right] \left(\frac{B}{B_\mu}\right)$
• upper Alfven QPOs : $f_{U_n}(Hz) \simeq 86.1(n+1) \left[1 - 4.58 \left(\frac{M}{R}\right) + 6.06 \left(\frac{M}{R}\right)^2\right] \left(\frac{B}{B_\mu}\right)$

• On the other hand the observed frequencies of QPOs in SGRs

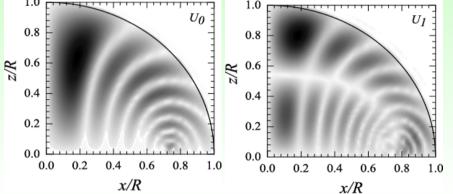
EOS L: $_{2}t_{0} = 25.8$; $f_{L_{0}} = 17.5$, $f_{U_{0}} = 30.0$, $f_{U_{3}} = 90.1$, $f_{U_{5}} = 150.2$ Hz for $B = 2.94 \times 10^{15}$ G EOS APR: $_{2}t_{0} = 25.9$; $f_{L_{1}} = 17.7$, $f_{U_{1}} = 30.0$, $f_{U_{5}} = 90.1$, $f_{U_{9}} = 150.1$ Hz for $B = 1.77 \times 10^{15}$ G

Observed QPOs is restrict on the stellar model and/or magnetic field strength !

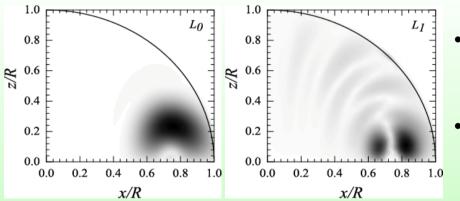
17-21/May/2010

Numerical Results 2

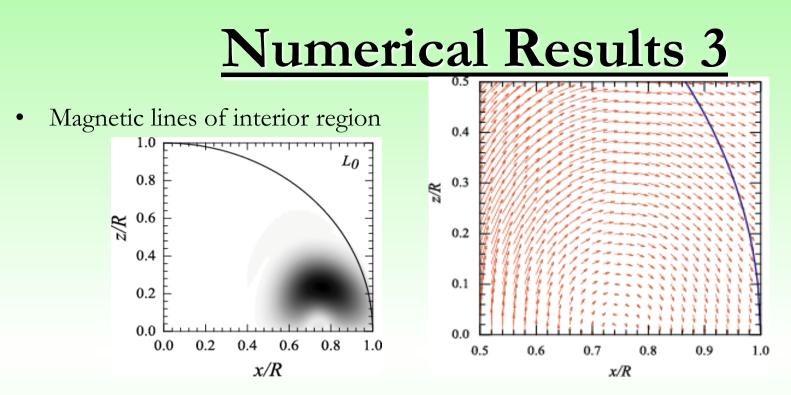
• Distribution of effective amplitude for upper QPOs



- The maximum exists near the axis.
- There are nodal lines along certain magnetic field lines.
- For the overtone, the additional "horizontal" nodal line exits.
- Distribution of effective amplitude for lower QPOs



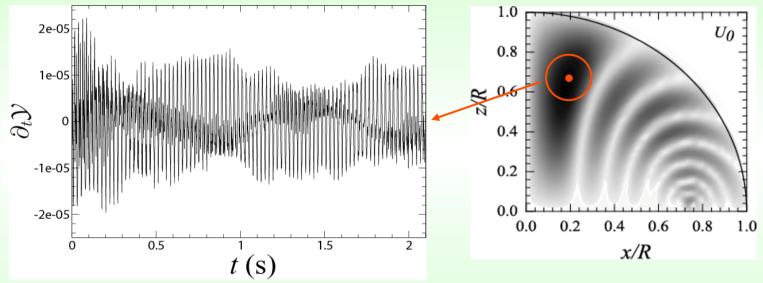
- The effective amplitude for lower QPOs is partially limited to a region around the closed magnetic field lines.
- For the overtone, the nodal line divides the region of maximum amplitude.



- For the L0 QPOs, an oscillating region is restricted to roughly 0.5 < x < 1.0, while it appears to be "touching" the surface for 0 < z < 0.3.
- We can see that the last closed field line inside stellar surface originates at about x=0.58.
- The field lines that originate from the region 0.5 < x < 0.58 are open and cross the surface at 0 < z < 0.3
- ➔ While the maximum oscillational amplitude is inside the region of closed lines, there is still a broader region, including open field lines.
- → The information of oscillations with lower QPOs could leak out of the star.

Numerical Results 4

• At the location inside the star where the effective amplitude becomes maximum, time evolution of $\partial_t \mathcal{Y} \propto \delta u^{\phi}$ are ...

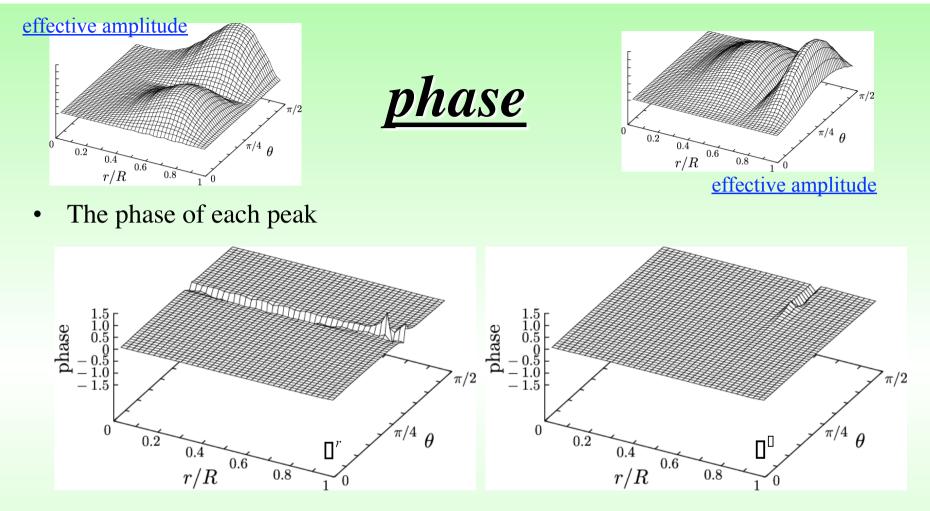


- We can see the **long-lived QPOs**

FFT for Polar Alfven Oscillations

FFT at various points inside the star • $B = 1 \times 10^{16} Gauss$ _ 10^{-14} 10^{-11} 10^{-10} $r \sim R/2$ $r \sim R$ $r \sim 0$ f mode 10^{-15} 10^{-12} 10^{-13} ~ 0 Alfven $\theta \sim \pi/4$ mode $\theta \sim \pi/2$ 10^{-16} FFT L 10⁻¹⁴ L L L L L 10⁻¹⁵ 10^{-17} 10^{-16} 10^{-17} 10^{-18} 10^{-19} 10^{-19} 10^{-18} 2000 3000 2000 3000 1000 2000 1000 1000 0 3000 0 0 f [Hz] f [Hz] f [Hz]

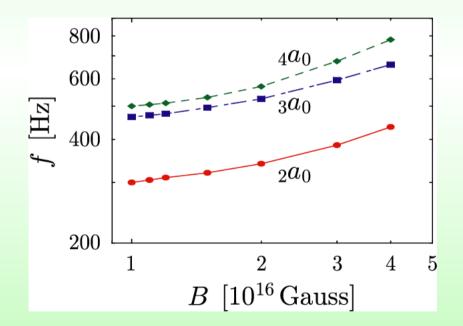
- The frequencies of peak in FFT are independent from the observer positions.



- Phase with the frequency of peak in FFT is constant.
- With two results such as FFT and phase, the **polar Alfven oscillations** are not continuum but **discrete modes**.

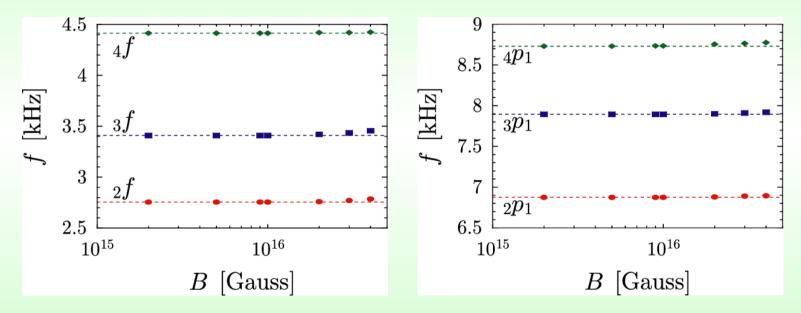
polar Alfven oscillations

- Dependence of polar Alfven modes on magnetic strength
 - Frequency \sim a few hundred Hz
 - These might be used to explain the observed higher QPOs frequencies.



fluid modes

- The dependence of fluid modes frequencies on the magnetic field strength
 - We can expect that these frequencies would be almost independent from the magnetic field strength unless the magnetic field are quite strong.



- We can see the effect of the magnetic field lager than 1×10^{16} Gauss.
 - That deviation from the frequencies without magnetic field are only less than a few %.

- Axisymmetric Alfven oscillations in magnetars
 - Axial parity : continuum
 - Polar parity : discrete
- Crust oscillations : discrete (at least for non-magnetized star)

- How do the axial oscillations become in the case of existence of crust ??
- *How about non-axisymmetric oscillation ??*