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Magnetic Fields in HII Regions

NASA, ESA, N. Smith (University of California, Berkeley) 

and the Hubble Heritage Team (STScI/AURA)!

• Many observations of interstellar B in molecular clouds, 
cold HI, large-scale field 

• Observe Faraday rotation toward large, evolved HII regions; 
‘Interstellar Magnetic Lightbulbs’ 

• isolate B in 3D space

• trace field where ne ≈ 1-10 cm-3

• How does B compare in different interstellar environments?

• Are B fields important in HII region evolution? 

• First attempts & results based on 1 or 2 sources 
(Heiles et al 1980, 81)

• Use new all-sky surveys of RM, HII regions
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Faraday Rotation Measure
• Consider linearly polarised wave through a magnetised plasma 
• Birefringent phenomenon causes position angle to change, Δψ =  λ2 * RM

• To quantify B||, need to know ne(l)
• Observe delay in pulsar arrival times; Dispersion Measure

• Observe other radiation (recom, f-f); Emission Measure

• Combine the three: 

where σne is r.m.s. of ne along the line of sight  

1. Normal only. In our discussion of stellar winds, we constructed a simple model of an isothermal
wind. The model assumes that particles are subject to two forces: (i) an outward pressure gradient
and (ii) an inward gravitational force. The principle of mass conservation requires that the rate at
which the mass of the wind flows through an infinitesimally thin shell at radius r is given by:

dM

dt
= 4πr2ρ(r)v(r) (1)

where ρ(r) is the density of the wind at r and v(r) is the velocity at r. We imposed the condition that
the mass loss rate is constant, e.g. it does not change with time or radius. The principle of conservation
of energy requires that the total energy of the outflowing wind, per unit mass, is
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where G is the gravitational constant, M∗ is the mass of the star, R is the ideal gas constant, T is the
temperature of the wind, and µ is the mean molecular weight of the gas.

Impose that mdost is constant. By balancing the thermal pressure and gravitational forces, we derived
the momentum equation for a simple isothermal wind:
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where a =
√

RT/µ is the isothermal sound speed of the gas.

There is no analytic solution to (3). However, by imposing the condition that dv/dr > 0 for all r,
we showed that the wind speed must equal the sound speed at the critical point rc = GM∗/2a2,
e.g. v(rc) = a. Near the base of the wind, the density structure is similar to that of a hydrostatic
atmosphere because the velocity gradient is much smaller than the pressure gradient. At the critical
point, the density can be approximated by

ρc = ρ(rc) ≈ ρ0 exp
(
−rc − r0

H0

r0

rc
− 1

2

)
(9)

where ρ0 is the density at the base of the wind r0, and H0 = RT/µg0 with g0 = GM∗/r2
0.

The model is a simplification, but works well in describing real coronal winds. Consider a star with
Teff = 3200 K, R∗ = 30R#, L∗ = 85L#, and M∗ = 6M#. The star has an isothermal corona of T = 106

K with a density at the base of the wind ρ0 = 10−13 g cm−3. The wind is composed of protons and
electrons with µ = 0.6.
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(a) Briefly describe each of the terms on the right hand side of equation (2). Calculate the energy
per unit mass at the bottom of the corona (r0 = R∗). (Hint: v0 << a).

(b) Calculate the location of the critical point (rc).

(c) Calculate the mass loss rate of the wind in units solar masses per year (M"/yr).

(d) Calculate the energy per gram gained by the wind between r0 and rc.

(e) What fraction of the star’s luminosity is used to drive the wind from r0 to rc (hint)?
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• Integrate over identical pathlengths 

• isolate contributions to RM, DM, EM

• Remove RM intrinsic to background source (pulsar, AGN)

• Consider reliability of RMs (λ2 coverage) 

• Requires high areal density of sources

• Derive accurate EM from observations

• Optical recombination lines (extinction, temperature)

• Radio recombination lines (non-LTE, faint)

• Free-free emission (temperature, remove synchrotron contribution)

• Consider variations of ne, B on scales less than angular resolution

Rotation Measure Limitations
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RM Image of the Sky
• Reprocessed NVSS VLA survey, polarisation measured at 2λs near 1.4GHz

•  δ > -40º;   % polarisation > 0.5%;  N=37, 543 RMs  (~1 deg-2)

Red: Positive RM     Blue: Negative RM
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Combining RM and EM
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• Identify boundary of HII region

• Remove background+foreground contribution

• Correlation shows HII region is magnetised

• Each point is l.o.s. measure of B||/ne

• Dust correction to EM

• IR dust maps (EB-V) or free-free (WMAP) 

• Estimating <ne>

• Strömgren: ne ≈ RS-3/2 Q01/2 Te3/8

• ne ≈ √(EM/fL)     f = l.o.s. filling factor

• Compare magnetic and thermal energy

• Umag > B||2/8π     Utherm = 3nekT
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Results

Name * R 
[pc]

NRM

 
RM/EM CHα

<ne>
[cm-3]
f=0.2

<B||>
[µG]

Umag/
Uther

Sh 2-27 O9.5V 15 58 -1.2 ± 0.2 1.7 6.8 -13 0.27

Sh 2-264 O8III 35 10 +0.4 ± 0.2 1.7 6.3 +4 0.03

Sh 2-220 O7.5 III 20 8 -1.3 ± 0.3 1.4 5.7 -11 0.36

Sivan 3 O9.5Ia 40 11 -3.4 ± 1.1 1.4 1.1 -6 0.54

Sh 2-171 O7V 30 7 -1.1 ± 0.3 3.5 4.2 -11 0.06

Harvey-Smith, Madsen & Gaensler 2010
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RM Structure Function
•  Consider pairs of RMs separated by θ±δθ
•  Calculate an average SF(θ) ≡ < (RMi - RMj)2 > 

• “Poor man’s power spectrum” 
• Characterises angular scale of 
variations
 
• Slope of SFs used to constrain 
inner/outer scale of variation 
(turbulence)  
(Haverkorn et al 2006, Feain et al 2009)

• Consider points within RMax of 
HII region centre

• SF steepens, falls off at large θ
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• Uniform B fields thread nearby HII regions; scales of tens of parsecs

• No enhancement at edges

• Line-of-sight field strengths ≈ 10 µG

• Limitations to technique allows fields to vary by factor of a few

• Similar to diffuse HI, Galactic neighborhood 

• Pulsar RMs provide consistent results

• Magnetic energy density 5% - 50% of thermal energy density

• B field not playing dominant role in evolved, ‘classical’ HII regions

• Slope of structure function increases with cutoff radius  

• Geometry ?  Scale of turbulence?

• What is Brandom ? Btotal ?
• Compare to evolutionary models of HII regions; runaway O stars
• How does field compare to large-scale Galactic field models?   

Summary
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The Future
Orion!Eridanus Bubble
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• Australian SKA Pathfinder 
36 12m dishes @ 
Murchison in WA, 
0.7 - 1.8 GHz,
30 deg2 FOV

• ASKAP Survey Science 
Project: POSSUM

• Aim: 3x106 RMs across 
southern sky 

• 100 RMs deg-1

• Use RM synthesis 
technique to extract 
multiple RMs in one line 
of sight
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