An overview about masers in high-mass star-forming regions, a need for high quality counterpart data

Anna Bartkiewicz, Jochen Eislöffel, Bringfried Stecklum, Verena Wolf, Marian Szymczak, Paweł Wolak, Michał Durjasz, Agnieszka Kobak

Email: annan@astro.umk.pl

Masers are amazing!

Cosmic masers

- → Masers appear naturally in the space.
- \rightarrow Maser emission from OH, H₂O, CH₃OH, SiO appears in regions close to **newly born high-mass** and **low-mass stars**, and **evolved stars**.
- → The 6.668518 GHz (in short 6.7 GHz or 4.5 cm) methanol maser transition is exclusively related to High-Mass Young Stellar Objects (HMYSOs).

Toruń spectral line observations

• Since more than 20 years we have been observing HMYSOs at the 6.7 GHz methanol maser transition.

Szymczak et al. (2000,2002,2018) (blind survey of the 6.7 GHz methanol masers line)

7 Nov 2022

Using radio interferometers we image the masing clouds

E.g. **6.7 GHz methanol maser** observations: 90 m/s resolution and beamsize ca. 6 mas x 8 mas.

Masers are compact and bright – good tracers of gas kinematics.

Bartkiewicz et al. 2020

7 Nov 2022

Thüringer Landessternwarte Tautenburg

Methanol masers at 6.7 GHz are radiatively excited which is the underlying cause for the radio-IR connection.

G107.298+5.639 at 63 µm obtained using SOFIA on 2019 (PIs: **Jochen Eislöffel, Bringfried Stecklum**)

Periodic maser sources – PhD starting next year.

$$1 px = 1$$
"

Monitoring of maser emission

Monitoring of maser emission

Episodic bursts

- Recent numerical simulations suggest that all present-day highmass young stellar objects (HMYSOs) exhibit variable accretion rates and associated episodic bursts (Meyer et al. 2017, 2021).
- They spend up to 2% in the bursting phase, in which they can accrete up to 50% of their final mass (Meyer et al. 2019).
- This process is well related to luminous outbursts...

Four accretion bursts detected and studied so far:

- S255IR NIRS 3: ~20 M_{\odot} (Caratti o Garatti+2017; Moscadelli +2017; Szymczak+2017; Liu+2018; Cesaroni+2018; Uchiama+2019)
- NGC 6334I MM1: ~20 M_{\odot} (Hunter+2017,2018; Brogan+2018; McLeod+2018)
- G358.93-0.03 MM1: ~10 M $_{\odot}$ (Brogan+2019; MacLeod+2019; Breen+2019; Burns+2020; Stecklum+2021)
- G323.46-0.08: ~8 M_☉ (Proven-Adzri+2019; Wolf+ in prep)

The discovery of episodic accretion in HMYSOs has opened a new research field in star formation.

Main characteristics of HMYSO bursts

Despite the small sample we see large variety of physical properties as in low-mass bursts:

- Rising time: from 3 months to 1 year,
- Length: from 7 months to 6 years (1 still active after 6 yrs) ,
- Increase in L_{bol} (ΔL_{acc}): from 6 to 70 times (i.e. from few 10³ to few 10⁵ L_{\odot})
- Accretion rates in burst: up to several 10^{-3} M $_{\odot}$ /yr,
- Released energy: from few 10⁴⁵ to several 10⁴⁶ erg,
- All bursts were preceded by methanol maser flares easily detected by single-dishes.

We "just" need to catch the burst

 M2O (A global community for maser-driven astronomy) established in Cagliari, Sardinia during the IAU Maser Symposium: https://www.masermonitoring.com/

0.20

Jy/beam

(a) 0.89 mm Continuum

G358.93-0.03-MM1:

- 6.7 GHz CH₃OH burst (ATel)
- HMYSO at d ~ 6.7 kpc, located in a cluster,
- Follow-up by M2O team:
 wealth of masering lines in H₂O, OH, CH₃OH flaring and new maser species HDO, HNCO,¹³CH₃OH discovered,
- No detection of mm variability,
- No detection in NIR.

-29:51:44

45

46

Jecl. (J2000)

Confirmation of the accretion burst by SOFIA

Burst parameters:

 $\Delta L_{\rm acc} = (1.8 + / -0.5) \times 10^5 L_{\odot}$

 $\Delta M_{\rm acc} = (5.3 + / - 11/4) \times 10^{-4} M_{\odot}/\rm yr$

(with $M_*=9.7~M_\odot~\&~R_*=3.9~R_\odot$)

accreted mass \sim 180 M_{Earth}

Stecklum et al. (2021)

Evidence for propagation of heat wave induced by the accretion burst as seen using methanol masers.

Methanol maser relocation (radiative transfer calculations)

Methanol desorption red: ~ optimum 120-125 K, yellow: limit 94 K

Stecklum et al. (2021)

Summary

- → Multifrequency and multi-epoch studies are key to understand high-mass star-formation,
- → CH₃OH maser flares are excellent proxies for accretion variability in HMYSOs,
- → Disk-mediated accretion bursts observed from low- to high-mass YSOs.

Thank you:)