

Particle Acceleration at Ultra-Relativistic Shocks

Brian Reville

Max-Planck-Insitut für Kernphysik

The Variable Multi-Messenger Sky Polish-German WE-Heraeus-Seminar 07-10 November 2022

Further details in:

Kirk & Reville, ApJL (2010)

Reville & Bell, MNRAS (2014)

Huang, Kirk, Giacinti, Reville (2022)

Kirk, Reville, Huang (submitted)

Huang, Reville, Kirk, Giacinti (in prep.)

Why would we want to study particle acceleration at ultra-relativistic shocks?

Lessons from kinetic simulations

Credit: Arno Vanthieghem

Particle in Cell simulations allow us to probe the shock micro-physics But what can we reliably extract from them?

Observational Constraints - PWN

Pulsars, winds and nebulae

Unique plasma laboratories e^{\pm} pair winds Local CR e^{\pm} sources Astrophysical foreground in DM searches

For the Crab Nebula WTS

$$\Gamma_{\rm sh} \sim 10^3 - 10^6$$

Magnetisation

$$\left(\sigma = \frac{\text{Poynting Flux}}{\text{Enthalpy Flux}}\right)$$

unknown but probably large

PeV photons = electrons > PeV An almost perfect accelerator!!

Observational Constraints - GRBs

5 GRB afterglows detected to date in VHE domain (possibly 1 prompt by LHAASO)

Afterglow shock "well defined"

The requirement of >TeV electrons brings questions on maximum energy For weakly magnetised shocks to focus

Observational Constraints - AGN

Thimmappa et al. '22

X-ray synchrotron - electron energies of 100 TeV or more. B fields $B\sim 0.1-1$ mG $\,$ -> $\,$ Shock magnetisation $\sigma\sim 10^{-3}-10^{-1}$

Pushing to the highest energies (>100 TeV)

Point Source Analysis

0.5° Extended Source Analysis

- Pass 5 18 sources are identified above 100 TeV (compared to 3 in Pass 4)
- Most high energy sources appear to be extended, but Crab is point-like

Crab >100 TeV

Key Questions

- Do relativistic shocks accelerate at all?
- What determines the maximum energy?
- What determines the shape of non-thermal particle spectrum?

Ultra-relativistic (ideal MHD) shocks

Unless $B_{\perp}/B_{\parallel} < \Gamma_{\rm sh}^{-1}$ in far upstream, In shock frame avg magnetic field is approx. in plane of shock

In the absence of scattering.....

Particle is limited to ≤ 3 crossings (Begelman & Kirk '90)

What does scattering do?

So how to scatter?

2D simulations by Sironi, Spitkovsky & Arons 13

Conclusion: only weakly magnetised shocks are "turbulent"

2D simulations by Sironi, Spitkovsky & Arons 13

Bulk of particles are thermalised, but for $\sigma < 10^{-3.5}$ (approx) non-thermal spectra appears to be an inevitable outcome.

2D simulations by Sironi, Spitkovsky & Arons 13

Focus for now on "weakly magnetised" shocks $0 < \sigma \ll 10^{-3}$

Scattering on Weibel filaments

Characteristic strength $\epsilon_{B} \sim 0.01 - 0.1$

Characteristic scale: $\lambda \sim 10 \ c/\omega_{\rm pp}$

Electron strength parameter:

$$a = \frac{e\delta B\lambda}{m_e c^2} = \gamma_e \Delta \theta$$

Scattering on Weibel filaments

Characteristic strength $\epsilon_{B} \sim 0.01 - 0.1$

Particle diffuses in angle

$$D_{\theta} = \left\langle \frac{\Delta \theta^2}{2\Delta t} \right\rangle \approx \frac{a^2}{\bar{\gamma}^2} \frac{c}{\langle \lambda \rangle}$$

Note isotropisation time $t_{\rm sc} = \nu_{\rm sc}^{-1} \approx D_{\theta}^{-1} \propto \bar{\gamma}^2$

Particle acceleration at Ultra-rel. shocks

Any particle overtaking shock has $\mu > \beta_{\rm sh}$ ($\theta < \Gamma_{\rm sh}^{-1}$) Seen from <u>upstream</u> frame, particle doesn't get far

The larger $\Gamma_{\rm sh}$, the easier to scatter out of loss cone

Particle acceleration at Ultra-rel. shocks

In <u>DSF</u>: any particle overtaken by shock $\bar{\mu} < \beta_2 \approx 1/3$

If
$$\nu_{\rm sc} < \Omega_g$$
 -> Game Over??

If $\nu_{\rm sc} > \Omega_{\it g}\,$ -> Particle can diffuse back to shock

Maximum Electron Energy

But scattering on Weibel filaments

$$t_{\rm sc} \propto \gamma^2$$

$$t_{\rm gyro} \propto \gamma$$

(Measured in average field)

Suggests a critical energy, from $t_{\rm sc} = t_{\rm gyro}$ This energy is low, and possibly in tension with observations (BR & Bell '14, Huang et al. '22)

Application to TeV detected Afterglows

$$\lambda = \mathcal{E}_{\mathbf{w}} \frac{c}{\omega_{\mathbf{p}}}$$

PIC sims indicate $\ell_{\rm w} = 10 - 20$

Is that it?

- Are particles only accelerated at weakly magnetised shocks?
- \circ Is the maximum synchrotron energy always << burn-off limit (cooling time= gyro time : $h\nu/m_ec^2\approx\alpha_f^{-1}$)
- This appears to be contradicted by observations e.g. acceleration is slow, small $\epsilon_{\it R}$ inferred in many GRBs,

So what else is there?

Particle acceleration at Ultra-rel. shocks

Returning particles carry a sizeable energy flux

$$T^{01} = \eta_{ref} \Gamma_{sh}^4 n_0 m_p c^2$$

Drives large scale instabilities in upstream (BR & Bell 14)

Fluid like instabilities are inherently 3D, difficult to probe with PIC simulations Upstream and downstream trajectories are uncorrelated

Return to Bohm

nsider the extreme case of pure ing us, no scattering ds

 $/\beta_{\perp}$ where recall $\beta_2 \approx 1/3$ is velocity seen from downstream

If pitch angle diffusion operates upstream (which it must in $\Gamma_{sh}\to\infty$ limit) return probability is high $\sim30-40\,\%$

shock

Kirk, BR & Huang, MNRAS submitted

Details of plasma physics in Shock *precursor* critical

Particle spectrum

Spectrum is close to (slightly harder) than the parallel shock prediction

2D simulations by Sironi, Spitkovsky & Arons 13

The impact of structured fields

Fermi acceleration at termination shock facilitated by Speiser orbits in ds returning particles to shock (note charge dep.).

Can account for PeV γ -ray production seen ion Crab system by LHAASO (Giacinti, BR. & Kirk, in prep)

The impact of structured fields

Speiser orbits in jets?

Huang et al. (in prep)

Conclusions

- Simulations confirm that weakly magnetised shocks admit Fermi acceleration
- Scattering on Weibel filaments alone is in some tension with observations (e.g. no cut-off in GRB afterglow X-ray emission)
- Contrary to common conception, scattering in upstream might be more important
- A deeper understanding of the precursor physics/global field structure is required
- Acceleration close to Bohm rate necessary to account for UHECRs and many observations (clearly we have a gap in understanding)

THANK YOU

