On the non-thermal emission of the microquasar 1E 1740.7-2942
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The microquasar 1E 1740.7-2942 1s a mysterious source located in the direction of the Galactic Center. It has been detected at X-rays,
soft gamma-rays, and in the radio band, showing an extended radio component 1n the form of a double-sided jet. To study the origin of the
hard X-rays, we have modeled the source emission, from radio to gamma-rays, in a cold-matter dominated jet scenario. We have
compared the computed spectrum with the observed one. Predictions about the gamma-ray spectrum are made, and some physical

parameters of the jet are explored. We find out that jet emission could hardly explain the high fluxes observed at hard X-rays. Also,
1E 1740.7-2942 might be detected by GLAST or AGILE at GeV, and by the ground-based Cherenkov telescope HESS beyond 100 GeV.

Introduction

The source 1E 1740.7-2942 1s a very bright X-ray binary
located at less than one degree from the Galactic Center.
1E 1740.7-2942 was considered to be the first
microquasar when extended radio jets reaching 0.5' from
the core were observed (Mirabel et al. 1992). Hints of
correlation between the X-ray and the core radio
emission, and X-ray state changes, have been observed
with timescales similar to those of other X-ray binaries.
A 12.7-days periodical modulation of a 3-4% 1in the X-
ray emission could be produced by orbital motion (Smith
et al. 2002) close to circularization, and its X-ray
spectrum looks like other galactic black-hole candidates
(Sunyaev et al. 1991), all this pointing to its galactic
nature. The stellar companion in 1E 1740.7-2942 might
be a low-mass star (Marti et al. 2000), which altogether
with the bright X-ray emission hint to Roche-lobe
overtflow accretion mechanism. The source could be

A cold matter jet model for 1E 1740.7-2942

We want to explain the emission of this object in the
context of microquasars during the low hard state
(Fender et~al. 2003), when emission at radio and
higher energies from a compact jet 1s produced and
accretion processes are likely contributing or even
dominant at X-rays. We have applied a model of a
cold-matter dominated and magnetized jet whose
radiation mechanisms are powered by internal shocks
(for details concerning the model, see Bosch-Ramon et
al. 2006). We aim at explaining the data and making
predictions to give some constraints about the physics
of the processes involved in the broadband emission.

In Table 1, we show the adopted parameter values,
inferred from observations or set to typical values in
the literature, and summarize predictions. Dieacer 1s the
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Fig. 1 Attenuation factor of the emission at different energies and distances

from the compact object. Photon photon absorption is dominated by
the corona and disk photon fields.
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