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We study a prototypical class of magnetostatic equilibria where the magnetic field satisfies ∇×B =
αB, where α is spatially uniform, on a periodic domain. Using numerical solutions of the force-
free electrodynamic and relativistic ideal magnetohydrodynamic evolution equations, we show that
generic examples of such equilibria are unstable to ideal modes which are marked by exponential
growth in the linear phase. We characterize the unstable mode, showing how it can be understood
in terms of merging magnetic and current structures and explicitly demonstrate its instability using
the energy principle. Following the nonlinear evolution of these solutions, we find that they exhibit
dissipation of magnetic energy and eventually settle into a configuration with the largest allowable
wavelength. Such examples of magnetic energy being liberated on dynamical time-scales may have
implications for astrophysical sources.

Introduction.—Magnetic stability is a fundamental
question in a range of fields from laboratory plasma
physics, where it influences the viability of fusion de-
vices [1]; to space physics, where it controls the struc-
ture of magnetic fields within stars and planets; to high-
energy astrophysics, where it governs the geometry of
black hole [2, 3] and neutron star magnetospheres [4].

The explosive release of magnetic energy, as exempli-
fied by coronal mass ejections [5], and more dramatically
by magnetar flares [6–8], is most likely triggered by the
spontaneous decay of a magnetic equilibrium. It is also
conjectured that a mechanism of this type underlies pow-
erful gamma-ray flares originating from the Crab nebula
(as well as relativistic jets and gamma ray bursts)[9, 10].
The synchrotron emission observed during these flaring
events requires the acceleration of electrons above 1015

eV energies with extremely high efficiency [11, 12], which
in turn necessitates rapid, volumetric conversion of mag-
netic energy into high energy particles and radiation.

In this work, we focus on a prototypical class of space-
periodic equilibria that satisfy the Beltrami property,
∇ × B = αB with uniform α. Although there is a
rich literature studying force-free magnetic equilibria,
and the Beltrami solution in particular [13–16], funda-
mental questions about its stability, or lack thereof, are
still unanswered. In [16] it was concluded that such so-
lutions are linearly stable against incompressible defor-
mations of the embedding medium (see also [17]). Here
we use numerical simulations to show that generic peri-
odic Beltrami magnetic fields are linearly unstable. The
only exceptions we find are ones lacking magnetic cur-
vature, and those in the fundamental mode or ground
state, which have the lowest magnetic energy allowed
by periodicity and the conservation of magnetic helic-
ity HM =

∫

A ·BdV (where A is the magnetic vector
potential). We also explore the nonlinear evolution, find-
ing strong evidence that transitions from excited states
to the ground state occur on dynamical time scales. This
behavior illustrates the rapid liberation of magnetic en-
ergy accompanying spontaneous loss of magnetic equilib-

rium. It also reflects the general tendency for magnetic
fields to assemble themselves over the largest available
scale, a process known in the literature [18–21] as inverse
cascading.
In what follows, we outline our numerical methods,

present results showing the linear-regime instability of
a range of magnetostatic equilibria using force-free elec-
trodynamic (FFE) simulations, and then illustrate the
properties of the dominant unstable mode in an example
case, explicitly confirming its growth rate using the en-
ergy principle. We compare these results to those found
at finite magnetization, discussing the nonlinear evolu-
tion of the instability, and then conclude.
Methodology.—The equilibrium magnetic fields we

study are exemplified by the three-parameter “ABC”
field [22] given by

B
E =

(

B3 cosαz −B2 sinαy, (1)

B1 cosαx−B3 sinαz,

B2 cosαy −B1 sinαx
)

.

We use some particular examples of this equilibrium solu-
tion for illustrative purposes, but also consider the more
general class of Beltrami fields [23]

B = αΨ+∇×Ψ (2)

where the potential field Ψ is any solenoidal vector field
satisfying the vector Helmholtz equation∇2Ψ+α2Ψ = 0,
so that Ψ comprises only the Fourier harmonics whose
wave-vector k has magnitude α. These more general con-
figurations are constructed by choosing random vector
amplitude for the admissible harmonics. Our compu-
tational domain is the periodic cube of length L = 2π
(though we restore L in some places for clarity).
We assume a perfectly conducting medium, and con-

sider cases having both finite and infinite magnetization.
The latter case corresponds to a magnetically dominated
plasma where the inertia of its charge carriers may be
neglected. This limit is treated by FFE [24, 25]. We nu-
merically solve these equations using fourth-order finite


