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M82 Chandra/

M82 HST/WIYN HST/Spitzer

* Galaxies are essential building blocks of the Universe
* they presumably form by hierarchical merging events

* feedback processes in the disk and halo become ever more important for
their appearance and evolution = Galactic Cosmic Matter Cycle

* star formation generates hot plasma, “metals”, CRs, B-fields in disk & halo
* no hydrostatic halo & superbubbles, outflows (fountain & winds)

Dieter Breitschwerdt - Worﬁsﬁcya on “‘Magnen’c Fields on scales ﬁom @pc to km” - Cracow, 18.5.2010
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ISM 1n Galaxies

* Morphology of Galaxies: Bulge, Disk,
Halo

* Active star formation in disk galaxies
-> gas and dust

* Important components to consider:
Magnetic fields, cosmic rays

Gas Phase e According to classical theory

| MM" = Molecular ~ 20 ~ 103 001  0.3-0.6| 8asexistsin various stable
Medium (H,) phases in the p-V-diagramm
1 CNM = cold neutral ~ 100 20 -60 0.05 e Transitions possible by
medium ; i
Il WNM = warm neutral ~6000 ~005-03 03-04 heating and cooling
medium e star formation drives matter
IV  WIM = warm ionized ~ 8000 ~0.1-0.5 0.1-0.2 1
medium cycle
V. HIM? = hot ionized ~ 108 ~ 103 0.5 ~0.01| = how does the interstellar
medium gas evolve?

1) not in pressure equilibrium (gravitationally bound)
2) no phase transition, heated by SNRs and superbubbles
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High Resolution ISM Simulations

* Solve full HD/MHD equations on a large grid: 1 kpc x 1kpc x + 10 kpc
(Ax=0.625 pc or less)

* Type Ia,b,c/Il SNe random + clustered in disk

* background heating due to diffuse UV photon field

* gravitational field by stars + self-gravity

* SFR o< local density / temp.: n >10 cm-3/T<100 K

* formation and motion of OB associations (2 random velocity of stars)
* Evolution of computational volume for T ~ 400 My

* =>» sufficiently long to erase memory of initial conditions!

* 3D calculations on parallel processors with adaptive mesh refinement
(AMR)

Dieter Breitschwerdt - Worﬁsﬁcy on “‘Magnen’c Fields on scales ﬁom @pc to km” - Cracow, 18.5.2010
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High Resolution ISM Simulations

* Numerical solution of HD/MHD-Egs.
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V - B = 0 (as initial condition)
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with
T=pu®u+ [P—I—?j] 'l—éﬁg
Wz%qu—l—%-l-g
S = (%u2+711i)p6+54>;§

Realistic boundary conditions: mass,
momentum, energy input by SNe and
stellar winds

source terms: q=Mj/ (V¢ to), m=q V;,
dWo/ dt=(Wko+Wi)/ to

external body force: gravitational field
background heating, interstellar cooling

Dieter Breitschwerdt - Worﬁsﬁcy on “‘Magnen’c Fields on scales ﬁom @pc to km” - Cracow, 18.5.2010

Wednesday, June 9, 2010



~ SNR/SB Driven Outflows

Avillez & Breitschwerdt (2004)

10
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HD-Evolution of ISM 11

Results Avillez & Breitschwerdt, 2010

* Collective effect of SNe induces 2

break-out of ISM disk gas => “gal-
actic fountain” (cf. intermediate vel-
ocity clouds) = reduce disk pressure Y

* Density and temperature distribu-
tion shows structures on all scales
(cf. observation of filaments)

* shear flow due to expanding SNRs
generate high level of turbulence
coupling of scales

* Cloud formation by shock compres-
sed layers = clouds are transient
features => generation of new stars

* large amount of gas in thermally
unstable phases

* volume filling factor of HIM ~ 20%
* no pressure equilibrium!

Dieter Breitschwerdt - Worﬁsﬁcy on “‘Magnen’c Fields on scales ﬁom @oc to km” - Cracow, 18.5.2010
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HD-Evolution of ISM 11

Results Avillez & Breitschwerdt, 2010
X

* Collective effect of SNe induces
break-out of ISM disk gas => “gal- HD Run fx = .3 pe; 0/T5 = 1 0000 Myr
actic fountain” (cf. intermediate vel-
ocity clouds) = reduce disk pressure Y

]

1000

* Density and temperature distribu-
tion shows structures on all scales
(cf. observation of filaments)

8C0

* shear flow due to expanding SNRs
generate high level of turbulence
coupling of scales

* Cloud formation by shock compres-
sed layers = clouds are transient
features => generation of new stars

00

Y (pc}

480

200

* large amount of gas in thermally
unstable phases

* volume filling factor of HIM ~ 20%
* no pressure equilibrium!

X |lpc
Dieter Breitschwerdt - Worﬁsﬁcyo on “‘Magnetic Fields on scales ﬁom @pc to km” - Cmco»\;,pls}, 5.2010
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Turbulence 1

* ISM is highly compressible and turbulent
medium (C.F. v. Weizsacker 1951)

* Reynolds number Re=u L/v ~10° - 107 high

# Term (uV)u is non-linearity in Navier-
Stokes (NS) equations

2
v(“2> _ (DT ok i =T T

write NS egs. as function of vorticity w:
%, B _
— =V X [u X J] + VAL

ot

and since
VXx[uxd=(W -V)u—(u-V)d we get
D& 04

L =24 (@ Vi= (@ V)i + vAG

Dt ~— ot > X

Change of Change of moment of Viscous torques spin up or
vorticity due to: inertia by stretching of slow down fluid element
fluid element (b)) (a) and change vorticity

1a)

(b)

Figure 28 Vorticity can change because:
(a) viscous forces spin up (or slow down) a
fluid element or (b) because the moment of
mertia of that element x changed

laminare Stromung

Stromungsrichtung =x=>
turbulente Stromung

A Divergence of stress
Y

(L)V 7 & ™~
. — + v-Vv )= ~Vp + uViv + f

‘onvective Pressure  Viscosity ther
Unsteady acceleration gradient : body
acceleration forces

Navier-Stokes Eq. for Newtonian fluids
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Turbulence 11

* Turbulence: 3D chaotic solution of Navier-Stokes eq.
- Stretching of fluid elements leads to increase of vorticity

-> “vortex tubes”

3D-Simulation of a laboratory jet in a non-reactive gas, Re ~21000; 2D-Projektion;

Credit: D. Glaze (Purdue University ); velocity field is marked by arrows
Dieter Breitschwerdt - Worﬁsﬁo]o on “‘Magneu’c Fields on scales from ﬁ}% to km” -
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Large Eddy Simulation of isotropic
turbulence in a periodic box;
shown are contours of vorticity

Direct Numerical Simulation of
isotropic turbulence (s.a.); Re ~1200
Credit: Davidson)

racow, 18.5.2010
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Turbulence 11 i3

* Turbulence: 3D chaotic solution of Navier-Stokes eq.
- Stretching of fluid elements leads to increase of vorticity
-> “vortex tubes”

Large Eddy Simulation of isotropic
turbulence in a periodic box;

shown are contours of vorticity

L 4

-
—_e e v ay o e ST

, , . s , = Direct Numerical Simulation of
3D-Simulation of a laboratory jet in a non-reactive gas, Re ~21000; 2D-Projektion; : .
isotropic turbulence (s.a.); Re ~1200

Credit: D. Glaze (Purdue University ); velocity field is marked by arrows : ;
Credit: Davidson)
Dieter Breitschwerdt - Worﬁsﬁcya on “‘Magnen’c Fields on scales ﬁom @pc to km” - Cracow, 18.5.2010
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MHD-Evolution of ISM (I}

Avillez & Breitschwerdt, 2005a




MHD-Evolution of 1ISM (I

e Avillez & Breitschwerdt, 2005a e

AMR Ax=1.25 pe, 0/c, =1, B, ;=3 ub

352,00 Myr
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MHD-Evolution of 1ISM (I

e Avillez & Breitschwerdt, 2005a e

AMR Ax=1.25 pe, 0/c, =1, B, ;=3 ub

352,00 Myr
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MHD-Evolution of 1ISM (I

e Avillez & Breitschwerdt, 2005a e

AMR Ax=1.25 pe, 0/c, =1, B, ;=3 ub

352,00 Myr
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MHD-Evolution of 1ISM (I

e Avillez & Breitschwerdt, 2005a e

AMR Ax=1.25 pe, 0/c, =1, B, ;=3 ub

352,00 Myr
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MHD-Evolution of ISM (11

221.90 Myr

221.90 Myr

10

Avillez & Breitschwerdt, 2005 ”

B-field // to disk cannot prevent outflow into ,
halo; Halo density is inhomogeneous (Fountain)

400 Myr
10-10 E LELBLILLL T TTTIT LILLLLL T TTTIT
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T [K] %
1

Which pressure determines ISM dynamics?
e For T <200 K: magnetic pressure dominates,
e for 200 K < T < 10° K ram pressure dominates,

-10 -8

W™ e for T>10° K thermal pressure dominates -:' e
| R T

s st Dieter Breitschwerdt - Worﬁsﬁcyo on “‘Magnetic Fields on scales from @oc to km” - Cracow, 18.5.2010 ~
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Plasma Models: CIE vs. NEI

* optically thin hot plasmas: continuum + CIE NEI
line spectrum ( neT. ) @bundanceg Qs‘t’ggﬂgg ot ct)réleeD |

* collisional ionization equilibrium (CIE):

10nization by collisions (3_b0dy process) 1S ionization equilibrium ionization evolution
balanced by radiative recombination = no - n (A™) - A (A™)
detailed balancing, because atomic time l

scales are different

* plasma is driven out of CIE = non-equili-
bium ionization (NEI) structure

radiative emission

bremsstrahlung
recombination rad.
2-photon emission

lines

# particularly striking etfect: fast adiabatic
cooling like in a galactic fountain or wind (" spectrum )
(Breitschwerdt & Schmutzler, 1994) Bohringer 1998

cooling rate

Top: CIE vs. NEI plasma emission codes; in CIE, plasma
emission can be calculated (in coronal approx., i.e. n.< 104
cm3) once and for all if ne, Te and Z are given; in NEI Z +
astrophysical model for dynamical evolution is required!
Left: Animation of collisional ionization by electrons

radiative recombination collisional ionization
Dieter Breitschwerdt - Worﬁsﬁcyo on “‘Magneuc Fields on scales from E}?c to km” - Cracow, 18.5.2010
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Plasma Models: CIE vs. NEI

* optically thin hot plasmas: continuum + CIE NEI
line spectrum ( neT. ) @bundanceg Qs‘t’ggﬂgg ot SZZD |

* collisional ionization equilibrium (CIE):

10nization by collisions (3_b0dy process) 1S ionization equilibrium ionization evolution
balanced by radiative recombination = no - n (A™) - A (A™)
detailed balancing, because atomic time l

scales are different

* plasma is driven out of CIE = non-equili-
bium ionization (NEI) structure

radiative emission

bremsstrahlung
recombination rad.
2-photon emission

lines

# particularly striking etfect: fast adiabatic

cooling like in a galactic fountain or wind (Spectrum ) cooling rate )
(Breitschwerdt & Schmutzler, 1994) Béhringer 1998
Top: CIE vs. NEI plasma emission codes; in CIE, plasma
© emission can be calculated (in coronal approx., i.e. n.< 104
[ ' cm3) once and for all if ne, T, and Z are given; in NEI Z +
‘ P astrophysical model for dynamical evolution is required!

Left: Animation of collisional ionization by electrons

radiative recombination collisional ionization
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Plasma Models: CIE vs. NEI

* optically thin hot plasmas: continuum + CIE NEI
line spectrum ( neT. ) @bundanceg Qs‘t’ggﬂgg ot ct)réleeD |

* collisional ionization equilibrium (CIE):

10nization by collisions (3_b0dy process) 1S ionization equilibrium ionization evolution
balanced by radiative recombination = no - n (A™) - A (A™)
detailed balancing, because atomic time l

scales are different

* plasma is driven out of CIE = non-equili-
bium ionization (NEI) structure

radiative emission

bremsstrahlung
recombination rad.
2-photon emission

lines

# particularly striking etfect: fast adiabatic

cooling like in a galactic fountain or wind ("spectrum ) cooling rate
(Breitschwerdt & Schmutzler, 1994) Béhringer 1998
Top: CIE vs. NEI plasma emission codes; in CIE, plasma
- emission can be calculated (in coronal approx., i.e. n.< 104
. cm3) once and for all if ne, Te and Z are given; in NEI Z +
- @ | G ic
‘ P v P astrophysical model for dynamical evolution is required!

Left: Animation of collisional ionization by electrons

radiative recombination collisional ionization
Dieter Breitschwerdt - Worﬁsﬁcyo on “‘Magneuc Fields on scales from E}?c to km” - Cracow, 18.5.2010
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Example: 1onization structure of

oxygen in ClE and NEI

CIE

ion fraction

[ Breitschwerdt & Schmuizler £999

106

Biihringer 1998 temperature

(K) 4.0 4.5 5.0 5.5 6.0 6.5
log(T/[K])

* CIE: ionization fraction x of O depend only on temperature T (for given Z)
-> sharply peaked = convenient diagnostic tool for determining T

* NEI: x depends on dynamical and thermal history of plasma = more
difficult to fit spectrum, but: evolution of plasma can be inferred!

Dieter Breitschwerdt - Worﬁsﬁcyo on “‘Magneu’c Fields on scales from @pc to km” - Cracow, 18.5.2010
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Modeling galactic halos
with outflow (I}

<

model edge-on (starburst) galaxies: e.g.
NGC 253, NGC 3079

underlying galactic wind model: steady-
state outflow driven by thermal gas, CR

and wave pressures (cf. Breitschwerdt et
al. 1991)

dynamically and thermally self-
consistent modelling:

Outflow changes g and T
this modifies ionization structure
which in turn modifies cooling
function A(p,T)
which changes outflow

flow is described in a flux tube given by:

A(2) = 4o [1 = (;)2]

Dieter Breitschwerdt - Worﬁsﬁcyo on “‘Magneu’c Fields on scales from E}?c to km” - Cracow, 18.5.2010

Mass-loaded wind flow!!!

Outflow (galactic fountain, wind, ...)

P d B zZ
’ 0
//W r
star formation, SNe, SWs ...

Breitschwerdt et al. 1991
Edge-on Galaxy

Top: steady-state galactic wind model, in which gas, CRs
and waves drive an outflow with a smooth subsonic-super-
sonic transition

Wednesday, June 9, 2010



Modeling galactic halos

with outflow (I}

* model edge-on (starburst) galaxies: e.g.
NGC 253, NGC 3079

* underlying galactic wind model: steady-
state outflow driven by thermal gas, CR

and wave pressures (cf. Breitschwerdt et
al. 1991)

* dynamically and thermally self-
consistent modelling:

a» Outflow changesgand T
p this modifies ionization structure
*  which in turn modifies cooling
function A(p,T)
which changes outflow
* flow is described in a flux tube given by:

A(2) = 4o [1 = (;)2]

Dieter Breitschwerdt - Worﬁsﬁcyo on “‘Magneu’c Fields on scales ﬁom @pc to km” - Cracow, 18.5.2010

Mass-loaded wind flow!!!

Outflow (galactic fountain, wind, ...)

.

x> : = e
Breitschwerdt et al.1991
Edge-on Galaxy

Top: steady-state galactic wind model, in which gas, CRs
and waves drive an outflow with a smooth subsonic-super-
sonic transition
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Modeling galactic halos
with outflow (11}

Procedure:

* Generating an outflow model and follow time-
dependent evolution of ions (NEI)
* Binning of high-resolution unabsorbed synthetic

(model) spectrum into e.g. EPIC pn channels (for
XMM-Newton)

* Folding spectrum through detector response matrix

== Treating observed and synthetic spectrum equally!

* Fitting synthetic spectrum in XSPEC (X-ray spectral
fitting routine) to observational data

* Comparing with observed spectrum and iterate
outflow model if necessary until convergence

Dieter Breitschwerdt - Worﬁsﬁcyo on “‘Magneu’c Fields on scales from E}?c to km” - Cracow, 18.5.2010
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Modeling galactic halos
with outtlow (I11): NCG 253

Dieter Breitschwerdt - Worﬁsﬁo]o on “‘Magneu’c Fields on scales from ﬁ}% to km” - Cracow, 18.5.2010




Modeling galactic halos
with outflow (111): NCG 253

The barred spiral starburst galaxy NGC 253

Dieter Breitschwerdt - Worﬁsﬁcya on “‘Magnen’c Fields on scales ﬁom @pc to km” - Cracow, 18.5.2010
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Modeling galactic halos
with outflow (111): NCG 253

The barred spiral starburst galaxy NGC 253

Bauer et al. 2008 __sarcmin__

Dieter Breitschwerdt - Worﬁsﬁcya on “‘Magnen’c Fields on scales ﬁom @pc to km” - Cracow, 18.5.2010
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Modeling galactic halos
with outtlow (I11): NCG 253

The barred spiral starburst galaxy NGC 253

¢ 2MASS mosaic of NGC253
e Shows also extranuclear SB

Dieter Breitschwerdt - Worﬁsﬁcya on “‘Magnen’c Fields on scales ﬁom @pc to km” - Cracow, 18.5.2010
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Modeling galactic halos
with outtlow (I11): NCG 253

The barred spiral starburst galaxy NGC 253

o 2MASS mosaic of NGC253 e XMM EPIC pn: Soft X-ray halo
® Shows also extranuclear SB  of NGC253 (0.2 — 0.5 keV)

Dieter Breitschwerdt - Worﬁsﬁcya on “‘Magnen’c Fields on scales ﬁom @pc to km” - Cracow, 18.5.2010
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Modeling galactic halos
with outflow (IV): NCG 253

NEI Model (Breitschwerdt & Freyberg 2003)
& NEI Spectrum mimics a ”multitemperatu_ NGC 253 (M1) Integrated spectrum N(H)=1.2 10%° cm™2

re” halo by its characteristic lines, but is ~f :
physically radically different from it 8 ¢ Fe' ¢ O
S| Si” a ]
* Reason: Sum of CIE spectra cannot e Nl e
o (me ° ol &+ T
represent the specific thermodynamic path FE | Ne
of a true NEI spectrum >k
“ N I
o
- 0.1 0.2 0.9 1 2

(Energy/[keV])

Top: Integrated spectrum of a dynamically and thermally
self-consistent NEI simulation; the spectrum is a
composite of continuum and lines, which are characteristic
for the plasma history => spectrum will be folded through

detector response
Dieter Breitschwerdt - Worﬁsﬁo]o on “‘Magneu’c Fields on scales ﬁom ﬁ}% to km” - Cracow, 18.5.2010
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Modeling galactic halos
with outflow (V): NCG 5079

[ NGC 3079 colour image

#* NGC 3079: starbust LINER SBc galaxy T . A
Distance ~ 17 Mpc, Inclination ~ 85°

* Low foreground absorption Log(N(H))=
19.9 = important for recording soft X-ray

photons since photoelectric absorption ~
E-3

L9 Z0keV Breitschwerdt etial. 2003
L1

Top: NGC 3079, XMM-Newton image (EPIC pn camera);
the optical disk is indicated by the Dys ellipse; the exposure
was 25 ksec.

Dieter Breitschwerdt - Worﬁsﬁcya on “‘Magnen’c Fields on scales ﬁom @pc to km” - Cracow, 18.5.2010
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Modeling galactic halos with
outflow (V1): NCG 5079

{0—2.0keV &

Credit to
@ | A. Vogler
SO
e large extended soft halo emission e morphology: soft X-ray spurs
8 02<FE<1.0keV ® hard emission largely confined to disk

Dieter Breitschwerdt - Worﬁsﬁoy on “‘Magneu’c Fields on scales from E}?c to km” - Cracow, 18.5.2010
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Modeling galactic halos with
outflow (VII): NCG 5079

Model no[cm>] To[10°K] Bo[uG] uo[km/s]

M1 3107 3.0 2.0 200.3
M2 3107 5.0 5.0 S50
M3 SRl 4.0 5.0 260.4
M4 42103 3.7 5.0 234.1
M35 51073 3.6 5.0 220.0

¢ changing inner boundary conditions,
where wind is emanating

Dieter Breitschwerdt - Wor@sﬁojo on “‘Magneu’c Fields on scales from ﬁ}?c to km” - Cracow, 18.5.2010
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Modeling galactic halos with
outflow (VII): NCG 5079

data and folded model
evp_16ks_spurl_x1_s_g50.pha evp_16ks_spurl_x1_d_g50.pha
T | T T T T T |

= M2 i
$5h4 i
% _
- 2 I e ~\>‘\> ]
o I . |
e _
— | |

| T

LS B
—

i
iy
-+

{
.
i
%

T

channel energy (keV)

e bad fit in the 0.5 - 0.8 keV region
e too much emission in the 0.8 - 1 keV region = T too high

Dieter Breitschwerdt - Wor@sﬁojo on “‘Magneu’c Fields on scales from ﬁ}?c to km” - Cracow, 18.5.2010
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Modeling galactic halos with
outflow (VII): NCG 5079

data and folded model

evp_16ks_spurl_x1_s_g50.pha evp_16ks_spurl_x1_d_g50.pha
T T T T T T T |
} M3
0] — L -
o | T
O
O
n
T
n
=
8 P
O
s SE—y 7 | E i
o |
% T Ll ] _’_,_ ‘ .
5 T ]
: - i
—:‘:l—l I |
| I e e
o : : : : : ' : — -
To) + ]
CD_ - -
o ot —
ST Lt ;
- Y IS ‘ _____ F—T’T—Jr—%‘—— _t_ébi____i&i__'i_}_:{____}_:b_—;
e i | | JF ]

-+

—~ 05

05 1
channel energy (keV)

Dieter Breitschwerdt - Wor@sﬁojo on “‘Magneu’c Fields on scales from ﬁ}?c to km” - Cracow, 18.5.2010
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Modeling galactic halos with
outflow (VII): NCG 5079

data and folded model
evp_16ks_spurl_x1_s_g50.pha evp_16ks_spurl_x1_d_g50.pha
T T T T T T T |

- M4
<o -
5
)
S - JT aa

E T4 1

—:‘:71“

Il L 1 | || |‘__| T T 11
' ' ' |

0.05 0

—0.05 ©

e better fit: T still slightly too high
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Modeling galactic halos with

outflow (VII: NCG 3079

< beSt ﬁt mOdEI: data and folded model ,,Spur 1“
4 i : . . evp_16ksl_spur1_><W_s_lg100.pholevp_16kls_spurl1_x1_$i_g1(?O.phlo
* galactl.c W1.nd w1’Fh gravitational ¢ Breitschwerdt et al. 2003
potential (including dark matter halo) 3 ° Data
* np=5103cm3, To=3.6 106 K, By = HE N
5uG, up =220 km/s E R e |
+ foreground absorption: N(H) =3.9 1020, ¢ BN
cm2 R
+ goodness of fit: X2req = 1.2 - Model .
+ derived mass loss rate: ° T —
* dm/dt= 0o uo = 0.055 Mso1/ yr/kpc? g S + Fit Residuals
+ mass loss rate in “spur” region (R = S I ﬁ _____ F __ JTJT _____ |L[ __________ —
8kpc): dM/dt =m/2 R? oo ug = 3.5 Msol/ sl T
yr | Obchonnel energy (keV) |

Top: Comparison between data and dynamically and thermally self-
consistent galactic wind model => 5 iterations were necessary to achieve

an acceptable fit
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Modeling galactic halos
with outflow (V): NCG 5079

* NGC 3079: smooth subsonic-supersonic Outtlow, Sound, Altven & Escape Yelociy
transition = critical point (M=1) in the | T g -
flow at z ~ 5 kpc from the disk

* superbubble gas injected at the inner boun-
dary (zo = 1 kpc) with initial velocity uo =
220 km /s (subsonic, but super-alfvenic)

* terminal velocity ~ 450 km/s

400

300

u(z), c.(z2), v(z2), (—200)1/2 in [km/s]

100
1
|

_‘v ‘ A L A ‘ o I ‘ A A ‘ L = ~,‘_\;‘ ‘ A—_
1 10 100 Z [kpC]

Distance Z from Disk in [kpc]

Top: Derived outflow characteristics for the best fit model
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Modeling galactic halos
with outflow (V): NCG 5079

* Cooling Function: Cooling curve depends
on the ionization state of the plasma

Cooling functions (Equil. RS vs. NEI 1st it.) NGC3079 (M5)

=
N
I
O [rrrr 7
—

* in case of a fast adiabatically expanding
flow the difference between CIE and NEI
cooling curves is striking

* whereas the CIE cooling curve peaks at ~
10° K, the NEI curve in this particular

model has a maximum ~ 10° K, where
OVII, OVIII lines are abundant due to
delayed recombination

1A=22
10

Ain [erg em® s7]

1 0—23

NEI

<
o~
|

' Breitschwerdt et al. 2003

2107 108 105 10* 1000

T in [K]

Top: Comparison between cooling curve for CIE and for a
dynamical NEI model for the starburst galaxy NGC 3079
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Cosmic Ray driven Wind in the
Milky Way?

350

P g 350 [ T T T T T T T T T T T T T T
Best—Fit Wind Model + Backgrounds T
EETEE —Fi i [ Best—Fit Wind Model + Backgrounds ]
300F o Eﬁgﬁ,d‘;},ﬂ 2§°f,'|° (\1tg1907553 hDeJteo + Backgroungds i [ omsemieve Best—Fit Static Atmosphere -?- Background ]
[ ----- Best—Fit Wind Model i 300 ¢  Snowden et al. (1997) Data ]
[ — ——- Stellar Background i L SFSEE gfsﬁ_ﬁé W;:‘d Mogel
250 F LT = Extrogaloclic Buekgiourd = oy — Ex(tar&;oIooccticgrgcl:jgkground
[ e Isotropic Background 151 - Isotropic Background

£ 200f £ spak

s ) : )

'E’? 150 “'23 150

5 100E S 100; - ) '

é - E é < :________.._______,,.'__. """""""""""" z’/‘}

= OE = — o) 0 -——L— v e e g TF"A:‘:I—T—.‘-:..:T ".-”_”\\.'\.K

o x

-80 —-60 —40 -20 0 -80 —60 —-40 -20 0
Galactic Latitude [degrees] Galactic Latitude [degrees]

Top: ROSAT PSPC observations (Snowden et al. Top: ROSAT PSPC observations (Snowden et al.
1997); shown is ROSAT R4 band (0.64 keV) 1997); shown is ROSAT Rb5 band (0.85 keV)

To fit ROSAT PSPC data in a given region of the MW sky, Everett et al. (2008) show that

a CR driven wind gives a statistically much better fit than a hydrostatic halo (especially
for ROSAT R5 band)

for lower halo here CIE is a good approximation, since deviation from NEI still small
fiducial wind model for Milky Way: ng = 6.9 10-3 cm-3, To = 2.9 10° K, uo = 173 km/s
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CR electron transport in

galactic halos (I): NCG 4651

HGC 4631

32050'30“

* Non-thermal radio emission of NGC 4631:
significant linear polarization for z < 5 kpc

* noticeable B-field component perpendi-

cular to galactic disk

* Modelling: solve diffusion-advection
transport equation for electrons incl.
synchrotron and inverse Compton losses

* radio spectral index variation is a measure

0" [

DECLINATION

of dominant transport process: flat curve is 1,: radio map

indicative of accelerating advection flow,
compensating for increasing losses with

time => galactic wind

superimposed
with polarization
vectors on
optical image
Right: self-
consistent spec-
tral index varia-
tion in galactic
wind model

8L6 GH? [P+B- FIH 0

1

| I | | 1 T
Spectral [ndex Distribution aleng
—_— mner axis 7
P =3 4ol nggql_ ;T T, =2x10°K
P, =0.5e¢V/em’ B =5 .
i \:\
- ‘l'\‘ \.-"\\ . i
o R
Movgis fur NMEU 4EJ Y i
- M4 Ny
———M5 ' Ny
- ——N3 . ' T
—_———N7 4 N
- e lumiewl (29¢1) ' \1 -
[ Breitschwerdt, 1997 “*{q
| | | | |
2 3 L 5 (S 7 8 9

Distanca z Irom Disk in [kpe]
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CR electron transport in

galactic halos (11): NCG 253

NGC 253 Heesen et al. (2007)
* Non-thermal radio emission of NGC 253:
# (R electron transport equation
R
0 ON (E, z) ~§
- 5 <D(E, Z) 5, u(z)N(E,z)) "
0 (1du dE
-~ 35 (gEEN(E, z) — EN(EJJ)) = Q(E,z)
Q(E, Z) — KoE_fyOhg(S(Z>

minor axis offset [kpc]

* spectral index close to sources up to
vertical distances from disk of z ~ 1-2 kpc Advection il Diffusion-Advection

dominated by diffusion Top: Comparison between the model (including a galactic

* for z > 1-2 kpc transport dominated by wind) and observations (blue dots with error bars) of the
advection starburst galaxy NGC 253; data from Heesen et al.

* transport mechanism varies locally in In collaboration with:
agreement with local superbubble break- R. Beck, R.-J. Dettmar,

out from galactic disk M. Krause, V. Heesen
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CR electron transport in

galactic halos (11): NCG 253

NGC 253 Heesen et al. (2007)
* Non-thermal radio emission of NGC 253: osp T
# (R electron transport equation I
. "y R
-1.0F ’ ’4:
G ON(E, ) | <
- g (pEa™ES cwenen) L -
0 (1du dE | 3
- 3E (gEEN(E, Z) — EN(E,ZO = Q(F,z2) 20
Q(E,z) = KoE hgd(z) ..

; minor axis offset [kpc]
* spectral index close to sources up to

vertical distances from disk of z ~ 1-2 kpc Advection Diffusion Diffusion-Advection

dominated by diffusion Top: Comparison between the model (including a galactic

* for z > 1-2 kpc transport dominated by wind) and observations (blue dots with error bars) of the
advection starburst galaxy NGC 253; data from Heesen et al.

* transport mechanism varies locally in In collaboration with:
agreement with local superbubble break- R. Beck, R.-J. Dettmar,

out from galactic disk M. Krause, V. Heesen
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CR electron transport in

galactic halos (11): NCG 253

NGC 253 Heesen et al. (2007)
* Non-thermal radio emission of NGC 253: o
-0.8}
# (R electron transport equation |
1o} Q
0 ON(E, z) 12 g
- = <D(E, z) 5, u(z)N(E,z)) ] »
0 (1du dFE '.
~ o (FEENED - GNES) = Qe
Q(E,z) = KoE hy6(2) “r-z2sss

. minor axis offset |kpc|
* spectral index close to sources up to

vertical distances from disk of z ~ 1-2 kpc Advection Diffusion Diffusion-Advection

dominated by diffusion Top: Comparison between the model (including a galactic

* for z > 1-2 kpc transport dominated by wind) and observations (blue dots with error bars) of the
advection starburst galaxy NGC 253; data from Heesen et al.

* transport mechanism varies locally in In collaboration with:
agreement with local superbubble break- R. Beck, R.-J. Dettmar,

out from galactic disk M. Krause, V. Heesen
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CR electron transport in

galactic halos (11): NCG 253

NGC 2 53 Heesen et al. (2007)
* Non-thermal radio emission of NGC 253: :iﬁifﬁfﬂi{tﬁ{ﬁ{m;;
# (R electron transport equation 03 —'ﬁwh{g}}}}}lullll 2
i lll111 [ -
1o} lllll”hﬁ z
5 ON(E, ) | Imﬁﬂ”mm =
— — | D(E,=2) —u(2)N(E, z) [ m“ hm »
z 2 L e
0 (1du dE : ”W
- o (§@EN(E’ z) — EN(E,ZO = Q(F, 2) N mmﬂm
QE,z) = KoE "hyi(2) P DO

. minor axis offset |kpc|
* spectral index close to sources up to

vertical distances from disk of z ~ 1-2 kpc Advection Diffusion Diffusion-Advection

dominated by diffusion Top: Comparison between the model (including a galactic

* for z > 1-2 kpc transport dominated by wind) and observations (blue dots with error bars) of the
advection starburst galaxy NGC 253; data from Heesen et al.

* transport mechanism varies locally in In collaboration with:
agreement with local superbubble break- R. Beck, R.-J. Dettmar,

out from galactic disk M. Krause, V. Heesen
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CR electron transport in

galactic halos (11): NCG 253

NGC 253 Heesen et al. (2007)
* Non-thermal radio emission of NGC 253: L
# (R electron transport equation 105
-L0y Q
9 ON(E, ) 2 -
) & I =
- = <D(E, z) o = u(z)N(E,z)) _1‘4; "
0 1 du dFE _16f
- (§EEN(E’ z) — EN(E,z)) = Q(F, 2) B
Q(B,2) = KoE hed() 2635

: -
. minor axis offset |kpc|
* spectral index close to sources up to

vertical distances from disk of z ~ 1-2 kpc Advection Diffusion Diffusion-Advection

dominated by diffusion Top: Comparison between the model (including a galactic

* for z > 1-2 kpc transport dominated by wind) and observations (blue dots with error bars) of the
advection starburst galaxy NGC 253; data from Heesen et al.

* transport mechanism varies locally in In collaboration with:
agreement with local superbubble break- R. Beck, R.-J. Dettmar,

out from galactic disk M. Krause, V. Heesen
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CR electron transport in

galactic halos (11): NCG 253

NGC 253 Heesen et al. (2007)
* Non-thermal radio emission of NGC 253: -
# (R electron transport equation
R
=
% ON(E S
- = <D(E, 2) éz ) _ u(2)N(E, z)) -
0 (1du dE =
— — | =—EN(E,z) — —N(£& = Q(E
o5 (3 ENE) - TINES) = Q(E.2)
Q(E,z) = KoE hy6(2)
. minor axis offset |kpc|
* spectral index close to sources up to
vertical distances from disk of z ~ 1-2 kpc Advection Diffusion Diffusion-Advection
dominated by diffusion Top: Comparison between the model (including a galactic
* for z > 1-2 kpc transport dominated by wind) and observations (blue dots with error bars) of the
advection starburst galaxy NGC 253; data from Heesen et al.
+ transport mechanism varies locally in In collaboration with:
agreement with local superbubble break- R. Beck, R.-J. Dettmar,
out from galactic disk M. Krause, V. Heesen
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CR electron transport in

galactic halos (11): NCG 253

16 NGC 253 Heesen et al. (2007)
* Non-thermal radio emission of NGC 253: T,
* CR electron transport equation _U'Sf e
-10¢ &
( ) —1.2:: :;
0 ON(E, z ; £
- 5 <D(E, Z) 5, u(z)N(E,z)) —1.4;- "
0 (1du dE - =
Q(E,z) = KoE °hgd(z) optdwsd 0V

. minor axis offset |kpc|
* spectral index close to sources up to

vertical distances from disk of z ~ 1-2 kpc Advection Diffusion Diffusion-Advection
dominated by diffusion

Top: Comparison between the model (including a galactic

* for z > 1-2 kpc transport dominated by wind) and observations (blue dots with error bars) of the
advection starburst galaxy NGC 253; data from Heesen et al.

* transport mechanism varies locally in In collaboration with:
agreement with local superbubble break- R. Beck, R.-J. Dettmar,

out from galactic disk M. Krause, V. Heesen
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CR electron transport in

galactic halos (11): NCG 253

NGC 253 Heesen et al. (2007)
* Non-thermal radio emission of NGC 253: sk
# (R electron transport equation o
I Q
-12f ’:':
(9 3N(E, Z) 1.4 - .:
- = <D(E, z) e u(z)N(E,Z)) M v
0 (1du dE E e
- o5 (GEENED - TNES) = QB |
-2.0
Q(E,z) = KoE hy6(2)

. minor axis offset |kpc|
* spectral index close to sources up to

vertical distances from disk of z ~ 1-2 kpc Advection Diffusion Diffusion-Advection

dominated by diffusion Top: Comparison between the model (including a galactic

* for z > 1-2 kpc transport dominated by wind) and observations (blue dots with error bars) of the
advection starburst galaxy NGC 253; data from Heesen et al.

* transport mechanism varies locally in In collaboration with:
agreement with local superbubble break- R. Beck, R.-J. Dettmar,

out from galactic disk M. Krause, V. Heesen
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CR electron transport in

galactic halos (11): NCG 253

NGC 253 Heesen et al. (2007)

-06F

* Non-thermal radio emission of NGC 253:
# (R electron transport equation

—0sk

-1of 2
-12f :;
9 ON(FE,z) : £
- <D(E, 7) T u(z)N(E,z)) “ :;
0 (1du dE “Lor —
- 7E (§EEN(E z) — EN(E )) = Q(F,2) —1.8::
Q(E,z) = KyF _’yohg(S(z) “20f 1

. minor axis offset |kpc|
* spectral index close to sources up to

vertical distances from disk of z ~ 1-2 kpc Advection Diffusion Diffusion-Advection
dominated by diffusion

Top: Comparison between the model (including a galactic

* for z > 1-2 kpc transport dominated by wind) and observations (blue dots with error bars) of the
advection starburst galaxy NGC 253; data from Heesen et al.

* transport mechanism varies locally in In collaboration with:
agreement with local superbubble break- R. Beck, R.-J. Dettmar,

out from galactic disk M. Krause, V. Heesen
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CR electron transport in

galactic halos (11): NCG 253

NGC 253 Heesen et al. (2007)
* Non-thermal radio emission of NGC 253: b
# (R electron transport equation ol
[ o)
12} :i
9 ON(E, 2) Ll S
~ — (DE — u(2)N(E | =
o (00 ™2 —un e, =
0 (1ldu dE i
- = (§EEN(E’ z) — EN(E,z)) = Q(F, 2) —1.8::
Q(E,2) = KoE h,6(2) “fze628

: N ———
. minor axis offset |kpc|
* spectral index close to sources up to

vertical distances from disk of z ~ 1-2 kpc Advection Diffusion Diffusion-Advection

dominated by diffusion Top: Comparison between the model (including a galactic

* for z > 1-2 kpc transport dominated by wind) and observations (blue dots with error bars) of the
advection starburst galaxy NGC 253; data from Heesen et al.

* transport mechanism varies locally in In collaboration with:
agreement with local superbubble break- R. Beck, R.-J. Dettmar,

out from galactic disk M. Krause, V. Heesen
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CR electron transport in

galactic halos (11): NCG 253

NGC 253 Heesen et al. (2007)

* Non-thermal radio emission of NGC 253: L
* CR electron transport equation f BN
-1 I EIHIII P\
-1.2 _ IIHH} z
9, ON(E, z) o z
- = <D(E, z) 5, u(z)N(E,z)) 1] »
0 (1du dE B el
- o5 (GEENEY - TN ES) = QEs) |
QE,z) = KoE h,o(z) leesss o B

. minor axis offset |kpc|
* spectral index close to sources up to

vertical distances from disk of z ~ 1-2 kpc Advection Diffusion Diffusion-Advection

dominated by diffusion Top: Comparison between the model (including a galactic

* for z > 1-2 kpc transport dominated by wind) and observations (blue dots with error bars) of the
advection starburst galaxy NGC 253; data from Heesen et al.

* transport mechanism varies locally in In collaboration with:
agreement with local superbubble break- R. Beck, R.-J. Dettmar,

out from galactic disk M. Krause, V. Heesen

Dieter Breitschwerdt - Worﬁsﬁcyo on “‘Magneu’c Fields on scales from @pc to km” - Cracow, 18.5.2010

Wednesday, June 9, 2010



CR electron transport in

galactic halos (11): NCG 253

NGC 253 Heesen et al. (2007)
* Non-thermal radio emission of NGC 253: e
# (R electron transport equation !
R
sl e
0 ON(E, 2) | P
- 5 <D(E, Z) 5, u(z)N (E, z)) "
0 (1du dE 20 =
-~ 35 (gEEN(E, z) — EN(E,ZO =Q(E,2) |
QE,z) = KoE "hyd(2) asgdes )

. minor axis offset |kpc|
* spectral index close to sources up to

vertical distances from disk of z ~ 1-2 kpc Advection Diffusion Diffusion-Advection

dominated by diffusion Top: Comparison between the model (including a galactic

* for z > 1-2 kpc transport dominated by wind) and observations (blue dots with error bars) of the

advection starburst galaxy NGC 253; data from Heesen et al.
* transport mechanism varies locally in In collaboration with:

agreement with local superbubble break- R. Beck, R.-J. Dettmar,

out from galactic disk M. Krause, V. Heesen
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CR electron transport in

galactic halos (11): NCG 253

NGC 253 Heesen et al. (2007)
* Non-thermal radio emission of NGC 253: P
# (R electron transport equation |
I . o)
—1of " ’_-l:
0 ON(F, z2) S
— — | DE — N(E =
3 (P wevE ) -
0 (1du dE
-~ 35 (gEEN(E, z) — EN(E,ZO = Q(E, 2) |
Q(E,z) = KoE "hyi(2) [ 03056

0 I
minor axis offset |kpc|

* spectral index close to sources up to
vertical distances from disk of z ~ 1-2 kpc Advection Diffusion Diffusion-Advection

dominated by diffusion Top: Comparison between the model (including a galactic

* for z > 1-2 kpc transport dominated by wind) and observations (blue dots with error bars) of the
advection starburst galaxy NGC 253; data from Heesen et al.

* transport mechanism varies locally in In collaboration with:
agreement with local superbubble break- R. Beck, R.-J. Dettmar,

out from galactic disk M. Krause, V. Heesen
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Radial Diffuse y-ray [
Gradient in the Galaxyj

* Diffuse y-ray gradient in the Milky Way: Cos-B, EG- |
RET measured shallow gradient of diffuse y-emission W |

EGRET Pha
T

O New pulsars found in a blind search
Q) Millisecond radio pulsars

se 1+2 E> 100 MeV

~
Y
Y
N

_Strong & Mattox, 1996

* for E > 100 MeV y-rays are mainly due to mp-decay, L ++HJ
which are due to interaction between CR protons and g | L'T ;
HI atoms = y-emission should follow CR source dis- N | i
tribution (SNRs and pulsars), which peaks at R ~ 4 kpc P,
* diffusion model can only marginally reproduce y-ray 0o s t‘, ” 0 2
& adient for huge CR halo 0.5 X varo W Breitschwerdt et al. 2002
* simple model: radially dependent diffusion-advection Chand |

boundary due to local
radial variations in star
formation

transition boundary z(r) [pc]

major axis offset [kpc]

Te 10 Ipromyositorg () —

00¢

[V

0.1 X QR)

150

50

.
200p »
N

100} /

Top: Fermi y-ray all-sky survey
Middle: diffuse y-ray gradient according to COS-B and

EGRET observations

Bottom: model (galactic wind) of diffuse y-ray emission
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CR acceleration be- -

yond the “Knee” (I

Time-dependent galactic wind
calculations (Dorfi & Breitschwerdt 2010)
confirm stationary wind solutions as time-
asymptotic flow

* for starburst galaxies we use time-depen-
dent boundary conditions, reflecting the
duration of a starburst = increase of CR &
gas pressures by a factor of 10 at z=zg

* double shock structure in the galactic wind
region => post-acceleration of galactic CRs
(1st order Fermi)

* particles are convected downstream of for-
ward shock, i.e. towards the galactic disk

* particle acceleration modifies shock = sub-
shock = shock strengthens as propagating
down a density gradient

* within a few 10°- 107 yr, particles can reach
energies up to 10°7 - 10'% e

—26 ' ' ' T i 1000 [

i b) ]
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600 [

'09 p [9 em=?]
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Dorfi & Breitschwerdt (2010)

time [105 years]
0 10 20 30 40 S0

R [kpe]

Top: density (a), velocity (b), gas (c ), CR and wave pressures (d)

for shocks in a galactic wind of the Milky Way for 3 107 <t<10° yr

Bottom: maximum momentum of particles post-accelerated in

galactic wind for forward (filled squares) and forward + reverse
shock (diamonds)
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R acceleration beyond the
“Knee” (11)

* galactic wind post-acceleration of CRs in
the halo, i.e. Halo CRs (HCRs) guarantee

A =2 [1 1 (2)2]

a smooth transition to the spectrum of .
Galactic Cosmic Rays (GCRs) Metric Tensor FinescfCesric o
+ How do we get spectral hardening at the FUE N (e
knee? For energy-dependent CR diffu- B i
e o |
sion ~ E-V¢, we need a spectral index for L 2 T e,
CR momentum of 2 (3.1-0.6) =5 ~g; = | 0 12 Ks 1 (A
* Solve Fokker-Planck Equation in Flux NONEE | %
Tube coordinates: e
of of o ( Of 2z  Of
o T = & (a—) tE 2" TN
+ 1 af <8u<z) + 2z u( Z)) L _ ol sl vl ot vl |y:26¢ ol %lﬂ
sPop \ To: T HZ 2

Y : : Top: Flux tube geometry for a galactic wind perpendicular
o< = .
assume self-similar V€10C1ty field: to the disk; shown is the area cross section; H is the

* w(z)=V(E) EdR/dt, E=z/R(t) opening distance of the flux tube from the disk
Bottom: observed CR differential energy spectrum
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R acceleration beyond the
“Knee” (111

* singular perturbation analysis: i ||
* use a power law ansatz: f ~ p R(t)?

Inde

* use e=x/(R dR/dt) as perturbation parameter T -
+ match “inner” to “outer” solution, e. g. [1‘.;. T .
expand f (5) o Z f i (5)62 Zwettler & Breitschwerdt (2010)
* we obtain a correction term to the CR power T —
law index a (for R — 0 pert. theory breaks down) |
+ g tends rapidly to a=5 for increasing R (or z) i

Inde

as required

* Conclusion: increased star formation in the
disk can cause shock waves to propagate into _ : 1
the halo and post-accelerate GCRs R {kpel

* HCRs can explain observed energies and the
steepening of the spectrum

Top: Power law index of CR particle momentum
spectrum in a galactic wind outflow (in flux tube
coordinates) modified by increasing star formation
Bottom: same, but for Milky Way parameters
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Summary & Concelusions

* ISM is a highly turbulent compressible medium = nonlinear dynamics
High resolution (parallel computers, AMR) simulations necessary

* Requirements: (i) box sufficiently large not to be dominated by boundary conditions,
(ii) time evolution long enough to wipe out memory of initial conditions, (iii) ensure
that results are resolution independent

* SN dominated ISM shows structures on all scales (turbulent coupling)
Turbulence fed by on-going star formation

* galactic fountain acts as pressure release valve, reducing pressure in the disk 2
volume filling factor of hot gas is reduced

* ISM is not in pressure equilibrium, flow is ram pressure dominated
interstellar clouds are shock compressed (transient) layers

* substantial amount of ISM in thermally unstable temp. range (e.g. 50% of HI mass)
enhanced star formation and superbubbles drive galactic winds

* winds can explain X-ray and radio halos = thermally & dynamically self-consistent
models => flattening of radio spectral index due to advection flow

* CR acceleration beyond the “knee” = wind shocks can explain energies & spectrum!
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Thank you for your attention!

© Original Artist
Reprod uction righits abtainable from
wwwy. CartoonStock.com
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“The only part of the Universe which isn’t

expanding is the budget for this place.”
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