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Core-collapse supernovae

Progenitor and collapse

» Progenitor: a massive star (2 8M) after exhaustion of nuclear
full (onion-shell structure)

» gravitational collapse of the core to a proto neutron star: pmax
increases from ~ 109 g/cm® to > pnuc ~ 2 x 10 g/cm® within ~
a free-fall time

> ecore ~ 10%° erg relased, mostly in neutrinos

» collapse stops when nuclear density is reached
= formation of a shock wave

» the shock propagates outwards, but stalls due to energy loss in
dissociation reactions

¢ How is the stalled shock wave revived?



Core-collapse supernovae

Ingredients

multi-scale problem multi-physics problem

>

vV V. v Vv

star: blue or red giant
pre-collapse core: few 1000 km
PNS: few 10 km

stalled shock: few 100 km

large (magnetic) Reynolds
number

many dynamical time scales

>

>
| 4
>

multi-dimensional (GR)(M)HD
turbulence
nuclear equation of state

neutrino transport (from
optically thick to transparent),
neutrino-matter interactions

nuclear burning
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Exlosion mechanisms

How is the failed explosion revived?

Not a matter of energy (€core => €env), but
of energy transfer.
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Exlosion mechanisms

How is the failed explosion revived?
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Not a matter of energy (€core => €env), but
of energy transfer.
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» Spherical neutrino-driven Neutrino mechanism

explosion » Neutrinos diffuse out of the PNS

» they heat the matter behind the
shock.

= explosions for cores in a limited
mass range (Kitaura et al., 2006)

» compatible with standard
pre-collapse evolution by
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Exlosion mechanisms

How is the failed explosion revived?

Not a matter of energy (€core => €env), but
of energy transfer.
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» Spherical neutrino-driven Hydro instabilities

explosion
P » Neutrino heating

» Standard model: neutrino . . .
heating aided by » convection and standing accretion
C . hock instability (Blondin et al.,
hydrodynamic instabilities S
ydrocy 2003, 2006; Foglizzo et al., 2007)

= successful for M ~ 11...15M,

» compatible with standard
pre-collapse evolution
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Core-collapse supernovae

Exlosion mechanisms

How is the failed explosion revived?

Not a matter of energy (€core > €env), but
of energy transfer.
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> Spherical neutrino-driven
explosion _ . » accoustic (Burrows et al., 20086,
> Standard model: neutrino 2007) or Alfvén waves (Suzuki et
Eeatlng aided by - al., 2008) generated at the PNS
ydrodynamic instabilities » waves dissipate near the shock
» Energy transfer by waves S eUccassiillz

» compatible with standard
pre-collapse evolution? iy




Core-collapse supernovae

Exlosion mechanisms

How is the failed explosion revived?

Not a matter of energy (€core > €env), but
of energy transfer.

> Spherical neutrino-driven
explosion > tap into e by magnetic fields

» Standard model: neutrino (Thompson et al., 2004)

heating aided by

?
hydrodynamic instabilities > S“C?e§S;U|-
» Energy transfer by waves > realistic’ |
» rotational mechanisms — MRI? (Akiyama et al., 2003)
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Hydromagetic instabilities

The rationale for studying instabilities

» magnetic fields need to be strong to have
an effect on SNe

> stellar evolution theory predicts rather
weak fields in the pre-collapse core

— efficient amplification required

» compression

» linear winding by differential rotation

» hydromagnetic instabilities: convection,
magnetorotational instability (MRI), SASI

Meier et al., 1976
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Instabilities:

Hydromagetic instabilities

an overview

SASI convection MRI
energy accretion flow thermal diff. rotation
mechanism | advective- buoyant trans- magnetic trans-
acoustic cycle port of ener- port of angular
gy/species momentum
role of b instability driver;

Endeve et al., 2008

turbulent dynamo



Hydromagetic instabilities

MRI: Questions

» physical issues
» instability regimes unique to stellar environment
» complex dependence of the turbulent saturated state on the initial
conditions (huge parameter space)
» interplay with supernova dynamics
» technical issues
> resolution requirements: éx ~ 1...100 cm to resolve the fastest
growing mode
» eliminate (or at least identify) the influence of numerical resistivity
and viscosity



Hydromagetic instabilities

MRI: preliminary results

theoretical analysis of the dispersion relation of MHD
modes in a differentially rotating fluid with or without
thermal stratification

» instability
regimes

» growth rates of the MRI: few ms possible

» (de)stabilisation by thermal stratification:
overlap with convection

N2/Q2
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Hydromagetic instabilities

MRI: preliminary results

» instability
regimes
» saturation

vV VvV vV VvVY

local simulations of simplified models

ideal MHD
simplified EOS
no neutrinos

high resolution
2d and 3d
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Hydromagetic instabilities

MRI: preliminary results

» instability @ local simulations of simplified models

regimes © confirm linear analysis: /
» saturation
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Hydromagetic instabilities

MRI: preliminary results

> inst.ability @ local simulations of simplified models
regimes @ confirm linear analysis: /
> saluration © identify mechanism of MRI saturation: uncertain

-

30

29

28

’L~::::<j

10g (! V)

===

26

25—

20 40 60 80 100
t[ms]

10/12



Hydromagetic instabilities

MRI: preliminary results

» instability @ local simulations of simplified models
regimes @ confirm linear analysis: /
> saluration © identify mechanism of MRI saturation: uncertain

channel flows — parasitic instabilities o
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Hydromagetic instabilities

MRI: preliminary results

» instability
regimes
» saturation

@ local simulations of simplified models
@ confirm linear analysis: /

© identify mechanism of MRI saturation:
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parasitic instabilities in our models
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Hydromagetic instabilities

MRI: preliminary results

» instability
regimes
» saturation

@ local simulations of simplified models
@ confirm linear analysis: /

© identify mechanism of MRI saturation:
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Hydromagetic instabilities

MRI: preliminary results

» instability
regimes
» saturation

@ local simulations of simplified models
@ confirm linear analysis: /

@ identify mechanism of MRI saturation: uncertain
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parasitic instabilities in our models
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Hydromagetic instabilities

MRI: preliminary results

» instability
regimes
» saturation

@ local simulations of simplified models

@ confirm linear analysis: /

© identify mechanism of MRI saturation: uncertain
@ scaling relations for the turbulent state: unclear

How strong is the field? What about topology and
correlation between components?
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Hydromagetic instabilities

MRI: preliminary results

» instability
regimes
» saturation

» large-scale
dynamics

global simulations of cores in rotational equilibrium
E[cgs]lll)ixllf"‘ |b| [cgs]
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avoid artificial boundary conditions
MRI present, but modified w.r.t. box models

At
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Hydromagetic instabilities

MRI: preliminary results

» instability
regimes
» saturation

» large-scale
dynamics

@ global simulations of magneto-rotational
collapse

@ artifically enhanced initial field

© varying degrees of sophistication for the
microphysics

© follow dynamics of magneto-rotational
explosions

100

Cerda-Duran et al., 2009
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Hydromagetic instabilities

MRI: preliminary results

> instability © global simulations of magneto-rotational
regimes collapse
» saturation @ artifically enhanced initial field
> large-scale © varying degrees of sophistication for the
dynamics microphysics
Q follow dynamics of magneto-rotational
explosions
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Summary

Summary

» Three instabilities potentially leading to field amplification: SASI,
convection, MRI

» studied MRI and magneto-convection by analysis of the
dispersion relation and simulations

» different approaches are required to understand the
MRI/convection:

> box simulations
» global simulations with simplified physics
» global simulations with the best possible treatment of physics

» MRI may grow in rapidly rotating cores
» field strength ~ 10'® G achievable
» saturation mechanism still not understood
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