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Why?

Gamma-ray bursts

(c2/df = 36/19 for a single power law, 16/17 for
a broken power law). In contrast, a break is not
statistically preferred in the energy flux light curve
(c2/df = 14/18 for a single power law, 13/17 for a
broken power law), probably because of the larger
statistical uncertainties. For a single power-law fit
to the energy flux light curve, we found a temporal
index of –1.17 T 0.06, consistent with other LAT
bursts (13).

The GBM and Swift energy flux light curves
are also shown in Fig. 2. The Swift X-Ray Tele-
scope (XRT) began observing the burst at T0 +
190 s; the reported XRT + BAT (0.3 to 10 keV)
light curve is a combination of XRT data and
BAT-detected emission (15 to 150 keV) extrapo-
lated down into the energy range of the XRT. The
XRT + BAT light curve shows the unabsorbed
flux in the range 0.3 to 10 keV (7). During the
initial part of the burst, the GBM (10 keV to
10 MeV) light curve peaks earlier than both the
XRT+BAT (0.3 to 10 keV) and LAT (>100MeV)

light curves. The GBM light curve peaks again at
~ T0 + 120 s [see also (7)], whereas the LAT light
curve shows a sharp and hard peak at T0 + 200 s.
The BAT + XRT light curve peaks again as well
at the same time as the LAT light curve, but the
peak is much broader.

Interpretation
The energetics of GRB 130427A place it among
the brightest LAT bursts. For GRB 130427A, the
fluence at 10 keV to 20 MeV measured with
the GBM in the 400 s following T0 is ~4.2 ×
10–3 ergs cm–2. The issue with pulse pile-up and
the uncertainties in the calibration of the GBM
detectors contribute to a systematic error that we
estimate to be less than 20%; the statistical un-
certainty [0.01 × 10–3 ergs cm–2] is negligible with
respect to the systematic one (17). The fluence at
>100 MeV measured with the LAT in the 100 ks
following T0 is 7 (T1) × 10–4 ergs cm–2. The total
LAT fluence is therefore ~20% of the GBM flu-

ence, similar to other bright LAT GRBs (13, 19).
For a total fluence at 10 keV to 100 GeVof 4.9 ×
10–3 ergs cm–2, the total apparent isotropic g-ray
energy (i.e., the total energy release if there were
no beaming) is Eg,iso = 1.40 × 1054 ergs, using a
flat LCDM cosmology with reduced Hubble
constant h = 0.71 and dark energy density WL =
0.73; this value implies a luminosity distance of
1.8 Gpc for z = 0.34. This value of Eg,iso is only
slightly less than the values for other bright LAT
hyperenergetic events, which includeGRB 080916C,
GRB 090902B, and GRB 090926A (19).

The emission regionmust be transparent against
absorption by photon-photon pair production,
which has a significant effect at the energies of
theLAT-detected emission.Viablemodels ofGRBs
therefore require highly relativistic, jetted plasma
outflows with bulk jet Lorentz factors G greater
than ~100 (20). The 73-GeV photon at T0 + 19 s
(table S2) provides the most stringent limit on
G. Assuming that the variability time scale re-

Fig. 1. Light curves for the Fermi-GBM and LAT detectors
during the brightest part of the emission in 0.064-s bins,
divided into five energy ranges. The NaI and BGO light curves were
created from a type of GBM data (continuous time or CTIME) that does
not suffer from saturation effects induced by the extreme brightness of

this GRB (17); for these light curves, we used NaI detectors 6, 9, and 10,
and BGO detector 1. The open circles in the bottom panel represent the
individual LAT “transient” class photons and their energies; the solid
circles indicate photons with a >0.9 probability of being associated with
this burst (17).
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G. Bhatta et al.: The 72-h WEBT microvariability observation of blazar S5 0716+714 in 2009

Fig. 1. Raw light curve of S5 0716+714 obtained by the compilation of some of the high quality data by major contributors. The light curves
contributed from each observatory is plotted together with different symbols indentifying the observatory according to the codes given in Table 1.

Fig. 2. Flux curve of 0716+714 smoothed using the algorithm discussed
in the text.

Figure 2 shows the complete smoothed flux curve. Smoothing
kept the major trends of light curve intact, while cutting out some
of the high frequency noise in the data. The total length of the
light curve was 78.88 h.

We analyzed individual segments of the flux curve to de-
termine the maximum climb and decline rates. Twelve individ-
ual rapid excursions were noted in the flux curve and we fit a
line to each of those segments to determine the maximum climb
rates and decline rates, concentrating on segments which had a
large number of data points. The fastest rate was an increase
of 0.089 mag per hour over a range of 0.15 mag. The correlation
coefficient for that fit was r2 = 0.997 and it contained 99 data
points. Table 2 lists the slopes and correlation coefficients for
each of the segments we examined. Column 1 is the segment
index, Col. 2 the start and finish time of the segment in hours,
and Col. 3 the slope in magnitudes per hour. We calculated the

correlation coefficient for each fit and listed them in Col. 4 along
with the number of points in Col. 5. Column 6 gives the prob-
ability that a random sample would show such a large corre-
lation coefficient. The final column denotes whether the slope
is a rise or a decline in magnitude. The average decline rate
was 0.042 mag/h (standard deviation of 0.022) while the average
rise rate was 0.043 with a standard deviation of 0.028. Thus over-
all, the rise and decline rates are similar in this segment of light
curve. Although the rates are different, the fact that the slopes
for the rise and decline are the same agree with the results found
by Villata et al. (2000) and Montagni et al. (2006).

3. Time series analysis

3.1. Fourier transform analysis

We performed Fourier transform analysis on the entire smoothed
light curve by removing the linear trend of slope −2.5 ×
10−5 mJy/h and using a discrete Fourier transform (DFT) algo-
rithm (Deeming 1975). The results of this analysis are shown in
Fig. 3 and Table 3. The DFT results yielded some of the large
features at periods of 40.00, 21.05 and 13.19 hours which corre-
spond to the first, second and fourth peaks respectively in Fig. 3.
Some of the periods which are well above the noise level are
listed in Col. 4 of Table 3. The corresponding time-scales in the
rest frame in Col. 5 were calculated using

∆trest =
D

1 + z
∆tobs, (1)

where D = 1/Γ (1 − β cos θ) is Doppler factor with βc bulk speed
and Γ bulk Lorentz factor. θ is the orientation of the jet axis with
respect to the line of sight and z is the red-shift of the object.
Using the values Γ = 17 , θ = 2.6◦ and z = 0.3, a Doppler factor
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Need to convert all 
magnetic energy into high 

energy particles and 
radiation, impulsively!



What?

Magneto-luminescence: 
Rapid conversion of magnetic energy into radiation 

• Critical magnetic reconfiguration 

• that triggers volumetric magnetic energy conversion 

• and energizes particles impulsively (E ~ B)



In this talk, I’ll focus on the hydro-magnetic 
(RMHD), and magneto-dynamic (FFE) aspects.
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FIGURE 2 .  A trefoil knot with H K  = - 3 P  

obtain a collection of interlinked simple loops and figure of eights. Equation (15) still 
holds, with Q2 replaced by a product of the two fluxes present a t  a particular 
crossover. 

The external helicity of a knot we define as equalling H ,  if the knot exhibits a 
minimum of crossovers. For two linked flux tubes, the external helicity is 2L,, 0, Q2, 

where L,, gives the number of linkages (Moffatt 1969); this is a generalization of (2). 
Note, however, that, as L,, increases, the tubes must become more and more kinked, 
so that internal helicity cannot be ignored in computing the total helicity. There is 
one situation where internal helicity can indeed be neglected : one may compute the 
helicity of a configuration by approximating the field as consisting of a large number 
N of closed flux elements, each containing a small flux 6Q. In  this case, 

Note that (6Q), and the internal helicities Hi,int vary as N-2.  As N+co the 
interlinkage sum will reach a finite limit since it contains N2 terms, but the internal 
helicity sum vanishes as N-l .  

The decomposition into H ,  and H ,  depends on the angle of projection employed 
to find the crossovers. This deficiency can be removed by introducing the concepts 
of twist number Tw and writhing number Wr (Fuller 1971, 1978). Let X ( s )  be a 
closed curve, where s parametrizes length along the curve. Also let V ( s )  be a vector 
perpendicular to X ( s ) ;  the ‘t ip’ of U(s)  defines a second closed curve Y(s) ,  and the 
surface between the two curves can be visualized as a ribbon. In  the DNA application, 
X ( s )  can be taken to be the axis of the molecule, and the outer curve Y(s) to be one 
of the two nucleotide chains. Similarly, we may take X ( s )  to be the central axis of 
a magnetic flux rope, and Y(s) to be a field line winding its way along some toroidal 
surface within the flux rope. 

The linking number L,, of the two curves can be found from the Gauss linkage 
formula : 

dX(s) r dY(s’) L,, = -& $ds $ds’ ds*7 x ds’, 
where r = X ( s ) -  Y(s’). When integrated over all space, the helicity integral can be 
expressed in a similar form (Moffatt 1969, 1981 ; Arnol’d 1974). I n  Coulomb gauge 
the vector potential A is given by 

A ( x )  = - 1 S d 3 d  J(x’) 
C r 

See poster by Yajie Yuan

Magnetoluminescence 
Yajie Yuan, Roger Blandford, William East, Jonathan Zrake and Krzysztof Nalewajko  

Kavli Institute for Particle Astrophysics and Cosmology, SLAC and Stanford University 

Abstract 
We describe a new mechanism – magnetoluminescence – that promotes rapid conversion of electromagnetic energy to high energy pairs and radiation in relativistic plasmas, to account for highly efficient 
and rapid flaring in pulsar wind nebulae, AGN jets, GRBs and magnetars. In this mechanism, magnetically dominant equilibria become unstable and transition to lower energy states while preserving, at least 
initially,  the  ‘tangling’  (helicity)  of  the  field.  The  Ohmic dissipation is associated with radiation reaction on the highest energy particles which carry the electrical current. The unstable region eventually 
evolves at light speed with E>~B and ultimately implodes releasing more energy. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   
 

Motivation 
• Blazars and quasars, e.g. PKS 2155-304,  3C 279, exhibit flares on time scales as short as hours to a 

few minutes, while the lower bound on the jet width determined by the pair production opacity is 
comparatively much larger. 

• The Crab Nebula produces ~10 hr gamma-ray flares peaking at ~400 MeV, requiring synchrotron 
radiation from ~3 PeV electrons in 1 mG magnetic field. The total (isotropic) energy release is ~1041 
erg for a typical flare, equivalent to energy contained in a region with length scale ~1016 cm ~100 
light  hours.  Either  there’s  strong  beaming,  or  energy  is  concentrated  in  a  small  volume,  or  both. 

Left: Gamma-ray light curves of 3C 279 around three largest flares, from [6]; right:Gamma-ray light curve of the Crab 
during the April 2011 flare, from [4]. 

Magnetoluminescence 

Conclusions and outlook 
• Our studies on prototypical force-free equilibria, using both analytical variational principle and 

force-free/MHD simulations, show configurations that are ideally unstable; they develop 
regions with E~B during nonlinear evolution. These could be potential setup for testing our 
magnetoluminesence model. 

• To understand the acceleration process we are also performing kinetic simulations. Preliminary 
results already show interestingly the formation of regions for efficient particle acceleration 
and emergence of suprathermal population. 

We propose the following sequence: 
• The  prime  mover  (a  magnetized  neutron  star  or  black  hole)  “winds  up”  the  magnetic  field  and  produces  a  highly  magnetized  wind/jet with largely toroidal field. 
• The outflow is decelerated by external stresses and the freshly- equilibrated magnetic field is either unstable or evolves to instability through relatively slow reconnection which changes the 

linkage/helicity of current-carrying flux ropes; these small scale reconnection events may account for the steady acceleration of intermediate energy electrons.  
• When these flux ropes reach a catastrophe point they suddenly untangle without serious change of topology. Large electric field is induced volumetrically; particles are accelerated efficiently toward the 

radiation reaction limit with efficient conversion of electromagnetic energy to radiation. 
• The pressure of the configuration drops and an implosion may be produced. Surrounding medium pushes in and further enhances energy release. 
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Topology preserving instabilities 
We consider linear force-free equilibria (Beltrami fields) in 
spherical or Cartesian geometry as our prototypical systems.  
    In a spherical domain with fixed, perfectly conducting wall at 
r=R, we have 
  
where χ is the solution to                            . χ can be written as 
superposition of                                         but only a single l can 
be present and λR should be the n-th zero of jl. We call them 
spheromaks in general [1]. 
    In Cartesian geometry, similarly                                 , where   
                  and                               . We use periodic boundary 
condition in this case.  
    We studied the stability of these force-free equilibria using 
both analytical approach and numerical simulations. We find 
some of them to be unstable to ideal modes; in force-free and 
MHD simulations, these instabilities grow exponentially and 
quickly give rise to regions where electric energy density is 
comparable to magnetic energy density. The system becomes 
turbulent on dynamic time scales and eventually relaxes to the 
longest wavelength configuration. 
 

Helicity – a topological invariant 

)1 

)2 

Helicity                          is 
well defined (independent of 
gauge) if the system is 
confined by a flux preserving 
surface (if there are open field 
lines, relative helicity has to 
be used). It characterizes the 
knottedness and linkedness of 
magnetic field lines. Helicity 
is conserved when flux 
freezing is true or                
region has negligible volume 
[1]. 

The two linked, untwisted flux 
tubes have helicity 
Helicity evolution:  

Using the variational principle with analytical trial functions, 
we find that spheromak solutions with n>1 (axisymmetric or 
non-axisymmetric) are generally unstable to ideal modes. The 
above figure (magnetic stream plot on meridional plane) shows 
that l=1, n=2, m=0 solution can evolve into a state similar to 
l=2, n=1, m=0. This has been verified by force-free 
simulations. This represents slipping of two magnetic ropes. 

Topology of magnetic configurations 

(a) A magnetic rope in spheromak 

(b) Linked magnetic ropes 

(c) A knotted magnetic rope 
(d) Hitch: equivalent to a 
straight line 

    Magnetic field lines usually lie on nested toroidal surfaces or 
wander chaotically. We designate the 2D flux surfaces as 
magnetic ropes. They can be hairy as surrounded by chaotic 
field lines. Possible topological configurations of closed 
magnetic ropes include: knot, link, unknot (equivalent to a 
circle); for open magnetic ropes, there can be braid and unbraid. 

Here we show the ideal instabilities rising from the Cartesian 
Beltrami  fields  with  α=2: 
 
Top panel shows stream lines of equilibrium field configurations 
for (B1,B2,B3)  =  (1,1,0),  (1,1/2,0)  and  ≈  (-0.814,0.533,0.232) on 
the z=0 plane. Bottom panel shows the corresponding velocity 
field                              of the unstable ideal mode arising from the 
simulations. The color indicates the perpendicular vector 
component. The thickness of the streamline is proportional to the 
vector magnitude. The black lines indicate the location of the 
separatrices in the equilibrium solutions. 
The instability, in particular the first case, has been verified using 
variational principle with analytical trial functions. 
These represent merging of magnetic ropes with similar polarities. 
See also discussion in Jonathan Zrake’s talk and [5]. 

Linear stability analysis 
Force-free evolution equations can be written as 
 
 
 
Let                      , define    such that                , the perturbation 
on a static equilibrium evolves in linear regime according to 
 
 
Using the energy principle of Bernstein et al [2], we can define a 
potential energy  
 
 
And the dispersion relation can be written as 
 
This allows a variational approach to the stability problem.  
In Cartesian coordinates, the linearized perturbation equation can 
be put into Sturm-Liouville form:  
 
 
where                                                                                         . 

Acknowledgements 
We thank Tom Abel, Jon Arons, Antony 
Jameson, Hui Li, Keith Moffatt, Ellen 
Zweibel for helpful discussions. This 
work is supported by NSF grant AST 12-
12195 (to R.B) and in part by the U.S. 
DOE contract to SLAC 
no. DE-AC02-76SF00515. 
 
 

Magnetic helicity



Magnetic relaxation

• What characterizes the ground state? 

• How long to attain it? 

• Are magneto-static equilibria stable?



Magnetic equilibrium
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“Linear Beltrami fields”
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FIGURE 4. Sketch of the six principal vortices. 

tube parallel to one of the three axes, and will be called a principal vortex, or a vortex 
for short. We show here how the existence of these vortices can be derived from a 
naive analysis of (2.5a-c). A more systematic perturbation analysis, valid near the 
integrable case, will be presented in $4.  

We look for a region where the motion is predominantly in one direction, for 
example the y-direction; this will be called a y-vortex. We try therefore to maximize 
y. This gives 

X N i A ,  z = o .  
Integrating (2.5b), we obtain 

y = (A+B)t.  

(2.24) 

(2.25) 

Equations (2.5a,c) then reduce to 

X ~ C c o s y ,  LzCs iny .  (2.26) 

Since X and L are zero on the average, it is conceivable that the conditions (2.24) will 
remain satisfied along a streamline. In  a similar way, by considering the five other 
possible directions (we can specify both the axis x, y, or z and the sign), we obtain 
a total of six vortices; their arrangement is sketched on figure 4.  

We can go a little further and derive to first order the excursions of x and z from 
their mean values (2.24). Instead of (2.26) we write 

This has the general solution 

(2.27) 

“Ground state”: lowest 
energy allowed by topology 
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FIGURE 3. The integrable case: projection of streamlines on (x, 2)-plane. 

The first and third equations form a separable system. By elimination of the time, 
this system is immediately integrated into 

Bs inx+Acosz= V ,  (2.22) 

where V is a constant. By further integration (see Appendix A) x(t) and z ( t )  can be 
expressed as elliptic integrals. Finally, since the integral (2.22) is identical with the 
right-hand side of (2.21 b ) ,  the y-motion is simply 

y = yo+ vt. (2.23) 

Our results show that the particular case C = 0 is separable and integrable. The 
streamlines in the (x, 2)-plane are represented on figure 3. The motion consists of a 
circulation along one of the curves of figure 3, accompanied by a uniform motion in 
y. The figure shows circulation in four ‘cells’ each of which in T3 is topologically a 
set of nested tori. In two of these, with an elliptical structure, the flow is along and 
around a central axis, the closed streamline at the centre. Such cells will be called 
‘vortices’. The other two cells (wavy lines joining x = 0 to x = 27c) are ‘shear layers ’. 
In the centre of the lower shear layer is a surface formed of streamlines that close 
after circulating once in the x-direction. Above and below this surface the flow has 
an additional component in the negative or positive y-direction. A winding number 
can be defined in the shear layer as the number of loops in the y-direction divided 
by the number of loops in the x-direction. This winding number varies continuously 
from - co to + co, and streamlines are closed wherever it is rational. 

2.5. The six principal vortices 
Numerical computations ($3) suggest that there exist regions of space where the flow 
is predominantly in one direction. Each of these regions has roughly the shape of a 

Electrical current is 
everywhere parallel to 

magnetic field.
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We study a prototypical class of magnetostatic equilibria where the magnetic field satisfies ∇×B =
αB, where α is spatially uniform, on a periodic domain. Using numerical solutions of the force-
free electrodynamic and relativistic ideal magnetohydrodynamic evolution equations, we show that
generic examples of such equilibria are unstable to ideal modes which are marked by exponential
growth in the linear phase. We characterize the unstable mode, showing how it can be understood
in terms of merging magnetic and current structures and explicitly demonstrate its instability using
the energy principle. Following the nonlinear evolution of these solutions, we find that they exhibit
dissipation of magnetic energy and eventually settle into a configuration with the largest allowable
wavelength. Such examples of magnetic energy being liberated on dynamical time-scales may have
implications for astrophysical sources.

Introduction.—Magnetic stability is a fundamental
question in a range of fields from laboratory plasma
physics, where it influences the viability of fusion de-
vices [1]; to space physics, where it controls the struc-
ture of magnetic fields within stars and planets; to high-
energy astrophysics, where it governs the geometry of
black hole [2, 3] and neutron star magnetospheres [4].

The explosive release of magnetic energy, as exempli-
fied by coronal mass ejections [5], and more dramatically
by magnetar flares [6–8], is most likely triggered by the
spontaneous decay of a magnetic equilibrium. It is also
conjectured that a mechanism of this type underlies pow-
erful gamma-ray flares originating from the Crab nebula
(as well as relativistic jets and gamma ray bursts)[9, 10].
The synchrotron emission observed during these flaring
events requires the acceleration of electrons above 1015

eV energies with extremely high efficiency [11, 12], which
in turn necessitates rapid, volumetric conversion of mag-
netic energy into high energy particles and radiation.

In this work, we focus on a prototypical class of space-
periodic equilibria that satisfy the Beltrami property,
∇ × B = αB with uniform α. Although there is a
rich literature studying force-free magnetic equilibria,
and the Beltrami solution in particular [13–16], funda-
mental questions about its stability, or lack thereof, are
still unanswered. In [16] it was concluded that such so-
lutions are linearly stable against incompressible defor-
mations of the embedding medium (see also [17]). Here
we use numerical simulations to show that generic peri-
odic Beltrami magnetic fields are linearly unstable. The
only exceptions we find are ones lacking magnetic cur-
vature, and those in the fundamental mode or ground
state, which have the lowest magnetic energy allowed
by periodicity and the conservation of magnetic helic-
ity HM =

∫

A ·BdV (where A is the magnetic vector
potential). We also explore the nonlinear evolution, find-
ing strong evidence that transitions from excited states
to the ground state occur on dynamical time scales. This
behavior illustrates the rapid liberation of magnetic en-
ergy accompanying spontaneous loss of magnetic equilib-

rium. It also reflects the general tendency for magnetic
fields to assemble themselves over the largest available
scale, a process known in the literature [18–21] as inverse
cascading.
In what follows, we outline our numerical methods,

present results showing the linear-regime instability of
a range of magnetostatic equilibria using force-free elec-
trodynamic (FFE) simulations, and then illustrate the
properties of the dominant unstable mode in an example
case, explicitly confirming its growth rate using the en-
ergy principle. We compare these results to those found
at finite magnetization, discussing the nonlinear evolu-
tion of the instability, and then conclude.
Methodology.—The equilibrium magnetic fields we

study are exemplified by the three-parameter “ABC”
field [22] given by

B
E =

(

B3 cosαz −B2 sinαy, (1)

B1 cosαx−B3 sinαz,

B2 cosαy −B1 sinαx
)

.

We use some particular examples of this equilibrium solu-
tion for illustrative purposes, but also consider the more
general class of Beltrami fields [23]

B = αΨ+∇×Ψ (2)

where the potential field Ψ is any solenoidal vector field
satisfying the vector Helmholtz equation∇2Ψ+α2Ψ = 0,
so that Ψ comprises only the Fourier harmonics whose
wave-vector k has magnitude α. These more general con-
figurations are constructed by choosing random vector
amplitude for the admissible harmonics. Our compu-
tational domain is the periodic cube of length L = 2π
(though we restore L in some places for clarity).
We assume a perfectly conducting medium, and con-

sider cases having both finite and infinite magnetization.
The latter case corresponds to a magnetically dominated
plasma where the inertia of its charge carriers may be
neglected. This limit is treated by FFE [24, 25]. We nu-
merically solve these equations using fourth-order finite

What is the mechanical stability of the following field?
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Spontaneous decay of periodic magnetostatic equilibria

William E. East, Jonathan Zrake, Yajie Yuan, and Roger D. Blandford
Kavli Institute for Particle Astrophysics and Cosmology, Stanford University,
SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA

We study a prototypical class of magnetostatic equilibria where the magnetic field satisfies ∇×B =
αB, where α is spatially uniform, on a periodic domain. Using numerical solutions of the force-
free electrodynamic and relativistic ideal magnetohydrodynamic evolution equations, we show that
generic examples of such equilibria are unstable to ideal modes which are marked by exponential
growth in the linear phase. We characterize the unstable mode, showing how it can be understood
in terms of merging magnetic and current structures and explicitly demonstrate its instability using
the energy principle. Following the nonlinear evolution of these solutions, we find that they exhibit
dissipation of magnetic energy and eventually settle into a configuration with the largest allowable
wavelength. Such examples of magnetic energy being liberated on dynamical time-scales may have
implications for astrophysical sources.

Introduction.—Magnetic stability is a fundamental
question in a range of fields from laboratory plasma
physics, where it influences the viability of fusion de-
vices [1]; to space physics, where it controls the struc-
ture of magnetic fields within stars and planets; to high-
energy astrophysics, where it governs the geometry of
black hole [2, 3] and neutron star magnetospheres [4].

The explosive release of magnetic energy, as exempli-
fied by coronal mass ejections [5], and more dramatically
by magnetar flares [6–8], is most likely triggered by the
spontaneous decay of a magnetic equilibrium. It is also
conjectured that a mechanism of this type underlies pow-
erful gamma-ray flares originating from the Crab nebula
(as well as relativistic jets and gamma ray bursts)[9, 10].
The synchrotron emission observed during these flaring
events requires the acceleration of electrons above 1015

eV energies with extremely high efficiency [11, 12], which
in turn necessitates rapid, volumetric conversion of mag-
netic energy into high energy particles and radiation.

In this work, we focus on a prototypical class of space-
periodic equilibria that satisfy the Beltrami property,
∇ × B = αB with uniform α. Although there is a
rich literature studying force-free magnetic equilibria,
and the Beltrami solution in particular [13–16], funda-
mental questions about its stability, or lack thereof, are
still unanswered. In [16] it was concluded that such so-
lutions are linearly stable against incompressible defor-
mations of the embedding medium (see also [17]). Here
we use numerical simulations to show that generic peri-
odic Beltrami magnetic fields are linearly unstable. The
only exceptions we find are ones lacking magnetic cur-
vature, and those in the fundamental mode or ground
state, which have the lowest magnetic energy allowed
by periodicity and the conservation of magnetic helicity
HM =

∫

A ·BdV (where A is the magnetic vector po-
tential). We also explore the nonlinear evolution, finding
strong evidence that transitions from excited states to the
ground state occur on dynamical time scales. This be-
havior illustrates the rapid liberation of magnetic energy
accompanying spontaneous loss of magnetic equilibrium.

It also reflects the general tendency for magnetic fields
to assemble themselves over the largest available scale, a
process known as inverse cascading [18–21].
In what follows, we outline our numerical methods,

present results showing the linear-regime instability of
a range of magnetostatic equilibria using force-free elec-
trodynamic (FFE) simulations, and then illustrate the
properties of the dominant unstable mode in an example
case, explicitly confirming its growth rate using the en-
ergy principle. We compare these results to those found
at finite magnetization, discussing the nonlinear evolu-
tion of the instability, and then conclude. We use units
with c = 1 throughout.
Methodology.—The equilibrium magnetic fields we

study are exemplified by the three-parameter “ABC”
field [22] given by

B
E =

(

B3 cosαz −B2 sinαy, (1)

B1 cosαx−B3 sinαz,

B2 cosαy −B1 sinαx
)

.

We use some particular examples of this equilibrium solu-
tion for illustrative purposes, but also consider the more
general class of Beltrami fields [23]

B = αΨ+∇×Ψ (2)

where the potential field Ψ is any solenoidal vector field
satisfying the vector Helmholtz equation∇2Ψ+α2Ψ = 0,
so that Ψ comprises only the Fourier harmonics whose
wave-vector k has magnitude α. These more general con-
figurations are constructed by choosing random vector
amplitude for the admissible harmonics. Our compu-
tational domain is the periodic cube of length L = 2π
(though we restore L in some places for clarity).
We assume a perfectly conducting medium, and con-

sider cases having both finite and infinite magnetization.
The latter case corresponds to a magnetically dominated
plasma where the inertia of its charge carriers may be
neglected. This limit is treated by FFE [24, 25]. We nu-
merically solve these equations using fourth-order finite
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FIG. 3. Streamlines of a magnetic field equilibrium solution B
E given by Eq. 1 with α = 2 and various coefficients (top), and the

corresponding velocity field v = E×B
E/|BE |2 of the unstable mode arising from the simulations (bottom) in the z = 0 plane.

The equilibrium solutions, from left to right, correspond to (B1, B2, B3) = (1, 1, 0), (1, 1/2, 0), and ≈ (−0.814, 0.533, 0.232),
respectively. The color indicates the perpendicular vector component with red and blue representing, respectively, out of the
page and into the page. The thickness of the streamline is proportional to the vector magnitude. The black lines indicate the
location of the separatrices in the equilibrium solutions.

tion of magnetic helicity. Since the Beltrami fields have
B = αA, their helicity is 2UB/α, and the ratio of mag-
netic energy in the αi and αf equilibria is simply αf/αi.
Accordingly, we do not expect the dissipation mechanism
to have much influence on the energy in the final state, as
long as helicity is preserved. For the simulations shown
in Fig. 4, HM is constant to ∼ 0.1%.

Conclusions.—We studied periodic Beltrami magnetic
fields in the finite and infinite magnetization cases and
found that generic cases exhibited instability, followed by
turbulence, and eventually relaxed to the longest wave-
length configuration. The instability quickly gives rise
to regions where the electric field energy density is com-
parable to the magnetic field. In astrophysical sources
where such configurations may be relevant, like the Crab
pulsar wind, these would be likely sites of particle accel-
eration and photon emission, a possibility we will explore
in future work.

Further exploration of the nonlinear regime will require
physical modeling of the dissipation process, for example
with resistive MHD or kinetic simulations incorporating
radiative losses, which will reveal details of the plasma
heating and, potentially, the energization of nonthermal
particles. We also plan to study a broader class of mag-
netic equilibria, perhaps in spherical or cylindrical ge-
ometries.

FIG. 4. A comparison of the decay of an α2 = 11 equilib-
rium in FFE and RMHD simulations with different values of
magnetization parameter σ. Shown is the magnetic energy
(top) and kinetic energy — or electric field energy in the case
of FFE — (bottom). The top panel also shows, in horizon-
tal dashed lines, the magnetic energy of α2 = 3 and α2 = 1
states with the same helicity. The bottom inset shows the
linear growth rate γ measured for runs having different mag-
netization parameters, along with the Alfvén speed (dashed
line) for comparison.
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ABSTRACT

The free decay of nonhelical relativistic magnetohydrodynamic turbulence is studied numerically, and found to
exhibit cascading of magnetic energy toward large scales. Evolution of the magnetic energy spectrum PM (k, t) is
self-similar in time and well modeled by a broken power law with subinertial and inertial range indices very close
to 7/2 and −2, respectively. The magnetic coherence scale is found to grow in time as t2/5, much too slow to
account for optical polarization of gamma-ray burst afterglow emission if magnetic energy is to be supplied only at
microphysical length scales. No bursty or explosive energy loss is observed in relativistic MHD turbulence having
modest magnetization, which constrains magnetic reconnection models for rapid time variability of GRB prompt
emission, blazars, and the Crab nebula.

Key words: gamma-ray burst: general – magnetic fields – magnetohydrodynamics (MHD) – turbulence
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1. INTRODUCTION

Freely decaying magnetohydrodynamic (MHD) turbulence is
a phenomenon of fundamental importance within the theory of
magnetized fluids. That its operation may include the cascading
of energy toward larger scales bears far-reaching implications
in cosmology and high-energy astrophysics. For example, the
strength and coherence scale of the present-day galactic mag-
netic field could be explained by inverse cascading from ex-
tremely small-scale fields seeded by phase transitions in the
early universe (Field & Carroll 2000; Tevzadze et al. 2012).
Inverse cascading of magnetic energy, if sufficiently fast, could
also explain recent measurements of strong optical polariza-
tion in gamma-ray burst (GRB) afterglows (Uehara et al. 2012;
Mundell et al. 2013), where magnetic energy production is be-
lieved to operate only at very small scales.

Turbulent inverse cascades are associated with the accumu-
lation of energy at wavelengths longer than the turbulence inte-
gral scale. They entail the self-organization of turbulent struc-
tures, wherein order emerges from chaotic initial conditions.
A familiar example is that of two-dimensional hydrodynamic
turbulence, where inverse cascading of kinetic energy is a con-
sequence of global enstrophy conservation. Inverse cascades are
qualitatively distinct from direct cascades in that they shift en-
ergy away from, rather than toward, the dissipation scale. In gen-
eral, turbulent energy flux moves in both directions. However, in
three-dimensional hydrodynamic turbulence, modes above the
integral scale are damped by instabilities faster than they are
pumped by motions in the inertial range.

Since the work of Frisch et al. (1975), it has been well
appreciated that MHD turbulence may exhibit inverse cascading
as a consequence of global magnetic helicity conservation.
However, the literature to date is still conflicted on whether
helicity is a necessary condition for inverse cascading to
occur. It was shown by Olesen (1997) and Shiromizu (1998)
that inverse cascading could be expected even for nonhelical
configurations, as a consequence of rescaling symmetries native
to the Navier–Stokes equations, but no inverse cascading was
seen in numerical studies based on EDQNM theory (Son 1999)
or direct numerical simulations with relatively low resolution

(Christensson et al. 2001; Banerjee & Jedamzik 2004). Given
that mechanisms for helicity production in the early universe
are uncertain, and completely absent from regions of GRB
afterglow emission, it is crucial to understand the operation
of freely decaying nonhelical MHD turbulence.

In this Letter, we establish that helicity is not a necessary
condition for inverse cascading in relativistic MHD turbulence.
The intended domains of applicability are the evolution of
primordial magnetic fields, and those thought to be responsible
for the synchrotron emission of GRB afterglows. Given that
neither is free of relativistic complications, our results are based
on numerical solutions of the relativistic MHD equations. We
adopt the initial value problem PM (k, 0) ∝ δ(k − k0), where
k−1

0 is much smaller than the simulation domain (PM (k, t) is
defined so that the electromagnetic energy density EM (t) =∫

PM (k, t) dk). This choice permits the system to evolve toward
a universal energy spectrum, allowing the sub-inertial and
inertial range indices to be measured instead of imposed.

Numerical simulations exhibiting inverse cascades in non-
helical, nonrelativistic MHD turbulence were reported by
Brandenburg et al. (2014) concurrently with the preparation
of this work. Our treatment goes farther by including relativistic
effects, and by proposing a self-similar ansatz for the evolu-
tion of PM (k, t) which agrees very closely with the simula-
tion results. We have studied freely decaying MHD turbulence,
whereas Brandenburg et al. (2014) assumed continuous mag-
netic energy injection at small scales. Despite these differences,
both studies support the existence of inverse magnetic energy
transfer in non-helical MHD turbulence. The case of relativistic
MHD turbulence driven continuously at large scales as been
treated previously (Zrake & MacFadyen 2011, 2013). Our nu-
merical setup is described in Section 2. Simulation results and
our self-similar ansatz are given in Section 3. In Section 4.3 we
suggest a phenomenological picture that accounts for inverse
cascading of MHD turbulence. We also draw comparisons with
previous numerical and analytical work in Section 4.1, and in
Section 4.2 examine the generality of the initial value problem
chosen for this study. Finally, in Section 4.4 we discuss the im-
plications of our findings to the physics of GRB prompt and
afterglow emission.

1

The Astrophysical Journal Letters, 794:L26 (5pp), 2014 October 20 Zrake

Figure 1. Two-dimensional slices of transverse magnetic field component showing the progression of magnetic field decay in a three-dimensional relativistic MHD
turbulence. The leftmost panel shows the initial condition, and then from left to right the solution is shown at 4, 32, and 128 initial Alfvén crossing times of the
simulation domain.
(A color version of this figure is available in the online journal.)

2. NUMERICAL SET-UP

The scenario investigated here is described as follows. Con-
sider a perfectly conducting fluid whose rest mass, thermal,
and magnetic energy densities are mutually comparable. As-
sume that the magnetic field has periodicity scale L, is out of
equilibrium such that J × B ̸= 0, is nonhelical, and has an en-
ergy spectrum PM (k, 0) that is peaked at the scale k0 ≫ 2π/L.
Time-dependent solutions of the relativistic MHD equations

∇νρuµ = 0 (1a)

∇νT
µν = 0 (1b)

∂B
∂t

= ∇ × (v × B) (1c)

are obtained using the Mara code (Zrake & MacFadyen 2011)
run on a three-dimensional computational mesh with 512 grid
points along each axis. In Equation (1), T µν is the stress–energy
tensor including both hydrodynamic and electromagnetic con-
tribution, uµ is the fluid four-velocity, and ρ is mass density.
The magnetic field is initially divergenceless and Gaussian-
random with a power spectrum that is narrowly peaked around
the wavenumber k0 = 50k1, where k1 = 2π/L. PM (k, t) is
normalized so that the plasma-β, the ratio of gas to magnetic
pressure, is initially 1.

We define inverse cascading as the accumulation of energy in
the sub-inertial range modes (those above the turbulence integral
scale), which is evident when the magnetic energy spectrum
PM (k, t) is an increasing function of time for wavenumbers
k < kt where kt is integral scale wavenumber at time t. Note that
migration of kt toward smaller values over time is not a sufficient
condition for inverse cascading; growth of the coherence scale
also occurs in so-called “selective decay,” whereby energy is
processed through a direct cascade that drains energy in the
small scales before the larger. Interestingly, both processes have
been suggested to involve leftward migration of kt depending
upon time like t−2/5 (Olesen 1997; Shiromizu 1998; Son 1999).

3. RESULTS

Figure 1 shows two-dimensional slices of the out-of-page
magnetic field component taken at roughly logarithmic intervals
throughout the simulation. The leftmost panel shows the initial
Gaussian-random magnetic field configuration. The second

Figure 2. Temporal evolution of PM (k, t) at seven representative wavenumbers.
Heavier ink denotes larger scales. The dashed line shows a power law with
index −4/3

panel shows the solution after a single Alfvén crossing time
of the simulation domain, during which the field has organized
itself into a collection of small magnetic islands having complex
internal structure. The third and fourth panels show those islands
becoming larger in scale, and less numerous. The color mapping
has been stretched to the minimum and maximum data values
of each image, so only the field morphology is depicted and
not its average magnitude. Since the initial condition lacks
magnetic energy at large scales, the appearance of larger
coherent magnetic field structures cannot be selective decay,
but can only be attributed to the inverse transfer of magnetic
energy from small to large scales.

Indeed, as shown in Figure 2 the magnetic energy spectrum
PM (k, t) is an increasing function of time for small k at early
times. For each wavenumber k < k0, there is a turnover time
τk when (∂/∂t)PM (k, t) switches sign. τk is thus the time when
coherent magnetic field structures of wavenumber k are fully
developed, and captures the time required for the magnetic field
to assemble itself at length scale k−1. At times t > τk , the
amplitude of wavenumber k structures diminishes as a power law
in time, PM (k, t) ∝ t δ where δ is measured to be −1.3 ± 0.03.
The fiducial value of −4/3 will be adopted for simplicity.

Figure 3 shows PM (k, t) at several times throughout the
simulation. After a fraction of an Alfvén time, the magnetic
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Fig. 2.— The temporal evolution of PM (k, t) at seven represen-
tative wavenumbers. Heavier ink denotes larger scales. The dashed
line shows a power law with index �4/3

small to large scales.
Indeed, as shown in Figure 2 the magnetic energy spec-

trum PM (k, t) is an increasing function of time for small
k at early times. For each wavenumber k < k0, there is
a turn-over time ⌧k when @

@tPM (k, t) switches sign. ⌧k
is thus the time when coherent magnetic field structures
of wavenumber k are fully developed, and captures the
time required for the magnetic field to assemble itself
at length scale k�1. At times t > ⌧k, the amplitude
of wavenumber k structures diminishes as a power law in
time, PM (k, t) / t� where � is measured to be�1.3±0.03.
The fiducial value of �4/3 will be adopted for simplicity.
Figure 3 shows PM (k, t) at several times throughout

the simulation. After a fraction of an Alfvén time, the
magnetic energy spectrum relaxes to a form which is well
described by a split power law

PM (k, tA) /

8
<

:

⇣
k
k0

⌘↵
k < k0

⇣
k
k0

⌘�
k � k0

. (2)

where the sub-inertial and inertial range indices are mea-
sured to be ↵ = 3.50 ± 0.04 and � = �1.91 ± 0.005
respectively. The values ↵ = 7/2 and � = �2 will be
adopted for simplicity. We note here that the magnetic
energy spectrum is found to be significantly steeper than
5/3 as is predicted in the Goldreich-Sridhar (Goldreich
& Sridhar 1995) phenomenology. 5/3 scaling has been
verified numerically in strong Alfvén wave turbulence as
well as isotropic MHD turbulence driven kinetically at
large scales (see e.g. Tobias et al. 2011, for a review).
However, it appears that isotropic, freely decaying MHD
turbulence has a slope that is significantly steeper than
is predicted by the Goldreich-Sridhar theory.
As shown in the upper panel of Figure 4, the break

in the power spectrum lies at kt / t� where � is con-
sistent with the value of �2/5 predicted by scaling ar-
guments made in Shiromizu (1998) and Olesen (1997).
Throughout the simulation, the sub-inertial and inertial
range indices remain fixed, with the peak of magnetic en-
ergy moving down and to the left on the axes of Figure
3. In other words, the evolution of the magnetic energy

Fig. 3.— PM (k, t) shown at nine representative times, including
t = 0 and proceeding through t = 22.6tA with lines of increasing
width. The dashed lines show power laws with indices 3.5 and
�2 for the scales larger and smaller than the injection scale 2⇡/k0
respectively. The dashed-dotted line shows PM (k, ⌧k) / k4/3.

spectrum is very nearly self-similar, being well-described
by

PM (k, t) = s��+�PM (ks�� , tA) (3)

where s = t/tA and � = �4/3 is the power-law in-
dex for decay at all wavenumbers larger than kt, as
shown in Figure 2. In this empirical model the mag-
netic energy at each scale larger than k�1

t grows pro-
portionally to t�(��↵)+� = t13/15 and the energy as-
sociated with peak magnetic structures, PM (kt, t) di-
minishes as t��+� = t�8/15. Those peaks trace out
PM (k, ⌧k) / k4/3 as shown in the dashed-dotted line of
Figure 3. In the limit of Lkt ! 1 the total magnetic en-
ergy EM (t) / t�(�+1)+� = t�14/15 as shown in the lower
panel of 4.

4. DISCUSSION

4.1. Comparison with other studies

Direct numerical simulation of freely decaying non-
helical MHD turbulence have been carried out by Chris-
tensson et al. (2001) and Banerjee & Jedamzik (2004)
which report selective decay and no inverse cascade.
Nevertheless, it is possible that an inverse cascade was
present, but hidden beneath the sub-inertial part of
the imposed energy spectrum, for which indices of 2
and 4 were chosen by each study respectively. It was
observed here that the locus of peak spectral energy
PM (k, ⌧k) / k4/3, so additional scale separation might
have been required in those studies for an inverse cas-
cade to become apparent. Our results are in general
agreement with those of Brandenburg et al. (2014), which
are based on direct numerical simulations of non-helical,
non-relativistic MHD turbulence done with very high res-
olution. That study reported a slightly steeper slope of
the sub-inertial range.
Inverse cascading of magnetic energy in the test-

field limit was also reported very recently by Berera &
Linkmann (2014). This study found that passive vector
fields advected within fully developed, isotropic hydrody-
namic turbulence attain coherency over increasing sptial
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Fig. 2.— The temporal evolution of PM (k, t) at seven represen-
tative wavenumbers. Heavier ink denotes larger scales. The dashed
line shows a power law with index �4/3

small to large scales.
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Forward Alfven cascade

Too fast!



“Untangling” alone

Too slow!
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Zrake, East, Yuan, Blandford (in prep)

2D is very different from 3D! 
!

!

In 3D, ground state is attained on a dynamical time- 
whereas in 2D, it takes resistive time

For short wavelength configurations (large alpha),



This process is implosive, not explosive!



Unstable!

time
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e
Instability can be triggered by deceleration of the flow.



Stable (out of causal contact)

time
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e
Instability can be triggered by deceleration of the flow.



Nalewajko, Zrake, East, Yuan, Blandford (in prep)



• Only ground-state equilibria are stable 

• Transition to ground state is bursty when helical 

• Smooth when non-helical 

• Inverse cascading both with and without helicity 

• Mutual agreement among [analytic, FFE, RMHD, PIC] 

• e+/e- form soft power-law tail in non-linear regime


