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Setting the stage...

Diffusive Shock Acceleration (DSA) process at young SNR shocks assumed to provide
the main part of Galactic cosmic-ray flux. Possibly relevant for mildly-relativistic flows in

AGN jets.

Attributes relevant for DSA:
- shock structure: ion driven but electron dynamics important

- EM field amplitudes
- particle pre-acceleration processes: electron injection constitutes the central

unresolved issue

Current main interest:
e high Alfven Mach number shocks: regime of weakly magnetized plasma
* high-speed nonrelativistic shocks: mediated by Weibel-type filamentation instabilities



Today's topic: perpendicular shocks
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e 2D3V kinetic PIC simulations (mi/me=50)
* high relative collision speed (viei=0.38¢)
e stream-counterstream density asymmetry of 10: system of forward and reverse shock + CD

o Alfven Mach numbers for both shocks: Ma~ 28
o different sonic Mach numbers: Ms~ 755 (forward); Ms~ 250 (reverse)
e magnetic field at 45° to the x-y plane

e low plasma beta Be«1: initially cold plasma flows or medium influenced by prior CR-induced
magnetic field amplification

e simulations complement recent 2D3V PIC studies of high Mach fast nonrelativistic shocks in the regime

of moderate or high Beand for strictly in-plane or out-of-plane MF orientations (Amano, Hoshino, Kato,
Matsumoto, 2009-2015)



Shock structure
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e strong Buneman modes in the shock foot
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Shock reformation...
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» cyclic shock self-reformation caused
by dynamics of shock-reflected ions
governed by the physics of current
filament mergers in the shock ramp

* period of ~1.5 (1 similar at both
shocks and roughly constant
throughout the simulation
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Shock reformation... and rippling
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Particle pre-acceleration
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e stable suprathermal tails in ion spectra resulting from shock-surfing

acceleration (SSA)
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e efficient electron heating; no or marginal electron acceleration
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e despite suitable conditions exist (Ma = 16;

Matsumoto et al. 2012) electron SSA is not
observed because the amplitude of
Buneman modes in the shock foot is
insufficient for trapping relativistic electrons

Es~cBop

e bulk electron thermalization occurs instead

electrons
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e inefficient electron acceleration observed by us (low Be) and by Kato & Takabe (2010; high Le)
suggests that Be is not deciding factor for the generation of non-thermal tails in the electron SSA

e possible reasons for discrepancy: MF orientation, electron-ion mass ratio, additional factors in the
microphysics of high-Mach number shocks mediated by filamentation instability, ...



Notes on electron injection
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Notes on electron injection

Forward shock at t=20 Qy'; electron dens:ty
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* NO evidence for turbulent reconnection



Final remarks

e efficient electron acceleration via SSA process at high Mach number fast nonrelativistic
shocks seen in studies with large-scale magnetic field strictly out-of-plane

e they tend to use a larger ion-to-electron mass ratios (cf. turbulent reconnection at
shocks)

e additional factors related to the microphysics of filamentation-mediated shocks in multi
dimensions possibly important

e effects at oblique quasi-perpendicular shocks even more relevant

 further investigation through high-resolution 2D and full 3D simulations required



