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Simulation and Theory of Jet 
Formation & Acceleration

• Relativistic jet is formed and accelerated 
by macroscopic plasma (MHD) process 
with helically twisted magnetic field
• Collimated jet is formed near the central 
BH and accelerates γ >> 1
• But, it has problems

–  Most of energy remains in Poynting 
energy (magnetic energy)

–  Acceleration need take longer time 
(slow acceleration efficiency)

=> Rapid energy conversion (dissipation) 
should be considered

Jets

Magnetic 
field lines

GRMHD simulations
(McKinney 06)

MHD process 
(schematic picture)



Dissipation in the Relativistic Jet
Shocks
Time-dependent energy injection (internal shock)
Change of external medium spatial structure (recollimation shock)

Magnetic Reconnections
Magnetic field reversal or deformation of ordered magnetic field

MHD Instabilities
Several instabilities are potentially growth
=> Turbulence in the jets and/or magnetic reconnection?

Turbulences
 Leads from MHD instabilities in jets



Key Questions of Jet Stability
• When jets propagate outward, there are possibility to grow of two 

major instabilities
– Kelvin-Helmholtz (KH) instability

• Important at the shearing boundary flowing jet and external medium
•  In kinetic-flux dominated jet (>103 rs)

– Current-Driven (CD) instability
• Important in existence of twisted magnetic field
•  Twisted magnetic field is expected jet formation simulation & MHD theory

•  Kink mode (m=1) is most dangerous in such system

• In Poynting-flux dominated jet (<103 rs)

Questions:
• How do jets remain sufficiently stable? 
• What are the Effects & Structure of instabilities in particular jet 

configuration?

We try to answer the questions through 3D RMHD simulations
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Current-Driven Kink Instability
(strongly magnetized regime)
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CD Kink Instability

• Well-known instability in 
laboratory plasma (TOKAMAK), 
astrophysical plasma (Sun, jet, 
pulsar etc). 

• In configurations with strong 
toroidal magnetic fields, 
current-driven (CD) kink mode 
(m=1) is unstable.

• This instability excites large-scale 
helical motions that can be 
strongly distort or even disrupt 
the system

• Distorted magnetic field structure 
may trigger of magnetic 
reconnection.

Kink instability in experimental plasma 
lab (Moser & Bellan 2012) 

Schematic picture of CD kink instability



Previous Work for CD Kink Instability

• For relativistic force-free configuration 
– Linear mode analysis provides conditions for the instability 

but say little about the impact instability has on the system 
(Istomin & Pariev (1994, 1996), Begelman(1998), Lyubarskii(1999), 
Tomimatsu et al.(2001), Narayan et al. (2009))

– Instability of potentially disruptive kink mode must be 
followed into the non-linear regime

• We investigate detail of non-linear behavior of 
relativistic CD kink instability in relativistic jets
– Static plasma column (rigidly moving jet), (Mizuno et al. 09)

– Rotating relativistic jets



CD Kink Instability in Rotating 
Relativistic Jets

• Here: we investigate the influence of jet rotation and bulk 
motion on the stability and nonlinear behavior of CD kink 
instability.

• We consider differentially rotating relativistic jets motivated from 
analytical work of Poynting-flux dominated jets (Lyubarsky 2009).

• The jet structure relaxes to a locally equilibrium configuration if the 
jet is narrow enough (the Alfven crossing time is less than the proper 
propagation time). So cylindrical equilibrium configuration is 
acceptable.



Initial Condition
• Consider: Differential rotation relativistic jet with 

force-free helical magnetic field
• Solving RMHD equations in 3D Cartesian coordinates
•  Magnetic pitch (P=RBz/Bφ): constant (in no-rotation case)

– a=1/4: characteristic radius of helical B-field (maximum of 
toroidal field) 

•  Angular velocity (Ω0=0,1,2,4,6)

•  Density profile: decrease (ρ=ρ0 B2)

•  Boundary: periodic in axial (z) direction
•  Small velocity perturbation with m=1 and n=0.5 ~ 4 

modes

Mizuno et al. (2012)



Time Evolution 
of 3D Structure

• Displacement of the initial 
force-free helical field leads to a 
helically twisted magnetic 
filament around the density 
isosurface with n=1 mode by CD 
kink instability
• From transition to non-linear 
stage, helical twisted structure is 
propagates in flow direction with 
continuous increase of kink 
amplitude.
• The propagation speed of kink 
~0.1c (similar to initial 
maximum axial drift velocity) 

Ω0=1

Color density contour 
with magnetic field lines



Dependence on Jet Rotation 
Velocity: growth rate

solid: Ω0=0
dotted: Ω0=1
dashed: Ω0=2
dash-dotted: Ω0=4
dash-two-dotted: Ω0=6

• First bump at t < 20 in Ekin is initial relaxation of system
• Initial exponential linear growth phase from t ~ 40 to t ~120 (dozen of Alfven 
crossing time) in all cases
• Agree with general estimate of growth rate, Γmax~ 0.1vA/R0

• Growth rate of kink instability does not depend on jet rotation velocity

Alfven crossing time

Volume-averaged Kinetic energy 
of jet radial motion

Volume-averaged 
magnetic energy

Linear growth



Dependence on Jet 
Rotation Velocity:

3D Structure

∀ Ω0=2 case: very similar to Ω0=1 
case,  excited n=1 axial mode
• Ω0=4 & 6 cases: n=1 & n=2 axial 
modes start to grow near the axis 
region
• Because pitch decrease with 
increasing Ω0

• Propagation speed of kink is 
increase with increase of angular 
velocity
• Fast rotating jet case, the multiple 
mode interaction is happened => 
turbulent jet structure is developed

Larger Ω0 => faster jet rotation



Dependence on B-field 
structure: 3D structure

• α=0.75 case: Nonlinear evolution is 
similar to α=1 case. 
∀ α=0.5 case: growth of n=2 axial mode 
near the jet axis. Helical structure is 
slowly evolving radially.
∀ α=0.35 case:  growth of n=2 axial 
mode near the axis. In nonlinear phase, 
helical structure does not evolve radially 
and maintain the structure = nonlinear 
evolution is saturated

• The growth of instability saturates when 
the magnetic pitch increases with radius   
= jet is stabilized.

 α < 1 => Bp dominated at larger radius



CD Kink Instability in Sub-Alfvenic Jets:
Spatial Properties

• In previous study, we follow temporal properties (a few axial 
wavelengths) of CD kink instability in relativistic jets using periodic 
box.
• Here, we investigate spatial properties of CD kink instability in 
relativistic jets using non-periodic box.

Initial Condition
• Cylindrical (top-hat) non-rotating jet established across the 
computational domain with a helical force-free magnetic field (mostly 
sub-Alfvenic speed)
•Vj=0.2c, Rj=1.0
• Radial profile: Decreasing density with constant magnetic pitch 
(a=1/4Rj, characteristic radius of helical B-field )
• Jet spine precessed to break the symmetry (λ~3L) to excite instability

Mizuno et al. (2014)



3D Helical Structure

Density 
+ B-field

Velocity
 +B-field

jet

• Precession perturbation from jet inlet produces the growth of  CD 
kink instability with helical density distortion.
• Helical kink structure is advected with the flow with continuous 
growth of kink amplitude in non-linear phase. 
• Helical density & magnetic field structure appear disrupted far from 
the jet inlet though multiple (axial) mode interaction.

Density 
+ B-field

t=50 t=90 t=90

Decreasing density
Rj > a



Dependence on 
density profile & 

jet shear

Radially decreasing density

Radially increasing density

Rj < a

Rj=1/2a

Rj > a

Rj=4a

Density 
+ B-field

Density 
+ B-field

Density 
+ B-field

Density 
+ B-field

Rj < a: developed helical kink 
does not propagate with jet 
(perturbation is propagate 
through jet).
Rj > a: developed helical kink  
propagates with jet (jet is 
maintained much larger 
distances)

Decreasing density: helical 
kink continuously grows => 
disruption of helical twist
Increasing density: growth of 
helical kink is saturated => 
relatively stable configuration   
 



Kelvin-Helmholtz Instability
(weakly magnetized regime)
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Stabilities of magnetized spine-sheath 
jets against KH modes

• In previous works, KH instability is stable in 
sub-Alfvenic jet regime (magnetic field is strong).

• But observed jet is kinetic energy is dominated 
(magnetic energy is week) and jet is super-Alfvenic.

• Is relativistic jet unstable for KH mode everywhere?

• New idea: spine-sheath configuration (two-flow 
components)



Initial Condition

• Solving 3D RMHD equations in Cartesian coordinates 
Jet (spine): ujet = 0.916 c (γj=2.5),  ρjet = 2 ρext (dense, cold  
super-Alfvenic jet)
• External medium (sheath):  uext =  0 (static), 0.5c (sheath wind)

• RHD: weakly-magnetized (sound velocity > Alfven velocity) 
• RMHD: mildly-magnetized (sound velocity < Alfven velocity)

• Jet spine precessed to break the symmetry

Mizuno et al. (2007)

• Cylindrical super-Alfvenic 
jet established across the 
computational domain with a 
parallel magnetic field (stable 
against CD instabilities)



Global Structure 

• The precession perturbation from jet inlet leads to grow of KH 
instability and it disrupts jet structure in non-linear phase.
• Growth/damp of KH instability and jet structure is different in 
each cases. 

3D isovolume density at t=60

No wind (single jet) case External wind (spine-sheath) case

vj

Weakly-magnetized

Mildly-magnetized



Effect of magnetic field and sheath wind

• The sheath flow reduces the growth rate of KH modes 
• The magnetized sheath reduces growth rate relative to the weakly magnetized case 
• The magnetized sheath flow damped growth of KH modes = stabilize.
 
Criterion for damped KH modes:
(linear stability analysis) 

ue=0.0 ue=0.0ue=0.5c ue=0.5c

1D radial velocity profile along jet



Recollimation Shock
(Transition region)
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Observed Jet structure Global structure of M87 jet (Asada & 
Nakamura 2012, Hada et al. 2013)

Conical 
streamline
(unconfined, 
free expansion)

Parabolic streamline
(confined by ISM?)

Over-collimation at 
HST-1 stationary knot 
(recollimation shock?)

• The parabolic structure 
(z  r∝ 1.7) maintains over 
105 rs, external 
confinement is worked.
• The transition of 
streamlines presumably 
occurs beyond the 
gravitational influence 
of the SMBH (= Bondi 
radius)
• Stationary feature 
HST-1 is a consequence 
of the jet recollimation 
due to the pressure 
imbalance at the 
transition
• In far region, jet stream 
line is conical (z  r) ∝       

HST-1 region



(a) (b) (c) (d)log10(ρ) log10(pg) γlog10(pm)

z z z z

R R R R

axial B (MHD-a), t=200, B0=0.1

Recollimation Shock Simulation 
(axial field)

•2D non-equilibrium over-pressured jet in cylindrical geometry (γj~3)
• Multiple stationary recollimation and rarefaction structures are produced 
along the jet by the nonlinear interaction of shocks and waves
• jet is partially boosted by rarefaction acceleration

Mizuno et al. (2015)

density
Mag 
pressure

Gas 
pressure

Lorentz 
factor



Dependence on B-field strength

• γmax/(γmax)HD-1: relative increase of Lorentz factor with respect to the 
purely HD case

• Acceleration is the result of conversion of plasma thermal energy into jet 
kinetic energy (quantity γh is conserved across a rarefaction wave)
•  Axial case: larger Lorentz boost. Relative boost has a simple quadratic 
dependence
• Toroidal case: smaller Lorentz boost due to magnetic tension
• Helical case: depends on magnetic pitch (=> next slide)

Red: axial
Blue: toroidal
Black: helical

HD



Dependence on magnetic pitch

P0

γ m
ax

γ m
ax

/(γ
m

ax
) H

D
 -1

Relative 
difference of 
the maximum 
Lorentz factor

Maximum 
Lorentz factor

Magnetic pitch = RBz/Bφ = a/Rj

Axial field
(P0 >> 1)

Toroidal field
(P0 << 1 )

• Relative difference of the maximum Lorentz factor smoothly joins two extreme 
cases of toroidal and axial fields 
• Transition between two regimes takes place at P0 > 1, that is, when a: 
characteristic radius of helical field (maximum of toroidal field) > Rj

• Saturate to the axial field case when a ~ 10 Rj

• Simple fitting with a hyperbolic tangent function (red-dashed lines)

Fixed field strength: 
B0=0.1



Summary
• The CD kink instability is partially stabilized by a radially 

increasing density structure (= non-destructive kink structure in 
observed jet).

• Advection of helical kink structure depends on location of 
velocity shear inside/outside of the characteristic radius of 
helical field (most likely advects with jet motion)

•  The strongly deformed magnetic field via multiple mode 
interaction of CD kink instability may trigger of magnetic 
reconnection in the jet (rapid energy dissipation)

• The KH instability is stabilized by the presence of magnetized 
sheath wind even when the jet is super-Alfvenic flow. 

• The recollimation shock structure can be modified by the 
presence of magnetic field, especially helical field yields more 
complex substructure.
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