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Figure 1. Two-dimensional slices of transverse magnetic field component showing the progression of magnetic field decay in a three-dimensional relativistic MHD
turbulence. The leftmost panel shows the initial condition, and then from left to right the solution is shown at 4, 32, and 128 initial Alfvén crossing times of the
simulation domain.
(A color version of this figure is available in the online journal.)

2. NUMERICAL SET-UP

The scenario investigated here is described as follows. Con-
sider a perfectly conducting fluid whose rest mass, thermal,
and magnetic energy densities are mutually comparable. As-
sume that the magnetic field has periodicity scale L, is out of
equilibrium such that J × B ̸= 0, is nonhelical, and has an en-
ergy spectrum PM (k, 0) that is peaked at the scale k0 ≫ 2π/L.
Time-dependent solutions of the relativistic MHD equations

∇νρuµ = 0 (1a)

∇νT
µν = 0 (1b)

∂B
∂t

= ∇ × (v × B) (1c)

are obtained using the Mara code (Zrake & MacFadyen 2011)
run on a three-dimensional computational mesh with 512 grid
points along each axis. In Equation (1), T µν is the stress–energy
tensor including both hydrodynamic and electromagnetic con-
tribution, uµ is the fluid four-velocity, and ρ is mass density.
The magnetic field is initially divergenceless and Gaussian-
random with a power spectrum that is narrowly peaked around
the wavenumber k0 = 50k1, where k1 = 2π/L. PM (k, t) is
normalized so that the plasma-β, the ratio of gas to magnetic
pressure, is initially 1.

We define inverse cascading as the accumulation of energy in
the sub-inertial range modes (those above the turbulence integral
scale), which is evident when the magnetic energy spectrum
PM (k, t) is an increasing function of time for wavenumbers
k < kt where kt is integral scale wavenumber at time t. Note that
migration of kt toward smaller values over time is not a sufficient
condition for inverse cascading; growth of the coherence scale
also occurs in so-called “selective decay,” whereby energy is
processed through a direct cascade that drains energy in the
small scales before the larger. Interestingly, both processes have
been suggested to involve leftward migration of kt depending
upon time like t−2/5 (Olesen 1997; Shiromizu 1998; Son 1999).

3. RESULTS

Figure 1 shows two-dimensional slices of the out-of-page
magnetic field component taken at roughly logarithmic intervals
throughout the simulation. The leftmost panel shows the initial
Gaussian-random magnetic field configuration. The second

Figure 2. Temporal evolution of PM (k, t) at seven representative wavenumbers.
Heavier ink denotes larger scales. The dashed line shows a power law with
index −4/3

panel shows the solution after a single Alfvén crossing time
of the simulation domain, during which the field has organized
itself into a collection of small magnetic islands having complex
internal structure. The third and fourth panels show those islands
becoming larger in scale, and less numerous. The color mapping
has been stretched to the minimum and maximum data values
of each image, so only the field morphology is depicted and
not its average magnitude. Since the initial condition lacks
magnetic energy at large scales, the appearance of larger
coherent magnetic field structures cannot be selective decay,
but can only be attributed to the inverse transfer of magnetic
energy from small to large scales.

Indeed, as shown in Figure 2 the magnetic energy spectrum
PM (k, t) is an increasing function of time for small k at early
times. For each wavenumber k < k0, there is a turnover time
τk when (∂/∂t)PM (k, t) switches sign. τk is thus the time when
coherent magnetic field structures of wavenumber k are fully
developed, and captures the time required for the magnetic field
to assemble itself at length scale k−1. At times t > τk , the
amplitude of wavenumber k structures diminishes as a power law
in time, PM (k, t) ∝ t δ where δ is measured to be −1.3 ± 0.03.
The fiducial value of −4/3 will be adopted for simplicity.

Figure 3 shows PM (k, t) at several times throughout the
simulation. After a fraction of an Alfvén time, the magnetic
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