

Collisionless Accretion Disks: Role of Reconnection in Anisotropic Plasmas

Masahiro Hoshino University of Tokyo

Collisionless Accretion Disk & MRI

- Accretion Disk around Massive Black Halls (e.g., Sgr A*)
- ✓ Radiatively Inefficient Accretion Flow (RIAF)
- ✓ Nonthermal electrons, power law index p~1.3 < 2</p>

(e.g., Narayan+ 1998; Quataert+ 2002; Yuan+ 2003; Aharonian+ 2008; Kusunose & Takahara 2012,...)

- MRI by using 2d & 3d particle-in-cell simulations
- ✓ Nonthermal particle acceleration with a hard spectrum
- Enhancement of Shakura-Sunyaev's "α-parameter", i.e.,
 $\alpha_{collisionless}/\alpha_{MHD} = O(10-100)$

Collisionless magnetic reconnection plays a dynamically important role on both particle acceleration and α -parameter

Role of Reconnection in MRI

(e.g., Hawley+ 1995; Sano+ 2004...)

magnetic reconnection

Collisionless MRI in 2d PIC simulation

Kepler rotation Ω , $\Omega/\Omega_c = 0.1$, $\beta = 1540$, 200x200 grids 8000 particles/cell, open shearing box boundary, electron-positron plasma

cf. Requelm + ApJ 2012; Shirakawa & MH PoP 2014

MH ApJ 2013

Energy Spectra during MRI-Reconnection

Dependence of initial plasma beta is weak

cf. Zenitani & MH ApJ 2001, reconnection talks in this meeting

Onset of Reconnection

Before onset of Reconnection

After onset of Reconnection

Production of Pressure Anisotropy during MRI & Reconnection

CGL (Chew-Goldberger-Low) or Double adiabatic theory

$$\frac{D}{Dt}\left(\frac{p_{\perp}}{\rho B}\right) = 0, \qquad \frac{D}{Dt}\left(\frac{p_{\prime\prime}B^2}{\rho^3}\right) = 0$$

MRI: *B* large $\Rightarrow p_{\perp} > p_{//}$

Istropization by mirror inst. & ion-cyclotron inst.

(Quataert+ ApJ 2002; Sharma+ ApJ 2006)

Reconnection : B weak $\Rightarrow p_{//} > p_{\perp}$ Istropization by Alfven waves generated by ion beam inst. etc. (e.g. MH+ 1998; Higashimori & MH 2015)

Role of Reconnection in Collisionless MRI

Angular Momentum Transport in 3d PIC simulation

β=1540, Kepler rotation Ω
300x300x300 grids 40 particles/cell,
open shearing box boundary,
electron-positron plasma

green: magnetic field lines color contour: angular velocity

MH PRL 2015

Energy and Stress Tensor Evolutions

Initial plasma $\beta = 1540$, active phase $\beta \sim O(1)$ quasi-steady-state $\beta \sim O(10)$

 α (kinetic) ~ O(0.1) α (kinetic)/ α (MHD) > 10 -100 (e.g., Hawley+ 1995; Sano+ 2004...)

thermal plasma is confined high energetic particles (γ >20) are inside magnetic islands located outside magnetic islands Kinetic Magneto-Rotational Instability $t\Omega_{c}/2\pi = 4.884$ 200 200 0.086 2.77 Z/λ 150 150 Z/λ 2.01 0.075Density (γ >20) Density 100 100 **>**void 1.250.063 50500.490.052200 10^{8} 0.449 10^{7} **F**-4/3 \sqrt{Z} 150 10^{6} 0.402 Density $(\gamma > 5)$ N(E)dE 10^{5} 100 10^{4} 0.355 10^3 50 10^2 0.308 10^{1} 150 1.0501000.110.0 100.0 middle energetic particles (γ >5) are $(\gamma - 1)/\mathrm{mc}^2$ located at outer edge of islands

Fermi-Reconnection Acceleration in Many Magnetic Islands

Fermi, Phys. Rev. (1949)

MH PRL (2012); MH & Lyubarsky SSR (2013)

Summary

"Particle Acceleration" and "Angular Momentum Transport" during MRI in Collisionless Accretion Disk

- T_{\perp} > $T_{//}$ during MRI evolution
- Strong particle acceleration by reconnection
- $T_{\perp} {\boldsymbol{<}} T_{\prime\prime}$ in current sheet by reconnection
- Suppressed onset of reconnection due to $T_{\perp} < T_{\prime\prime}$
- Large B field and enhanced "a parameter"