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Outline of the Talk:

B Differences from other relativistic jets
® Observational evidence for jets in GRBs
® The Jet Structure: how can we tell what 1t 1s
¢ Afterglow polarization
¢ Statistics of the prompt & afterglow emission
¢ Afterglow light curves
® The jet dynamics: degree of lateral expansion
® What causes the jet break?
B The jet structure, energy, and V-ray efficiency

® Conclusions



Differences between GRB jets &
other Astrophysical Relativistic Jets:

B GRB jets are not directly angularly resolved
¢ Typically at z = | + early source size < 0.1 pc

¢ Only a single radio afterglow (GRB 030329)
was marginally resolved after 25 days

¢ The jet structure 1s constrained indirectly

B GRB jets are Impulsive: most observations are
long after the source activity

® GRBs are transient events, making the
observations much more difficult



Observational Evidence for Jets in GRBs

® The energy output 1n y-rays assuming 1sotropic
emission approaches (or even exceeds) M c?

¢ || difficult for a stellar mass progenitor

¢ True energy 1s much smaller for a narrow jet
® Some long GRBs occur together with a SN

the outflow would contain >M 1f spherical

only a small part of this mass can reach [ =100

& 1t would contain a small fraction of the energy

® Achromatic break or steepening of the afterglow
light curves (“jet break”™)
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The Structure of GRB Jets:

£ Universal structured jet
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= uniform ("top hat") jet

2 component jet

'ring" shaped jet




How can we determine the jet structure?
1. Afterglow polarization light curves

the polarization 1s usually attributed to a jet geometry
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Afterglow Polarization: Observations

® Linear polarization at the level of P ~ 1%-3%
was detected 1n several optical afterglows

In some cases P varied, but usually 6 = const

Different from predictions of uniform or structured jet
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Afterglow Pol. & Jet Structure: Summary

® The Afterglow polarization 1s affected not only by the

jet structure but also by other factors, such as
¢ the B-field structure in the emitting region

¢ Inhomogeneities in the ambient density or in the jet
(JG & Konigl 2003; Nakar & Oren 2004)

® “refreshed shocks” - slower ejecta catching up with
the afterglow shock from behind (Kumar & Piran
2000; JG, Nakar & Piran 03; JG & Konigl 03)

B Therefore, afterglow polarization 1s not a very

“clean” method to learn about the jet structure



Jet Structure from log N - log S distribution

(Guetta, Piran & Waxman 04; Guetta, JG & Begelman 05; Firmiani et al. 04)
® Both the UJ & USJ models prov1de an acceptable fit

® Provides many constraints d1fferent1al distribution

but not a “clean” method

to study the jet structure
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Jet Structure from t,, (z) distribution

B dN/dO appears to favor the USJ model
® dN/dOdz disfavors the USJ model

B [t 1s still premature to draw strong conclusions due to
the inhomogeneous sample & various selection effects

® Not yet a “clean” method for extracting the jet structure
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Afterglow Light Curves: Uniform Jet

(Rhoads 97,99; Panaitescu & Meszaros 99; Sari, Piran & Halpern 99; Moderski,
Sikora & Bulik 00; JG et al. 01,02)

® Uniform “top hat” jet - extensively studied [
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Afterglow Light Curves: Gaussian Jet

(Zhang & Meszaros 02; Kumar & JG 03; Zhang et al. 04)

® |t 1s a “smooth edged” version of a “top hat” jet

B Reproduces on-axis light curves nicely

(Kumar & JG 2003)



Afterglow LCs: Universal Structured Jet

(Lipunov, Postnov & Prohkorov 01; Rossi, Lazzati & Rees 02; Zhang & Meszaros 02)
® Works reasonably well but has potential problems
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Afterglow LCs: Universal Structured Jet

B [.Cs Constrain the power law indexes ‘a’ & ‘b’:

dE/AQ 06, I, 08D

m]5<2<25,0<b<1
(JG & Kumar 2003)
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Afterglow LCs: Two Component Jet

(Pedersen et al. 98; Frail et al. 00; Berger et al. 03; Huang et al. 04; Peng, Konigl &
JG 05; Wu et al. 05)
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Two Component Jet: GRB 030329

for an on-axis observer 1s w1de & smooth

® The bump at t

dec.w
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Two Component Jet:

® The bump 1n the light curve
when the narrow jet becomes

visible 1s smooth & wide
__»wide jet:
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Explaining flat decay phase observed by Swift

B The X-ray afterglow of GRB 050315 requires that
f=E, /Ei.= 30 and more generally > 1 so that

the required gamma-ray efficiency 1s not lowered

mE /E 2 100 1s challenging for theoretical models
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Afterglow LCs: Ring Shaped Jet

(Eichler & Levinson 03,04; Levinson & Eichler 04; Lazzati & Begelman 05)

® The jet break splits into two, the first when yAQ ~ 1-2
and the second when YO, ~ 1/2
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Afterglow Light Curves: Wide Ring

(Eichler & Levinson 03,04; Levinson & Eichler 04)

® There are two distinct jet break unless ring is very thick

~ Light curves for a viewing
angle within the “ring” for ;
rings of various fractional 1

_width: §,/A8=1,2,3,5,10

a "thick ring"

jet structure
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Wide Ring vs. Uniform Conical Jet

B For AB 2 O_ the jet break becomes rather similar to that

for a conical uniform jet and gets closer to observations

5 - —
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Afterglow Light Curves: Fan Shaped Jet

(Thompson 2004)

® The jet break 1s a factor of 2 shallower than for a uniform

conical jet for no lateral spreading, and even shallower
[a factor of (7-2k)/(3-k) > 2 instead of 2, where p_ . [] R¥]

for relativistic lateral expansion in its own rest frame
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ILight Curves of X-ray Flashes & XRGRBs
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Afterglow L.C. for Different Jet Structures:

® Uniform conical jet
with sharp ejdges: [

Gaussain jet: €, [j—1 = &8 /28,

® Gaussian jet in both [
& dE/dQ: might still work : : |

® Constant [, + Gaussian
dE/dQ: not flat enough

B Core + dE/AQ [ 67
wings: not flat enough

6, /8,.=0,0.5,1,1.5,2,2.5,3.4,5,6 (JG, Ramirez-Ruiz & Perna 2005)



Dynamics of GRB Jets: Lateral Expansion
Simple (Semi-) Analytic Jet Models
(Rhoads 97, 99; Sar1, Piran & Halpern 99,...)

B Typical simplifying assumptions:
¢ The shock front is a part of a sphere within <0,
¢ The velocity 1s in the radial direction (even att > t, )
¢ Lateral expansion at ¢.= ¢/V3 in the comoving frame

¢ The jet dynamics are obtained by solving simple 1D
equations for conservation of energy and momentum

=y~ (c/cB)exp(-R/R;.), B, ~ B (R, /R)exp(R/R;,)
B Most models predict a jet break but differ in the details:
¢ The jet break time t,
¢ Temporal slope F,(V>V,,t>t ) L t% o ~p (=15%)

¢ The jet break sharpness (~1- 4 decades in time)

(by up to a factor of ~20)



Simplifying the Dynamics: 2D - 1D

® Integrating the hydrodynamic equations over the radial

direction significantly reduces the numerical difficulty

® This 1s a reasonable approximation as most of the
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Numerical Simulations:
(JG et al. 2001; Cannizzo et al. 2004; Zhang & Macfayen 2006)

The difficulties involved:

® The hydro-code should allow for both y» 1 and y= 1

® Most of the shocked fluid lies within 1n a very thin
shell behind the shock (A ~ R/10y?) [] hard to resolve

B A relativistic code 1n at least 2D 1s required

® A complementary code for calculating the radiation

: 1

Very few attempts so far



Movie of Simulation

Upper face: Lorentz factor  (Logarithmic
Lower face: proper density  Color scale)
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- Proper Density:

(logarithmic color scale)

QuickTimeS and a
YUV420 codec decompressor
are needed to see this picture.
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The Jet Dynamics: very modest lateral expansion

® There 1s slow material at the sides of the jet
while most of the emission is from its front

10" pmamn



Main Results of Hydro-Simulations:

® The assumptions of simple models fail:

¢ The shock front 1s not spherical

¢ The velocity is not radial
¢ The shocked fluid 1s not |

® There 1s only very mild

nomogeneous

ateral expansion

as long as the jet 1s relativistic

® Most of the emission occurs within 6<0,

® Nevertheless, despite the differences, there is a
sharp achromatic jet break [for v >v, (t. )] at

L close to the value predicted by simple models



Why do we see a Jet Break:

Relativistic Source: B
. . ﬁ
Aberration of light or
S ‘relativistic beaming’
ource
frame < , Observer
frame -1

The observer sees mostly emission The edges of the jet become
from within an angle of 1/I" around visible when " drops below

the line of sight \A/ 1/6,, , causing a jet break
\

For Vi, ~ C, B, ~ 1/I" so there is not

much “missing” emission from
0> 0, & the jet break is due to the

Direction to observer decreasing dE/dQ + faster fall in (1)
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ILateral Expansion: Evolution of Image Size

(Taylor et al. 04,05; Oren, Nakar & Piran 04; JG, Ramirez-Ruiz & Loeb 05)
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The Jet Structure and its Energy

® The same observations imply ~10 times more
energy for a structured jet than for a uniform jet:
~10°? erg instead of the “standard” ~10°! erg

B Flat decay phase in Swift early X-ray afterglows
imply very high y-ray efficiencies, € ~ 90%, 1f 1t
1s due to energy injection + standard AG theory

® The flat decay 1s due to an increase in time of
AG efficiency I € does not change (~ 50%)

m Pre-Swift estimates of E; ,, ~ 10°" erg for a

uniform jet relied on standard afterglow theory
® Different assumptions: E,; ., ~ 10> erg, € ~ 0.1

me sO.1 0 Ey 210> erg for a structured jet



Conclusions:

B The most promising way to constrain the jet
structure 1s through the afterglow light curves

B Numerical studies show very little lateral
expansion while the jet is relativistic & produce
a sharp jet break (as seen in afterglow obs.)

B The jet break occurs predominantly since its
edges become visible (not lateral expansion)

B A low V-ray efficiency requires a high afterglow
kinetic energy: € < 0.1 LI E; ,; 210> erg for a

structured jet & E,; ,;=10*erg for a uniform jet



Afterglow nght Curves from Simulations
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Afterglow Image
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