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High energy sources: non-thermal particles,
fast variability (= very fast acceleration)

Mrk 421 GRB light curve
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Requirements on acceleration mechanism

Power law distribution dn
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fy o sometimes is smaller than 2!
o~ 2TLc¢€

e Very large Lorentz factors Ymax ~ 10" — 10”

Variability on (shorter!) than light travel times
Very efficient (very fast) acceleration




Shocks: acceleration by Fermi

e Acceleration is slow, on time-scales >> gyration
e (Drift acc. might be faster - but it does not work)

Upstream Shock front Downstream
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o = 9 -+ € - Just from shock compression

Microscopic property from macroscopic parameters!
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Crab nebula flares!
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Many aspects of AGNs and GRBs models are based on Crab nebula.
Pulsar = very small AGN



Crab flares

e Few fimes per year
e Random

e Flux increase by 40
e 100 MeV - 1GeV

Flux [ ph 5" cm?® )

e lasts for a day (<< dynamical time) |
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Upper limit to synchrotron frequency

Accelerating E-field < B-field
de*

Om?2cs

= 2361 MeV.

el.c = neBc = B*~?

27  mhc3
02

- -Same as Fermi acceleration on inverse gyroscale
(requires very efficient scattering, stochastic
accelerafion: eta << 1)

- Typically eta < 10-2for stochastic shock acceleration:
this excludes stochastic acceleration schemes.




High sigma model of pulsar
wind nebulae (Lyutikov 2010)

- Lyutikov (2010): 100 MeV is still too much.

ey | - Ideal flow in the bulk, dissipation on
boundary

- "We propose that [...] the excessive magnetic flux is

destroyed in a reconnection-like process*

High sigma model of PWNe
- No shocks! (Acceleration in reconnection)
- Relativistic bulk motion of emitting plasma




Very demanding conditions on
acceleration

Acceleration by E ~ B (energy gain & loss on one gyro radius)
on macroscopic scales >> skin depth

e qacceleration size ~ thousands skins

e qacceleration size ~0.1 -1 of the system size (in Crab)

Few particles are accelerated to radiation-reaction limit -
gamma ~ 107 for Crab flares (NOT all particles are
accelerated)

Slow accumulation of magnetic energy, spontaneously
triggered dissipation
(relativistic bulk motion)




Magnetically-dominated plasmas

Fermation of extragalactic jets from a back hole accretion disk

> 1

e Aflaunch 7= e
e Most energy in B-field

e Can be used to accelerate particles directly (without
converting into mechanical bulk motion, shocks, field
regeneration)

e AGN jets and GRBs may accelerate particles via
reconnection events

(Lyutikov & Blackman 2001, Lyutikov 2003, Lyutikov & Blandford 2003)
e, e




Relativistic Reconnection
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Reconnection in sigma >> 1

(Lyutikov&Uzdensky, Lyubarsky)
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New plasma physics regime: sigma >> 1 plasma.

e What are dynamic and dissipative properties of such
plasmas? - very different from laboratory and space plasmas.

e Pulsar winds, AGN & GRB jets and magnetospheres of BHs
o Alfven velocity is highly relativistic VA = \/z 1

o E-field is dynamically important

e charge density is important

\



* massless resistive plasma

Tearing mode in force-free plasma
e anisotropic conductivity

| e tfearing ~ non-relativistic
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Lyutikov 2003
Komissarov +, 2006




Particle acceleration?...

Highly magnetized, sigma >> 1, shocks are weak, not likely
to be efficient accelerators.
All the energy in the B-field: accelerate particles directly

via reconnection.
Reconnection was a “..." word in high energy astrophysics

Some (most?) particles in high energy sources
are accelerated by magnetic reconnection
(and not shocks)




How to make a flare

e Store magnetic energy
e Dissipate magnetic energy on light travel time

14



Accumulation of magnetic energy:
Woltjer-Taylor plasma relaxation

(©) __mm—
 Topology: helicity
(twistiness of magnetic
field lines)

e Helicity accumulates on (b) (d)
largest scales and is o[ Bpn o
better conserved than
energy

e Plasma reaches force-
free state with

J =aB
o — constant

e Plasma currents tend to
form 2D structures
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2D force-free state with
a — constant

| (Atype of the “ABC” flow)

Is it stable?

X-point

« ’Detailed investigation of stability using analytical, relativistic fluid-
type and PIC simulations (Lyutikov, Komissarov & Sironi, in prep.)




1.The X-point

e Unstressed X-point is stable to short wave length
perturbation




Collapse of stressed magnetic X-
point in force-free plasma  @asyrovatsky)
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e Relativistic force-free simulations of X-point collapse:

v

The color-coded image shows

the value of B2 — E2, contours -
the magnetic field lines.

(Komissarov)

Large areas of E>B appear

PICs
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High-sigma PICs and fluid
simulations agree

Large region of E~B, growing with time
High sigma PICs look similar to force-free



Can produce power-laws

PIC simulations by Sironi




Acceleration in X-point collapse

e Highly efficient acceleration by E ~ B

e Acceleration starts abrupitly, when reaching charge
starvation.

* During collapse current density grows

.~ ——at
J 47rLa()

e But J<2n e c-notenough particles to carry the current

4
curlB = 2 J + o E/c
c

* E-field grows 7 1
« Condition for charge starvation: a(t) > 5 o1/4 (not too
demanding for Crab) o




Acceleration in X-point collapse

 Very hard spectrum: alpha =-1.
o All the energy is in the high energy particles

e All particles are accelerated (the acceleration region
grows with the speed of light)

B2
7= A7 pc?
Ymazx <o
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2.Collapse of a system of magnetic
islands

| sigma=85
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The first panel is at time=5.625, sécond at 11.25
, third at 16.875 and fourth at 22.5
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Quasi-stable configuration that
destroys itself on light travel times!

e A set of magnetic islands is quasi-stable: Initially it survives
for many dynamical times = energy is slow accumulated

 There is a period of violent instability
e X-point collapse
* Merger of magnetic islands

e Large fraction of magnetic energy is dissipated




Island merger: forced reconnection
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Inverse cascade? Probably not

e Merger of islands into larger ones, up to box size

e Large fraction of magnetic energy (~50%) is dissipated in
each step 1.0 '

1.0
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2.b island merger triggered by
e
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Particle acceleration in island
merger

e Forsigma < 100 spectrum is soft, few particles are
accelerated to gamma >> sigma

Sweet-Parker-like picture

Most particles leave via jets, only few chosen one stay accelerated




Particles are accelerated by the
reconnecting E-field near X-point




Spectra as functions of sigma

e comparison of spectra between avg sigma=85 and 850
e slope is harder for higher sigma -> running in energy issues
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gamma ~ 10?

 Potential available @ ~ B[,
e (just need to collapse at ~ c at scale L)
e |t seems, forlarge L the forced reconnection changes @

102regim¢_ -> island domINafe | >| . - plasmoid instability of current sheet
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To do: full 3D ABC flow

e Plasmoid instability can be stabilized by weak guiding field
e (Nof too much)
 Non-zero guiding field at X-point




Where in Crab and AGNSs?

Komissarov & Lyutikov, 2011 e Dissipation zone @ r < 1pc
(approximately where By ~ B )



Conclusion

Reconnection in magnetically-dominated plasma
e can proceed explosively
o efficient particle acceleration

* is an important, perhaps dominant for some phenomena,
mechanism of particle acceleration in high energy sources.




Best case scenario for Crab

* Pulsar produces Oy "~ 106 (polar angle-dependent)
e Partial dissipation

Opost—shock ™ 10 y» Ypost—shock ™ 10
e Explosive collapse

8
Yflare — 1000—1}0815—shockfypost—shock ~ 10
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Compare with Colorado group

_ eTearing mode instability of
Bplane—o
current sheet.
. *All scales related to delta -
Uzdensky et al.: Accelerate in smallish potential @ skin

a region where B is small, with sLarge island merger: inflow

s . : . velocities << c
E >B, emit where B is large «All particles accelerated (gamma

< sigma)
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