### CTA 102 – year over year receiving you

#### Michael Zacharias,

M. Böttcher, J. Heil, F. Jankowsky, J.-P. Lenain, S. Wagner, A. Wierzcholska

Landessternwarte, Universität Heidelberg, Heidelberg, Germany Centre for Space Research, North-West University Potchefstroom, South Africa

> The Variable Multi-Messenger Sky Nov 09, 2022





#### Introduction



Figure 1:  $\gamma$ -ray, X-ray, and optical light curves of CTA 102 from 2009 to 2019 (logarithmic flux axis!) [Zacharias+19]

- CTA 102 is an FSRQ at z = 1.032
- One of the first observed guasars

 Underwent some dramatic changes in the first 10 years of Fermi operations

What caused these changes:

#### Introduction



Figure 1: γ-ray, X-ray, and optical light curves of CTA 102 from 2009 to 2019 (logarithmic flux axis!) [Zacharias+19]

- CTA 102 is an FSRQ at z = 1.032
- One of the first observed quasars

 Underwent some dramatic changes in the first 10 years of Fermi operations

#### What caused these changes?

#### Disclaimer

This talk is about models focusing on the long-term changes. Therefore, lots of papers about the flare are not covered:

- Li et al., 2018, ApJ
- Shukla et al., 2018, ApJL
- Gasparyan et al., 2018, ApJ
- Kaur & Baliyan, 2018, A&A
- Prince et al., 2018, ApJ
- Sahakyan, 2020, A&A
- Chavushyan et al., 2020, ApJ
- Sarkar et al., 2020, A&A
- Kim et al., 2022, MNRAS
- Geng et al., 2022, ApJS
- Sahakyan et al., 2022, MNRAS
- ...

## Ablation of a gas cloud



Figure 2: Cloud ablation process [Heil&Zacharias20]

- (1) Cloud approaches the jet
- (2) Cloud material is gradually ablated
- (3) Cloud material is incorporated in the jet flow leading to a specific density structure
- (4) Particles are accelerated at a shock and radiate

### Ablation of a gas cloud



Figure 3: Leptonic model of the main flare reproducing  $\gamma$ -ray, X-ray, and optical light curves [Zacharias+17]

- Model reproduces well the months-long evolution of the main flare
- Cloud parameters:

Radius: 1.3 × 10<sup>15</sup> cm

• Mass:  $> 3.9 \times 10^{30} \text{ g}$ 

Temperature: > 0.5 K

- Values are lower limits due to the messy nature of the ablation process
- Nature of the cloud remains open

## Ablation of a gas cloud



Figure 3: Leptonic model of the main flare reproducing  $\gamma$ -ray, X-ray, and optical light curves [Zacharias+17]

- Model reproduces well the months-long evolution of the main flare
- Cloud parameters:

Radius: 1.3 × 10<sup>15</sup> cm

• Mass:  $> 3.9 \times 10^{30} \text{ g}$ 

Temperature: > 0.5 K

- Values are lower limits due to the messy nature of the ablation process
- Nature of the cloud remains open

## Twisting inhomogeneous jet



Figure 4: Viewing angles to emitting regions in a twisted jet [Raiteri+17]

- Due to cooling, expansion, etc., the main contribution of the various energy bands may originate at different locations in the jet
- Twists and turns of jets will move various regions of the jet towards the line-of-sight
- Varying Doppler factor enhances the variability

# Twisting inhomogeneous jet



Figure 5:  $\gamma$ -ray, optical, and radio light curves; model Doppler factor, and viewing angle (d'Ammando+19)

- Flux variation only through wobbling of the jet
- $\gamma$ -ray and optical light curves co-spatial (same Doppler factor and angle)
- $\bullet$   $\gamma$ -ray and optical Doppler factor within reasonable range
- Radio region is downstream with much less variations
- Cause of wobbling remains open

# Twisting inhomogeneous jet



Figure 5:  $\gamma$ -ray, optical, and radio light curves; model Doppler factor, and viewing angle (d'Ammando+19)

- Flux variation only through wobbling of the jet
- $\gamma$ -ray and optical light curves co-spatial (same Doppler factor and angle)
- $\bullet$   $\gamma$ -ray and optical Doppler factor within reasonable range
- Radio region is downstream with much less variations
- Cause of wobbling remains open

#### The radio knot



Figure 6: Distance versus time for various radio components; vertical lines mark the giant flare [Casadio+19]

- The radio knot K1 passed through a stading radio feature (C1) around the time of the flare
- K1 has  $\beta_{\rm app} \sim$  11c, Doppler factor  $\sim$  34, and viewing angle  $\theta \sim$  0.9°

## So, what happened?



Let's speculate...

- A cloud approached the jet
- The intrusion injected some material into the jet and pushed the jet to the side
- The overdensity created the radio knot
- Its interaction with C1 and the wobbling of the jet caused the long-lasting flare

#### Read all about it

#### All details are given in

- Zacharias et al., 2017, ApJ
- Raiteri et al., 2017, Nature
- Casadio et al., 2019, A&A
- Zacharias et al., 2019, ApJ
- D'Ammando et al., 2019, MNRAS
- Heil & Zacharias, 2020, A&A



### Thank you for your attention!