Observations of Magnetic Fields in Nearby HII Regions

Greg Madsen Lisa Harvey-Smith, Bryan Gaensler Sydney Institute for Astronomy

Magnetic Fields in HII Regions

- Many observations of interstellar **B** in molecular clouds, cold HI, large-scale field
- Observe Faraday rotation toward large, evolved HII regions; 'Interstellar Magnetic Lightbulbs'
 - isolate **B** in 3D space
 - trace field where $n_e \approx 1\text{--}10\ \text{cm}^{\text{--}3}$
- How does **B** compare in different interstellar environments?
- Are **B** fields important in HII region evolution?
- First attempts & results based on 1 or 2 sources (Heiles et al 1980, 81)
- Use new all-sky surveys of RM, HII regions

NASA, ESA, N. Smith (University of California, Berkeley) and the Hubble Heritage Team (STScI/AURA)

Faraday Rotation Measure

- Consider linearly polarised wave through a magnetised plasma
- Birefringent phenomenon causes position angle to change, $\Delta \psi = \lambda^2 * RM$

$$\mathrm{RM} = .81 \int_0^L n_e \mathbf{B}_{||} \, dl \quad \mathrm{rad} \ \mathrm{m}^{-2}$$

- To quantify \mathbf{B}_{\parallel} , need to know $n_e(l)$
- Observe delay in pulsar arrival times; Dispersion Measure $DM = \int_{-\infty}^{L} n_e \, dl \, \mathrm{cm}^{-3} \, \mathrm{pc}$
- Observe other radiation (recom, f-f); Emission Measure

$$I_0$$
$$EM = \int_0^L n_e^2 dl \quad cm^{-6} pc$$

• Combine the three:

$$<\mathbf{B}_{||}>_{los} = \frac{\mathrm{RM}}{.81 \mathrm{DM}}$$
 $<\mathbf{B}_{||}>_{los} = \frac{\mathrm{RM}}{.81 \mathrm{EM}} < n_e >_{los} \left[1 + \frac{\sigma_{ne}^2}{< n_e >^2}\right]$

where σ_{ne} is r.m.s. of n_e along the line of sight

Rotation Measure Limitations

- Integrate over identical pathlengths
 - isolate contributions to RM, DM, EM
- Remove RM intrinsic to background source (pulsar, AGN)
- Consider reliability of RMs (λ^2 coverage)
- Requires high areal density of sources
- Derive accurate EM from observations
 - Optical recombination lines (extinction, temperature)
 - Radio recombination lines (non-LTE, faint)
 - Free-free emission (temperature, remove synchrotron contribution)
- Consider variations of n_e, **B** on scales less than angular resolution

RM Image of the Sky

- Reprocessed NVSS VLA survey, polarisation measured at $2\lambda s$ near 1.4GHz
- $\delta > -40^{\circ}$; % polarisation > 0.5%; N=37, 543 RMs (~1 deg⁻²)

Sh 2-27

Sh 2-27

Combining RM and EM

- Identify boundary of HII region
- Remove background+foreground contribution
- Correlation shows HII region is magnetised
- Each point is l.o.s. measure of $\boldsymbol{B}_{\parallel}\!/n_e$
- Dust correction to EM
 - IR dust maps (E_{B-V}) or free-free (WMAP)
- Estimating <ne>
 - Strömgren: $n_e \approx R_S^{-3/2} Q_0^{1/2} T_e^{3/8}$
 - $n_e \approx \sqrt{(EM/fL)}$ f = 1.o.s. filling factor
- Compare magnetic and thermal energy
 - $U_{mag} > B_{\parallel}^2/8\pi$ $U_{therm} = 3n_e kT$

Results

Name	*	R [pc]	N _{RM}	RM/EM	Сна	<n<sub>e> [cm⁻³] f=0.2</n<sub>	<Β ∥> [μG]	U _{mag} / U _{ther}
Sh 2-27	09.5V	15	58	-1.2 ± 0.2	1.7	6.8	-13	0.27
Sh 2-264	08111	35	10	+0.4 ± 0.2	1.7	6.3	+4	0.03
Sh 2-220	07.5 III	20	8	-1.3 ± 0.3	1.4	5.7	-11	0.36
Sivan 3	09.5Ia	40	11	-3.4 ± 1.1	1.4	1.1	-6	0.54
Sh 2-171	07V	30	7	-1.1 ± 0.3	3.5	4.2	-11	0.06

RM Structure Function

- Consider pairs of RMs separated by $\theta \pm \delta \theta$
- Calculate an average $SF(\theta) \equiv \langle (RM_i RM_j)^2 \rangle$

- "Poor man's power spectrum"
- Characterises angular scale of variations
- Slope of SFs used to constrain inner/outer scale of variation (turbulence)

(Haverkorn et al 2006, Feain et al 2009)

- Consider points within R_{Max} of HII region centre
- SF steepens, falls off at large $\boldsymbol{\theta}$

Summary

- Uniform **B** fields thread nearby HII regions; scales of tens of parsecs
 - No enhancement at edges
- Line-of-sight field strengths $\approx 10 \ \mu G$
 - Limitations to technique allows fields to vary by factor of a few
 - Similar to diffuse HI, Galactic neighborhood
 - Pulsar RMs provide consistent results
- Magnetic energy density 5% 50% of thermal energy density
 - **B** field not playing dominant role in evolved, 'classical' HII regions
- Slope of structure function increases with cutoff radius
 - Geometry ? Scale of turbulence?
- What is B_{random} ? B_{total} ?
- Compare to evolutionary models of HII regions; runaway O stars
- How does field compare to large-scale Galactic field models?

The Future

- Australian SKA Pathfinder 36 12m dishes @ Murchison in WA, 0.7 - 1.8 GHz, 30 deg² FOV
- ASKAP Survey Science Project: POSSUM
- Aim: 3x10⁶ RMs across southern sky
- 100 RMs deg⁻¹
- Use RM synthesis technique to extract multiple RMs in one line of sight

