

Broad-band observations of hotspots

Martin Hardcastle
University of Hertfordshire, UK

Cracow: Challenges of Relativistic Jets

With thanks to my collaborators past and present on hotspot radio & X-ray observations, particularly Ralph Kraft, Dan Harris, Diana Worrall, Mark Birkinshaw, Judith Croston

Synopsis

- Introduction
 - What are hotspots? The pre-Chandra landscape
- X-ray emission processes
 - synchrotron self-Compton emission
 - synchrotron emission
 - others
- Problems for one-zone X-ray synchrotron models: it's not just jets!
 - spectral breaks
 - offsets
- Where does this leave us?

Introduction

Hotspots have been identified since the 1970s as the visible manifestation of the shock at the jet termination.

(Sketch from Blandford & Rees 1974)

Why study hotspots?

- Looking under the lamp: bright and compact broad-band emitters, well away from nucleus => easy to study.
- But also:
 - supposed to be major (only?) sites of particle acceleration in powerful sources. (Traditionally) assumed to set parameters for lobe electron population.
 - magnetic fields are high if in equipartition (see later) so lowenergy electrons are shifted into observable regime and loss timescales are short for high-energy electrons.
 - beaming is probably not dominating what we see (e.g. Kataoka talk: but see later)

Broad-band spectra and particle acceleration

• Best direct evidence for shock model: radio through optical SEDs of hotspots (e.g. Meisenheimer et al 1989) often consistent with a simple model for shock particle acceleration + loss (Heavens & Meisenheimer 1987)...

Broad-band spectra and particle acceleration

- Best direct evidence for shock model: radio through optical SEDs of hotspots (e.g. Meisenheimer et al 1989) often consistent with a simple model for shock particle acceleration + loss (Heavens & Meisenheimer 1987).
- High-frequency break and cutoff sensitive to magnetic field strength => low-luminosity hotspots more likely to have optical and X-ray synchrotron emission (Meisenheimer et al 1997, Brunetti et al 2003, Hardcastle et al 2004: see later).
- NB in these models break is an effect of spatial averaging: cutoff comes directly from acceleration region physics, i.e. loss/energy input balance.

Particle acceleration continued

- Electron energy indices usually close to, but not exactly, 2.0 (α = 0.5).
- Low-energy 'cutoff' indicated by spectral turnover in a few sources at electron LF of $\gamma_{min} = 500 ... 1000...$

Particle acceleration continued

- Electron energy indices usually close to, but not exactly, 2.0 (α = 0.5).
- Low-energy 'cutoff' indicated by spectral turnover in a few sources at electron LF of $\gamma_{min} = 500 \dots 1000$. Not well constrained in general, but must be < few x 10^3 to avoid appearing at GHz frequencies. Not synch self-absorption.
- Origin of cutoff unknown: adiabatic expansion means it's likely to be more complex in observed hotspot region than a simple N $(\gamma) = 0$ for $\gamma < \gamma_{min}$ (Brunetti 2002).
- Intrinsic to jet? See earlier discussion of bulk Comptonization.

Beaming

- Recall that fluid flow speed through hotspots can be >> hotspot advance speed.
- Bulk of the emission is thought to be post-shock so bulk speeds should be < c/3 for a strong perpendicular shock.
- But could be higher for oblique shocks.
- The jet may brighten and confuse the issue near termination.
- Correlation bright hotspot on jet side in quasars (Laing 1989).
- Detailed radio spectra of source head regions => modestly relativistic post-hotspot bulk speeds (Dennett-Thorpe et al 1997).

Multiple hotspots

 Known since early 80s (e.g. Laing 1982) that many sources have more than one hotspot ('primary', 'secondary', 'hotspot complex')...

Multiple hotspots

- Known since early 80s (e.g. Laing 1982) that many sources have more than one hotspot ('primary', 'secondary', 'hotspot complex').
- Different models ('splatter-spot', 'dentist's drill' etc) all can be produced in numerical simulations.
- Are some hotspots 'relics' disconnected from energy supply? SED work suggests ongoing particle acceleration in at least some.
- Numerical work shows strong perturbation of jet by bulk motions in source head – multiple hotspots, departure from axisymmetry and distributed particle acceleration are expected.
- Hotspots are transient features.

X-ray emission processes

• Synchrotron self-Compton emission is a required process. First seen in Cyg A...

X-ray emission processes

 Synchrotron self-Compton emission is a required process. First seen in Cyg A...

X-ray emission processes

- Synchrotron self-Compton emission is a required process. First seen in Cyg A.
- Excellent agreement between X-ray and radio structure as expected.
- SEDs in good agreement with predictions if mag. fields close to equipartition w/o energetically dominant proton population: single synch. model not possible.

X-ray emission processes (2)

 Synchrotron emission is the obvious explanation in cases where X-ray is extension of synchrotron spectrum. X-ray then traces acceleration regions...

X-ray emission processes (2)

- Synchrotron emission is the obvious explanation in cases where X-ray is extension of synchrotron spectrum. X-ray then traces acceleration regions.
- SSC models predict very low flux densities.
- Particle acceleration to $\gamma > 10^7$ required.
- Spatial agreement not always good...

X-ray emission processes (3)

 Dominant X-ray emission process is luminositydependent...

(Hardcastle et al 2004. Colours indicate emission-line type)

X-ray emission processes (3)

 Dominant X-ray emission process is luminositydependent...

X-ray emission processes (3)

- Dominant X-ray emission process is luminositydependent.
- No luminous hotspot has X-ray emission a long way above the SSC prediction.
- All low-luminosity hotspots detected in the X-ray necessarily lie well above the SSC expectations (SSC from these would not be detectable).

Beaming?

- The first few hotspots to show excesses over SSC were all clearly on the jet side of strongly beamed objects (Pic A, 3C390.3...).
- We don't expect hotspots themselves to have high bulk LF (as is possible for jets) so IC/CMB model not likely to work.
- Georganopoulos & Kazanas (2003) pointed out that the decelerating jet sees & IC-scatters boosted radiation from the hotspot.
- Only important on jet side of sources at reasonably small angles to the line of sight, and depends on details of the velocity structure and electron density in the jet.
- In addition to known tendency for jet side hotspots to be brighter/more compact in beamed sources.

Is everything simple?

- Can we explain all hotspot X-ray emission using (a combination of) the two simplest processes: SSC with B ~ B_{eq} and synchrotron with a simple, one-zone, broken power-law model as in Meisenheimer et al fits, with negligible beaming effects?
- In 2004 the available data suggested maybe the answer was 'yes'...

Is everything simple?

- Can we explain all hotspot X-ray emission using (a combination of) the two simplest processes: SSC with B ~ B_{eq} and synchrotron with a simple, one-zone, broken power-law model as in Meisenheimer et al fits, with negligible beaming effects?
- In 2004 the available data suggested maybe the answer was 'yes'...
- ... now I think the answer is definitely 'no'.

Problems for single synchrotron models

 Tavecchio et al (2005) use optical constraints to show that single

concave synchrotron spectra cannot explain X-ray detections of hotspots in powerful quasars...

Problems for single synchrotron models

- Tavecchio et al (2005) use optical constraints to show that single concave synchrotron spectra cannot explain X-ray detections of hotspots in powerful quasars...
- ... could beaming be important here?
- Illustrates importance of optical data points (cf Jester talk, jets)

 Beaming can definitely be ruled out for sources near the plane of the sky...

Kraft et al 2006, ApJ submitted

More problems: diffuse emission

 Diffuse, 10 kpc-scale X-ray emission seen around hotspots in several low-luminosity sources, though generally no optical constraints...

Pic A, H. & Croston 2005

More problems: diffuse emission

 Diffuse, 10 kpc-scale emission seen around hotspots in several low-luminosity sources, though generally no optical constraints...

More problems: diffuse emission

- Diffuse, 10 kpc-scale emission seen around hotspots in several low-luminosity sources, though generally no optical constraints.
- This is hard to understand in a one-zone synchrotron model (too extended) and, as in 3C33, greatly exceeds IC/SSC expectations unless mag. field is << equipartition.
- Examples in 3C390.3 and Pic A on *counterjet* side of beamed sources => beaming effects would have to be in *backflow*.

Offsets incompatible with SSC model...

3C351: Hardcastle et al 2002

• ... but in nearby hotspots well-resolved offsets are a challenge for single-acceleration synchrotron.

• ... but in nearby hotspots well-resolved offsets are a challenge for single-acceleration synchrotron.

• ... but in nearby hotspots well-resolved offsets are a challenge for single-acceleration synchrotron.

but in other
 cases there are
 X-ray regions that
 seem to bear no
 relation to the
 jet (or other
 radio!)

• ... but in other cases there are X-ray regions that seem to bear no relation to the jet (or other radio!)

 ... but in other cases there are X-ray regions that seem to bear no relation to the jet (or other radio!)

Problem sources: summary

- X-ray level generally >> SSC/IC expectation at equipartition
- Some have optical/IR constraints that rule out a single concave synchrotron spectrum
- Diffuse X-ray emission in some on 10-kpc scales requires a distributed acc'n mechanism if synchrotron (loss spatial scale < 10 pc).
- Some (not all) show offsets between radio & X-ray peak, or X-ray extensions w/o radio counterpart: some of these are in jet direction but many are not.
- Some have all of these features! (e.g. Pic A E+W)

• SSC/IC

Beaming

Multi-component synchrotron

• SSC/IC

- requires large, position-dependent departures from equipartition:
 fundamentally can't cope with large offsets.
- Beaming

Multi-component synchrotron

• SSC/IC

requires large, position-dependent departures from equipartition:
 fundamentally can't cope with large offsets.

Beaming

- with suitable electron distributions may explain some extensions in jet direction in some sources, but not all offsets/diffuse emission
- Multi-component synchrotron

SSC/IC

requires large, position-dependent departures from equipartition:
 fundamentally can't cope with large offsets.

Beaming

 a la Georganopoulos & Kazanas: with suitable electron distributions may explain some extensions in jet direction in some sources, but not all offsets/diffuse emission

Multi-component synchrotron

can explain diffuse emission, some offsets/extensions, non-concave
 SED: but ad hoc?

Beaming

 Now desirable to carry out detailed calculations to see if the Georganopoulos & Kazanas mechanism can explain jetdirected X-ray emission in BLRG/quasars like Pic A or 3C263.

Multi-component synchrotron with spatially distributed acceleration

Some arguments in support of investigating this further:

It's observed in jets in low-power radio sources.

Multi-component synchrotron with spatially distributed acceleration

- Some arguments in support of investigating this further:
 - It's observed in jets in low-power radio sources.
 - It's required to explain the extended optical emission in hotspots like 3C33 S and Pic A W.

'The extraordinary spectra and the absence of any indication of synchrotron ageing in these hot spots led us to the speculation that there exists a second "jet-like" acceleration process which is responsible for the synchrotron spectra of both optical jets and optically extended radio hot spots. [...] Although its physics is completely unknown at present, we feel that a better understanding of particle acceleration and synchrotron spectra of extended radio sources in general will be impossible unless we have an idea how this new process works.'

— Meisenheimer et al 1997

Multi-component synchrotron with spatially distributed acceleration

- Some arguments in support of investigating this further:
 - It's observed in jets in low-power radio sources.
 - It's required to explain the extended optical emission in hotspots like 3C33 S and Pic A W.
 - It may give us insight into the disputed emission mechanism for the X-ray jets in powerful quasars: note the required second spectral component in sources like 3C273 (Jester et al 2006).
- More optical data are now the priority.

Multiple hotspots (time permitting)

- We already know from success of H&M model in many secondary hotspots (Cyg A, 3C123) that they are probably now, or have recently been, sites of particle acceleration.
- Adiabatic expansion rapidly quenches hotspots, thus 'dentist's drill' generally requires us to be seeing the source at a special time, particularly if secondary has much higher energy content than primary (e.g. Valtaoja 1984; Hardcastle & Looney 2001).
- So most likely that many secondary hotspots, esp. bright ones, have continued energy supply.

Multiple hotspots

• X-ray synchrotron emission gives us a test. Mixed results: some secondary hotspots clearly have much less X-ray emission than primary...

Multiple hotspots

• X-ray synchrotron emission gives us a test. Mixed results: some secondary hotspots clearly have much less X-ray emission than primary, others show clear X-ray detections...

Jet knot?

Secondary

Primary

Multiple hotspots

- X-ray synchrotron emission gives us a test. Mixed results: some secondary hotspots clearly have much less X-ray emission than primary, others show clear X-ray detections.
- What is different about the hotspots with & without X-ray detections? Must be telling us about acceleration process.
- Here multi-frequency radio and deep optical/IR studies will allow us both to understand hotspots better and to test the Xray synchrotron model.

Summary

- We know that a simple shock model, with a single region of acceleration, explains broad-band (radio-optical) spectra of many sources (e.g. Meisenheimer et al 1997) although we don't understand origin of low-energy cutoff or parameters that fix injection index.
- For luminous hotspots an SSC explanation of the X-ray emission works well and implies magnetic fields close to the equipartition values.

Summary

- But X-ray (and optical) observations show radio/X-ray offsets, diffuse emission, jet-related extensions, and SEDs inconsistent with single synchrotron models or with SSC/IC at equipartition.
- Some, but certainly not all of these observations could be explained if the jet X-ray emissivity goes up close to hotspot (as in G&K model).

Summary

- Other observations almost certainly require a distributed high-energy particle acceleration mechanism existing in and around some hotspots/hotspot complexes.
- Clean case: no beaming and no likelihood of two-fluid model being necessary.
- This could be the same mechanism as operates in the diffuse regions of low-power jets, and it may also be important in more powerful systems: whatever it is, we need to understand it!