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3.1 The 3+1 decomposition of space–time

The space–time metric can be generally written as

ds2 = gµνdxµdxν = −α2dt2 + γij (β idt + dxi)(βj dt + dxj ),

(12)

where α is called the lapse function, β i the shift vector and γ ij the
three-dimensional metric tensor of the space-like hypersurfaces.
The hypersurfaces are regarded as the absolute space at differ-
ent instants of time t (cf. Thorne et al. 1986). For Kerr space–
time, ∂t gµν = ∂ϕgµν = 0. These correspond to the existences of
the Killing vector fields ξµ and χµ. In the coordinates (t, ϕ, r, θ ),
ξµ = (1, 0, 0, 0) and χµ = (0, 1, 0, 0).

The local fiducial observer (FIDO; Bardeen et al. 1972; Thorne
et al. 1986), whose world line is perpendicular to the absolute space,
is described by the coordinate four-velocity

nµ =
(

1
α

,
−β i

α

)
, nµ = gµνn

ν = (−α, 0, 0, 0). (13)

The angular momentum of this observer is n · χ = gµνnµχν =
nϕ = 0, and thus FIDO is also a zero angular momentum observer
(ZAMO; Thorne et al. 1986). Note that the FIDO frame is not
inertial, but it can be used as a convenient orthonormal basis to
investigate the local physics (Thorne et al. 1986; Punsly & Coroniti
1990; Punsly 2008).

In the Boyer–Lindquist (BL) coordinates (t, ϕ, r, θ ) (see
Appendix A), FIDOs rotate with the coordinate angular velocity

) ≡ dϕFIDO

dt
= −βϕ > 0, (14)

which is in the same direction as the BH. The BL coordinates
have the well-known coordinate singularity (grr = ∞) at the event
horizon. The radius of the event horizon is rH = 1 +

√
1 − a2.

The Killing vector ξµ is space-like in the ergosphere, where
ξ 2 = gtt = −α2 + β2 > 0. The radius of the outer boundary of the
ergosphere (i.e. the stationary limit) is res = 1 +

√
1 − a2 cos2 θ .

At infinity, this space–time asymptotes to the flat one. The shapes
of the event horizon and the ergosphere are shown in Fig. 1 .

The Kerr–Schild (KS) coordinates have no coordinate singular-
ity at the event horizon. However, the KS spatial coordinates are no
longer orthogonal (γ rϕ ̸= 0; see Appendix A), and then one should
be cautious for examining the spatial structure of the electromag-
netic field by using the KS coordinates.

3.2 The 3+1 electrodynamics

In order to study the test electromagnetic field in Kerr space–time,
we adopt the 3+1 electrodynamics of the version which was de-
veloped by (Komissarov 2004a, see also Landau & Lifshitz 1975;
Komissarov 2009, and references therein).2 The covariant Maxwell
equations ∇∗

ν Fµν = 0 and ∇νF
µν = 4πIµ are reduced to

∇ · B = 0, ∂t B + ∇ × E = 0, (15)

∇ · D = 4πρ, −∂t D + ∇ × H = 4π J, (16)

where ∇ · C and ∇ × C denote (1/
√

γ )∂i(
√

γCi) and eijk∂jCk , re-
spectively, and eijk = (1/

√
γ )ϵijk is the Levi-Civita pseudo-tensor

2 Thorne & MacDonald (1982) and Thorne et al. (1986) developed the 3+1
electrodynamics of the version without introducing E or H , and showed
some of the expressions in this paper, such as equations (22) and (29).

Figure 1. The event horizon (inner thick line) and the outer boundary of
the ergosphere (outer thick line) of Kerr space–time. The thin lines represent
) − α/

√
γϕϕ = 0.2, 0.1,−0.1,−0.14,−0.17,−0.2 in the BL coordinates

in the order of increasing r. The line of ) − α/
√

γϕϕ = 0 is identical to the
outer thick line. The spin parameter is set to be a = 0.9.

of the absolute space. The condition of zero electric and magnetic
susceptibilities for general fully ionized plasmas leads to following
constitutive equations:

E = α D + β × B, (17)

H = αB − β × D, (18)

where C × F denotes eijkCjFk . At infinity, α = 1 and β = 0,
so that E = D and H = B. Here, D, B and ρ are the electric
field, magnetic field and charge density as measured by FIDOs,
respectively (see Appendix A for more details). The current J is
related to the current as measured by FIDOs, j , as

J = α j − ρβ. (19)

The covariant energy–momentum equation of the electromag-
netic field ∇νT

ν
µ = −FµνI

ν gives us the energy equation as

∂t

[
1

8π
(E · D + B · H)

]
+ ∇ ·

(
1

4π
E × H

)
= −E · J, (20)

where C · F denotes CiFi, and the angular momentum equation as

∂t

[
1

4π
(D × B) · m

]
+ ∇ · 1

4π

[
−(E · m)D − (H · m)B

+1
2

(E · D + B · H)m
]

= −(ρ E + J × B) · m, (21)

where m = ∂ϕ . From these equations, one can find the energy den-
sity, energy flux, angular momentum density and angular momen-
tum flux.

3.3 Steady axisymmetric electromagnetic field in the vacuum

Before investigating the plasma-filled magnetosphere in Kerr
space–time, the properties of the electromagnetic field in the vac-
uum (i.e. no plasma) are summarized. Wald (1974) derived the
solution of a steady, axisymmetric, vacuum test electromagnetic
field in Kerr space–time for which the magnetic field is uniform,

MNRAS 442, 2855–2866 (2014)
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of the absolute space. The condition of zero electric and magnetic
susceptibilities for general fully ionized plasmas leads to following
constitutive equations:

E = α D + β × B, (17)

H = αB − β × D, (18)

where C × F denotes eijkCjFk . At infinity, α = 1 and β = 0,
so that E = D and H = B. Here, D, B and ρ are the electric
field, magnetic field and charge density as measured by FIDOs,
respectively (see Appendix A for more details). The current J is
related to the current as measured by FIDOs, j , as

J = α j − ρβ. (19)
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where m = ∂ϕ . From these equations, one can find the energy den-
sity, energy flux, angular momentum density and angular momen-
tum flux.

3.3 Steady axisymmetric electromagnetic field in the vacuum

Before investigating the plasma-filled magnetosphere in Kerr
space–time, the properties of the electromagnetic field in the vac-
uum (i.e. no plasma) are summarized. Wald (1974) derived the
solution of a steady, axisymmetric, vacuum test electromagnetic
field in Kerr space–time for which the magnetic field is uniform,
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1990; Punsly 2008).

In the Boyer–Lindquist (BL) coordinates (t, ϕ, r, θ ) (see
Appendix A), FIDOs rotate with the coordinate angular velocity

) ≡ dϕFIDO

dt
= −βϕ > 0, (14)

which is in the same direction as the BH. The BL coordinates
have the well-known coordinate singularity (grr = ∞) at the event
horizon. The radius of the event horizon is rH = 1 +

√
1 − a2.

The Killing vector ξµ is space-like in the ergosphere, where
ξ 2 = gtt = −α2 + β2 > 0. The radius of the outer boundary of the
ergosphere (i.e. the stationary limit) is res = 1 +

√
1 − a2 cos2 θ .

At infinity, this space–time asymptotes to the flat one. The shapes
of the event horizon and the ergosphere are shown in Fig. 1 .

The Kerr–Schild (KS) coordinates have no coordinate singular-
ity at the event horizon. However, the KS spatial coordinates are no
longer orthogonal (γ rϕ ̸= 0; see Appendix A), and then one should
be cautious for examining the spatial structure of the electromag-
netic field by using the KS coordinates.

3.2 The 3+1 electrodynamics

In order to study the test electromagnetic field in Kerr space–time,
we adopt the 3+1 electrodynamics of the version which was de-
veloped by (Komissarov 2004a, see also Landau & Lifshitz 1975;
Komissarov 2009, and references therein).2 The covariant Maxwell
equations ∇∗

ν Fµν = 0 and ∇νF
µν = 4πIµ are reduced to

∇ · B = 0, ∂t B + ∇ × E = 0, (15)

∇ · D = 4πρ, −∂t D + ∇ × H = 4π J, (16)

where ∇ · C and ∇ × C denote (1/
√

γ )∂i(
√

γCi) and eijk∂jCk , re-
spectively, and eijk = (1/

√
γ )ϵijk is the Levi-Civita pseudo-tensor

2 Thorne & MacDonald (1982) and Thorne et al. (1986) developed the 3+1
electrodynamics of the version without introducing E or H , and showed
some of the expressions in this paper, such as equations (22) and (29).

Figure 1. The event horizon (inner thick line) and the outer boundary of
the ergosphere (outer thick line) of Kerr space–time. The thin lines represent
) − α/

√
γϕϕ = 0.2, 0.1,−0.1,−0.14,−0.17,−0.2 in the BL coordinates

in the order of increasing r. The line of ) − α/
√

γϕϕ = 0 is identical to the
outer thick line. The spin parameter is set to be a = 0.9.

of the absolute space. The condition of zero electric and magnetic
susceptibilities for general fully ionized plasmas leads to following
constitutive equations:

E = α D + β × B, (17)

H = αB − β × D, (18)

where C × F denotes eijkCjFk . At infinity, α = 1 and β = 0,
so that E = D and H = B. Here, D, B and ρ are the electric
field, magnetic field and charge density as measured by FIDOs,
respectively (see Appendix A for more details). The current J is
related to the current as measured by FIDOs, j , as

J = α j − ρβ. (19)

The covariant energy–momentum equation of the electromag-
netic field ∇νT

ν
µ = −FµνI

ν gives us the energy equation as

∂t

[
1

8π
(E · D + B · H)

]
+ ∇ ·

(
1

4π
E × H

)
= −E · J, (20)

where C · F denotes CiFi, and the angular momentum equation as

∂t

[
1

4π
(D × B) · m

]
+ ∇ · 1

4π

[
−(E · m)D − (H · m)B

+1
2

(E · D + B · H)m
]

= −(ρ E + J × B) · m, (21)

where m = ∂ϕ . From these equations, one can find the energy den-
sity, energy flux, angular momentum density and angular momen-
tum flux.

3.3 Steady axisymmetric electromagnetic field in the vacuum

Before investigating the plasma-filled magnetosphere in Kerr
space–time, the properties of the electromagnetic field in the vac-
uum (i.e. no plasma) are summarized. Wald (1974) derived the
solution of a steady, axisymmetric, vacuum test electromagnetic
field in Kerr space–time for which the magnetic field is uniform,
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3.1 The 3+1 decomposition of space–time

The space–time metric can be generally written as

ds2 = gµνdxµdxν = −α2dt2 + γij (β idt + dxi)(βj dt + dxj ),

(12)

where α is called the lapse function, β i the shift vector and γ ij the
three-dimensional metric tensor of the space-like hypersurfaces.
The hypersurfaces are regarded as the absolute space at differ-
ent instants of time t (cf. Thorne et al. 1986). For Kerr space–
time, ∂t gµν = ∂ϕgµν = 0. These correspond to the existences of
the Killing vector fields ξµ and χµ. In the coordinates (t, ϕ, r, θ ),
ξµ = (1, 0, 0, 0) and χµ = (0, 1, 0, 0).

The local fiducial observer (FIDO; Bardeen et al. 1972; Thorne
et al. 1986), whose world line is perpendicular to the absolute space,
is described by the coordinate four-velocity

nµ =
(

1
α

,
−β i

α

)
, nµ = gµνn

ν = (−α, 0, 0, 0). (13)

The angular momentum of this observer is n · χ = gµνnµχν =
nϕ = 0, and thus FIDO is also a zero angular momentum observer
(ZAMO; Thorne et al. 1986). Note that the FIDO frame is not
inertial, but it can be used as a convenient orthonormal basis to
investigate the local physics (Thorne et al. 1986; Punsly & Coroniti
1990; Punsly 2008).

In the Boyer–Lindquist (BL) coordinates (t, ϕ, r, θ ) (see
Appendix A), FIDOs rotate with the coordinate angular velocity

) ≡ dϕFIDO

dt
= −βϕ > 0, (14)

which is in the same direction as the BH. The BL coordinates
have the well-known coordinate singularity (grr = ∞) at the event
horizon. The radius of the event horizon is rH = 1 +

√
1 − a2.

The Killing vector ξµ is space-like in the ergosphere, where
ξ 2 = gtt = −α2 + β2 > 0. The radius of the outer boundary of the
ergosphere (i.e. the stationary limit) is res = 1 +

√
1 − a2 cos2 θ .

At infinity, this space–time asymptotes to the flat one. The shapes
of the event horizon and the ergosphere are shown in Fig. 1 .

The Kerr–Schild (KS) coordinates have no coordinate singular-
ity at the event horizon. However, the KS spatial coordinates are no
longer orthogonal (γ rϕ ̸= 0; see Appendix A), and then one should
be cautious for examining the spatial structure of the electromag-
netic field by using the KS coordinates.

3.2 The 3+1 electrodynamics

In order to study the test electromagnetic field in Kerr space–time,
we adopt the 3+1 electrodynamics of the version which was de-
veloped by (Komissarov 2004a, see also Landau & Lifshitz 1975;
Komissarov 2009, and references therein).2 The covariant Maxwell
equations ∇∗

ν Fµν = 0 and ∇νF
µν = 4πIµ are reduced to

∇ · B = 0, ∂t B + ∇ × E = 0, (15)

∇ · D = 4πρ, −∂t D + ∇ × H = 4π J, (16)

where ∇ · C and ∇ × C denote (1/
√

γ )∂i(
√

γCi) and eijk∂jCk , re-
spectively, and eijk = (1/

√
γ )ϵijk is the Levi-Civita pseudo-tensor

2 Thorne & MacDonald (1982) and Thorne et al. (1986) developed the 3+1
electrodynamics of the version without introducing E or H , and showed
some of the expressions in this paper, such as equations (22) and (29).

Figure 1. The event horizon (inner thick line) and the outer boundary of
the ergosphere (outer thick line) of Kerr space–time. The thin lines represent
) − α/

√
γϕϕ = 0.2, 0.1,−0.1,−0.14,−0.17,−0.2 in the BL coordinates

in the order of increasing r. The line of ) − α/
√

γϕϕ = 0 is identical to the
outer thick line. The spin parameter is set to be a = 0.9.

of the absolute space. The condition of zero electric and magnetic
susceptibilities for general fully ionized plasmas leads to following
constitutive equations:

E = α D + β × B, (17)

H = αB − β × D, (18)

where C × F denotes eijkCjFk . At infinity, α = 1 and β = 0,
so that E = D and H = B. Here, D, B and ρ are the electric
field, magnetic field and charge density as measured by FIDOs,
respectively (see Appendix A for more details). The current J is
related to the current as measured by FIDOs, j , as

J = α j − ρβ. (19)

The covariant energy–momentum equation of the electromag-
netic field ∇νT

ν
µ = −FµνI

ν gives us the energy equation as

∂t

[
1

8π
(E · D + B · H)

]
+ ∇ ·

(
1

4π
E × H

)
= −E · J, (20)

where C · F denotes CiFi, and the angular momentum equation as

∂t

[
1

4π
(D × B) · m

]
+ ∇ · 1

4π

[
−(E · m)D − (H · m)B

+1
2

(E · D + B · H)m
]

= −(ρ E + J × B) · m, (21)

where m = ∂ϕ . From these equations, one can find the energy den-
sity, energy flux, angular momentum density and angular momen-
tum flux.

3.3 Steady axisymmetric electromagnetic field in the vacuum

Before investigating the plasma-filled magnetosphere in Kerr
space–time, the properties of the electromagnetic field in the vac-
uum (i.e. no plasma) are summarized. Wald (1974) derived the
solution of a steady, axisymmetric, vacuum test electromagnetic
field in Kerr space–time for which the magnetic field is uniform,
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3.1 The 3+1 decomposition of space–time

The space–time metric can be generally written as

ds2 = gµνdxµdxν = −α2dt2 + γij (β idt + dxi)(βj dt + dxj ),

(12)

where α is called the lapse function, β i the shift vector and γ ij the
three-dimensional metric tensor of the space-like hypersurfaces.
The hypersurfaces are regarded as the absolute space at differ-
ent instants of time t (cf. Thorne et al. 1986). For Kerr space–
time, ∂t gµν = ∂ϕgµν = 0. These correspond to the existences of
the Killing vector fields ξµ and χµ. In the coordinates (t, ϕ, r, θ ),
ξµ = (1, 0, 0, 0) and χµ = (0, 1, 0, 0).

The local fiducial observer (FIDO; Bardeen et al. 1972; Thorne
et al. 1986), whose world line is perpendicular to the absolute space,
is described by the coordinate four-velocity

nµ =
(

1
α

,
−β i

α

)
, nµ = gµνn

ν = (−α, 0, 0, 0). (13)

The angular momentum of this observer is n · χ = gµνnµχν =
nϕ = 0, and thus FIDO is also a zero angular momentum observer
(ZAMO; Thorne et al. 1986). Note that the FIDO frame is not
inertial, but it can be used as a convenient orthonormal basis to
investigate the local physics (Thorne et al. 1986; Punsly & Coroniti
1990; Punsly 2008).

In the Boyer–Lindquist (BL) coordinates (t, ϕ, r, θ ) (see
Appendix A), FIDOs rotate with the coordinate angular velocity

) ≡ dϕFIDO

dt
= −βϕ > 0, (14)

which is in the same direction as the BH. The BL coordinates
have the well-known coordinate singularity (grr = ∞) at the event
horizon. The radius of the event horizon is rH = 1 +

√
1 − a2.

The Killing vector ξµ is space-like in the ergosphere, where
ξ 2 = gtt = −α2 + β2 > 0. The radius of the outer boundary of the
ergosphere (i.e. the stationary limit) is res = 1 +

√
1 − a2 cos2 θ .

At infinity, this space–time asymptotes to the flat one. The shapes
of the event horizon and the ergosphere are shown in Fig. 1 .

The Kerr–Schild (KS) coordinates have no coordinate singular-
ity at the event horizon. However, the KS spatial coordinates are no
longer orthogonal (γ rϕ ̸= 0; see Appendix A), and then one should
be cautious for examining the spatial structure of the electromag-
netic field by using the KS coordinates.

3.2 The 3+1 electrodynamics

In order to study the test electromagnetic field in Kerr space–time,
we adopt the 3+1 electrodynamics of the version which was de-
veloped by (Komissarov 2004a, see also Landau & Lifshitz 1975;
Komissarov 2009, and references therein).2 The covariant Maxwell
equations ∇∗

ν Fµν = 0 and ∇νF
µν = 4πIµ are reduced to

∇ · B = 0, ∂t B + ∇ × E = 0, (15)

∇ · D = 4πρ, −∂t D + ∇ × H = 4π J, (16)

where ∇ · C and ∇ × C denote (1/
√

γ )∂i(
√

γCi) and eijk∂jCk , re-
spectively, and eijk = (1/

√
γ )ϵijk is the Levi-Civita pseudo-tensor

2 Thorne & MacDonald (1982) and Thorne et al. (1986) developed the 3+1
electrodynamics of the version without introducing E or H , and showed
some of the expressions in this paper, such as equations (22) and (29).

Figure 1. The event horizon (inner thick line) and the outer boundary of
the ergosphere (outer thick line) of Kerr space–time. The thin lines represent
) − α/

√
γϕϕ = 0.2, 0.1,−0.1,−0.14,−0.17,−0.2 in the BL coordinates

in the order of increasing r. The line of ) − α/
√

γϕϕ = 0 is identical to the
outer thick line. The spin parameter is set to be a = 0.9.

of the absolute space. The condition of zero electric and magnetic
susceptibilities for general fully ionized plasmas leads to following
constitutive equations:

E = α D + β × B, (17)

H = αB − β × D, (18)

where C × F denotes eijkCjFk . At infinity, α = 1 and β = 0,
so that E = D and H = B. Here, D, B and ρ are the electric
field, magnetic field and charge density as measured by FIDOs,
respectively (see Appendix A for more details). The current J is
related to the current as measured by FIDOs, j , as

J = α j − ρβ. (19)

The covariant energy–momentum equation of the electromag-
netic field ∇νT

ν
µ = −FµνI

ν gives us the energy equation as

∂t

[
1

8π
(E · D + B · H)

]
+ ∇ ·

(
1

4π
E × H

)
= −E · J, (20)

where C · F denotes CiFi, and the angular momentum equation as

∂t

[
1

4π
(D × B) · m

]
+ ∇ · 1

4π

[
−(E · m)D − (H · m)B

+1
2

(E · D + B · H)m
]

= −(ρ E + J × B) · m, (21)

where m = ∂ϕ . From these equations, one can find the energy den-
sity, energy flux, angular momentum density and angular momen-
tum flux.

3.3 Steady axisymmetric electromagnetic field in the vacuum

Before investigating the plasma-filled magnetosphere in Kerr
space–time, the properties of the electromagnetic field in the vac-
uum (i.e. no plasma) are summarized. Wald (1974) derived the
solution of a steady, axisymmetric, vacuum test electromagnetic
field in Kerr space–time for which the magnetic field is uniform,
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3.1 The 3+1 decomposition of space–time

The space–time metric can be generally written as

ds2 = gµνdxµdxν = −α2dt2 + γij (β idt + dxi)(βj dt + dxj ),

(12)

where α is called the lapse function, β i the shift vector and γ ij the
three-dimensional metric tensor of the space-like hypersurfaces.
The hypersurfaces are regarded as the absolute space at differ-
ent instants of time t (cf. Thorne et al. 1986). For Kerr space–
time, ∂t gµν = ∂ϕgµν = 0. These correspond to the existences of
the Killing vector fields ξµ and χµ. In the coordinates (t, ϕ, r, θ ),
ξµ = (1, 0, 0, 0) and χµ = (0, 1, 0, 0).

The local fiducial observer (FIDO; Bardeen et al. 1972; Thorne
et al. 1986), whose world line is perpendicular to the absolute space,
is described by the coordinate four-velocity

nµ =
(

1
α

,
−β i

α

)
, nµ = gµνn

ν = (−α, 0, 0, 0). (13)

The angular momentum of this observer is n · χ = gµνnµχν =
nϕ = 0, and thus FIDO is also a zero angular momentum observer
(ZAMO; Thorne et al. 1986). Note that the FIDO frame is not
inertial, but it can be used as a convenient orthonormal basis to
investigate the local physics (Thorne et al. 1986; Punsly & Coroniti
1990; Punsly 2008).

In the Boyer–Lindquist (BL) coordinates (t, ϕ, r, θ ) (see
Appendix A), FIDOs rotate with the coordinate angular velocity

) ≡ dϕFIDO

dt
= −βϕ > 0, (14)

which is in the same direction as the BH. The BL coordinates
have the well-known coordinate singularity (grr = ∞) at the event
horizon. The radius of the event horizon is rH = 1 +

√
1 − a2.

The Killing vector ξµ is space-like in the ergosphere, where
ξ 2 = gtt = −α2 + β2 > 0. The radius of the outer boundary of the
ergosphere (i.e. the stationary limit) is res = 1 +

√
1 − a2 cos2 θ .

At infinity, this space–time asymptotes to the flat one. The shapes
of the event horizon and the ergosphere are shown in Fig. 1 .

The Kerr–Schild (KS) coordinates have no coordinate singular-
ity at the event horizon. However, the KS spatial coordinates are no
longer orthogonal (γ rϕ ̸= 0; see Appendix A), and then one should
be cautious for examining the spatial structure of the electromag-
netic field by using the KS coordinates.

3.2 The 3+1 electrodynamics

In order to study the test electromagnetic field in Kerr space–time,
we adopt the 3+1 electrodynamics of the version which was de-
veloped by (Komissarov 2004a, see also Landau & Lifshitz 1975;
Komissarov 2009, and references therein).2 The covariant Maxwell
equations ∇∗

ν Fµν = 0 and ∇νF
µν = 4πIµ are reduced to

∇ · B = 0, ∂t B + ∇ × E = 0, (15)

∇ · D = 4πρ, −∂t D + ∇ × H = 4π J, (16)

where ∇ · C and ∇ × C denote (1/
√

γ )∂i(
√

γCi) and eijk∂jCk , re-
spectively, and eijk = (1/

√
γ )ϵijk is the Levi-Civita pseudo-tensor

2 Thorne & MacDonald (1982) and Thorne et al. (1986) developed the 3+1
electrodynamics of the version without introducing E or H , and showed
some of the expressions in this paper, such as equations (22) and (29).

Figure 1. The event horizon (inner thick line) and the outer boundary of
the ergosphere (outer thick line) of Kerr space–time. The thin lines represent
) − α/

√
γϕϕ = 0.2, 0.1,−0.1,−0.14,−0.17,−0.2 in the BL coordinates

in the order of increasing r. The line of ) − α/
√

γϕϕ = 0 is identical to the
outer thick line. The spin parameter is set to be a = 0.9.

of the absolute space. The condition of zero electric and magnetic
susceptibilities for general fully ionized plasmas leads to following
constitutive equations:

E = α D + β × B, (17)

H = αB − β × D, (18)

where C × F denotes eijkCjFk . At infinity, α = 1 and β = 0,
so that E = D and H = B. Here, D, B and ρ are the electric
field, magnetic field and charge density as measured by FIDOs,
respectively (see Appendix A for more details). The current J is
related to the current as measured by FIDOs, j , as

J = α j − ρβ. (19)

The covariant energy–momentum equation of the electromag-
netic field ∇νT

ν
µ = −FµνI

ν gives us the energy equation as

∂t

[
1

8π
(E · D + B · H)

]
+ ∇ ·

(
1

4π
E × H

)
= −E · J, (20)

where C · F denotes CiFi, and the angular momentum equation as

∂t

[
1

4π
(D × B) · m

]
+ ∇ · 1

4π

[
−(E · m)D − (H · m)B

+1
2

(E · D + B · H)m
]

= −(ρ E + J × B) · m, (21)

where m = ∂ϕ . From these equations, one can find the energy den-
sity, energy flux, angular momentum density and angular momen-
tum flux.

3.3 Steady axisymmetric electromagnetic field in the vacuum

Before investigating the plasma-filled magnetosphere in Kerr
space–time, the properties of the electromagnetic field in the vac-
uum (i.e. no plasma) are summarized. Wald (1974) derived the
solution of a steady, axisymmetric, vacuum test electromagnetic
field in Kerr space–time for which the magnetic field is uniform,
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Unpublished	
  yet	




Summary	

•  Origin	
  of	
  E	
  and	
  Jp	
  in	
  pulsar	
  wind	
  is	
  stellar	
  rota<on	
  
•  In	
  the	
  BZ	
  process:	
  
–  Origin	
  of	
  E	
  is	
  ascribed	
  to	
  the	
  ergosphere	
  
–  Around	
  equatorial	
  plane,	
  Jp	
  is	
  driven	
  by	
  D2 > B2,	
  crea<ng	
  
ε<0	
  par<cles	
  (appear	
  same	
  as	
  Penrose	
  process)	
  

–  Around	
  horizon,	
  FF/MHD	
  is	
  sa<sfied	
  in	
  steady	
  state	
  (not	
  
appear	
  same	
  as	
  Penrose	
  process)	
  

–  Our	
  toy	
  model	
  implies	
  that	
  the	
  boundary	
  of	
  force-­‐free	
  
plasma	
  and	
  vacuum	
  propaga<ng	
  inside	
  has	
  cross	
  field	
  
current	
  and	
  displacement	
  current	
  flow,	
  crea<ng	
  (or	
  
regula<ng)	
  Hφ,	
  Sp	
  and	
  Lp	
  

(The	
  presented	
  analysis	
  will	
  be	
  submi[ed	
  soon.	
  KT	
  &	
  Takahara	
  in	
  prep.	
  2015)	



