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Outline

• Fermi & gamma-ray emission 

• radio-gamma connection with MeV/GeV data 

• radio-gamma connection with E>10 GeV data 

• future 

• references at the end



Fermi catalogues

• four main catalogues: 0FGL (3 months of data, 205 sources), 
1FGL (11 months, 1451 src), 2FGL (2yr, 1873 src), 3FGL (4yr, 
3033 src) 
– each one accompanied by a dedicated AGN catalogue 

(LBAS, 1LAC, 2LAC, 3LAC, talk by Lott)



Gamma-ray AGN demographics

• EGRET: 66 blazar (+27 low conf., FSRQ:BLL=4.7) 
• LBAS: 106 AGN (FSRQ:BLL=1.4) 
• 1LAC: 709 AGN (FSRQ:BLL=1.0) 
• 2LAC: 1017 AGN (FSRQ:BLL=0.8) 
• 3LAC: 1591 AGN (FSRQ:BLL=0.7) 
• Only a few unidentified sources remain at high fluxes 
• Gamma-ray sources continue to be associated to radio loud 

objects 
– Vast majority (97.3%) of Fermi high-b associated sources are 

blazars 
– Non blazar sources are typically misaligned blazars (MAGN, 

Abdo et al. 2010c), or very blazar-like sources (RL NLS1, 
Abdo et al. 2009b) 

– Only truly non blazar sources are Cen A lobes and a handful 
of starbursts



Radio and gamma-ray emission in 
blazars: Spectral Energy Distribution
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Radio and gamma-ray emission in 
blazars

• synchrotron radio emission 
originates from relativistic e- that 
can upscatter photons to high 
energy 
– leptonic models naturally predict 

some connection between radio 
and gamma-ray emission 

– all EGRET AGNs were radio loud, 
differently from most X-ray QSOs 

• the blazar sequence was originally 
devised on the basis of the radio 
luminosity 

• evidence or not of flux-flux, Lum-
Lum correlations is a debated issue 
– Stecker et al. (1993), Mücke et al. 

(1997), Bloom (2008), etc. 
– bias, variability, number of 

sources, etc. Donato$et$al.$(2001)Donato et al. (2001)



Radio/gamma-ray connection with Fermi

• Big questions 
– is there a correlation between radio and gamma-ray emission 

in AGNs? 
– is it also significant? 
– does it depend on simultaneity? 
– does it depend on blazar type? 
– does it depend on energy band? 

• See also works from Kovalev et al. (2009), Ghirlanda et al. 
(2010, 2011), Mahony et al. (2010) 

• We base our work on 
– 0.2” angular resolution archival 8.4 GHz for all 599 AGNs 
– 15 GHz single dish simultaneous data for 199 AGNs 
– 1LAC data in 5 energy sub-bands between 0.1-100 GeV
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Main novelties

1. Include ALL gamma-ray AGNs 
– faintest ones (typically, BL Lacs) are not included in most 

other works 
2. Use both archival and simultaneous radio data 
3. Assess statistical significance with dedicated tools 

– Pavlidou et al. (2012)

Ackermann et al. (2011)
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Results

• All 599 1LAC clean 
sources 

• black: with redshift 
• magenta: without 

redshift 
• correlation 

coefficient: r=0.47

NB no unassociated 
sources have gamma-
ray flux larger than 
4x10-11 erg cm-2 s-1 
(green dashed line)

Ackermann et al. 2011, ApJ 741 30



• how many times can we get such r from random datasets, 
with the same flux density and luminosity dynamic ranges? 

– well, less than once in ten million cases! 
• probability of chance correlation: P<1e-7

Significance



Additional tests: 1 - timing

• Timing 
– Considering the subset of sources regularly monitored by 

OVRO, the correlation coefficient and the significance 
improve when considering simultaneous vs archival data 

– gamma-ray vs 15 GHz non concurrent data:  
• Spearman’s rho=0.36 , Pearson’s r=0.42, 

significance=1.9x10-6 
– gamma-ray vs 15 GHZ concurrent data:  

• Spearman’s rho=0.39 , Pearson’s r=0.46, 
significance=9x10-8 

– number of sources considered: 160



Additional tests: 2 - blazar types

• Comments: 
– BL Lacs show a moderately 

stronger correlation than 
FSRQs  

– each sub-class (FSRQ and 
BLL) independently still 
shows very high 
significance of a 
correlation (chance 
prob.<1e-7) 

– HSP blazars have the 
stronger correlation among 
the various SED-based 
classification

source 
type

corr. 
coeff. # sources

All 
sources 0.43 599

FSRQ 0.39 248

BL Lacs 0.46 275

LSP 0.4 242

ISP 0.33 60

HSP 0.55 129



Additional tests: 3 - energy bands

HSP

• not all LAT energy bands 
correlate with radio with the 
same strength... 
– for the whole 1LAC, the 

strongest correlation is 
found using Band 2  (0.3-1 
GeV) 

• in every band, HSP blazars 
are the subclass with the 
largest correlation 
coefficient  
– except for Band 1 (0.1-0.3 

GeV), where there’s very 
few of them



Discussion #1

• Correlation is highly significant, but scatter is large 
– connected but different physical processes 

• leptonic contribution generally present 
– connected but different time domains (and emitting 

regions) 
• study of light curves, SEDs, and jet structure evolution 

remains very valuable for single sources (Hovatta, Lister, 
Jorstad talks) 

• concurrent data do correlate better 
– gamma-ray flux/luminosity can not be predicted on the 

basis of the radio flux density/luminosity 
• caveat for gamma-ray background studies 
• and many (moderately) bright FSRQs are still undetected 

in 1LAC/2LAC/3LAC



Discussion #2

• We studied flux-flux 
correlations to avoid 
square-distance effects 
common for luminosity 
– luminosities remain of 

great interest both at 
high and low values 
• great discovery 

space at low 
luminosity (Lr~1039-41 
erg s-1) for 
intrinsically weak 
and/or misaligned 
blazars
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Discussion #3

• Physical implications of these results: 
– there must be some connection between radio and gamma-

ray processes and emission regions 
– leptonic processes contribute to gamma-ray emission  

• synchrotron self-Compton processes are favoured in BL 
Lacs and particularly in HSP blazars (stronger 
correlation) 

• additional effects play a role in FSRQs (external 
Compton? evolution?) 

– gamma rays and main radio emitting regions are within 
<1pc 



Conclusions, part 1

• Big questions answers: 
– is there a correlation between radio and gamma-ray flux in 

AGNs? 
• YES 

– is it also significant? 
• YES 

– does it depend on simultaneity? 
• YES 

– does it depend on blazar type? 
• ~yes 

– does it depend on energy band? 
• ~yes



Very High Energy (VHE) gamma rays 
and lack of radio-VHE connection

• observations above ~100 GeV based on detection of 
Cherenkov atmospheric radiation (IACT) 

• limited field of view, limited observing time, limited 
(integrated) sensitivity 
– census: 47 AGNs over 151 detection (with 25 UNID and 

many galactic sources); mostly HSP-blazars 
– bias: plenty of! no systematic survey, observations in 

flaring state, ... 
• physical issues  

– anti-correlation between SED peak and source power 
(blazar sequence) 

– extragalactic background light (EBL) attenuation 
– complex framework!



The 1FHL

• 1FHL: first Fermi catalog of high energy sources (E>10 GeV, 
Ackermann et al. 2013) 

• three years of survey data, as uniform and unbiased as 
possible 

• 514 sources, 76% of which are AGN, 13% unassociated 
– AGN fraction larger than in 2FGL, census leaning towards 

extreme spectral type blazars (HSP, 41%) 
– still significant fraction of unidentified sources 

• remarkable, given generally smaller positional ellipses



1FHL vs radio flux density

• 375 associated 
AGNs 
– radio data from 

NVSS/SUMSS 
– (<α>=0) 

• r=0.32 
• chance probability 

<1e-6

others
BL Lacs
FSRQs

PRELIMINARY



1FHL vs VLBI flux density

• mas resolution data 
from radio 
fundamental 
catalogue (RFC)  
– VLBI @8GHz 
– 340 sources 

• r=0.29 
• chance probability 

<1e-6

others
BL Lacs
FSRQs

PRELIMINARY



radio-gamma correlation at E>10 GeV

• correlation is  
– scattered 
– weaker than for lower energy gamma rays 

• r=0.66 using NVSS+3FGL data for the same population 
– but still very highly significant 

• even at E>10 GHz, radio and gamma-ray regions “know” 
about each other 

• large scale and VLBI 
data give similar results 

• yet, VLBI important to 
associate sources
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VLBI observations

• goal: complete the VLBI observations for 
entire 1FHL 
– and address the bias against weak and 

unassociated sources 
• EVN & VLBA observations of ~70 sources 

– 1.6 GHz e-EVN 
– 5 GHz VLBA 

• phase reference, no known position 
– found offsets as large as 6” from NVSS 

centroid 
• detection rate 

– 83% overall 
• 100% for blazar candidates 
• 70% for unassociated sources



Radio flux densities

• Sources are generally 
weak (VLBI brightness 
distribution peaks 
~10mJy) 

• a fair amount of resolved 
flux is present (Svlbi/
Snvss~0.1) 

• 1FHL AGNs and UNID 
behave ~similarly 

– UNID sources classified 
as blazar candidates 
(D’Abrusco et al. 2013, 
Massaro et al. 2014) are 
confirmed as compact 
radio sources



Take home notes

1. radio-MeV/GeV connection very strong but very scattered 
– work needed to constrain blazar physics 

2. radio-VHE connection not as strong, but still there 
– pc scale radio cores are confirmed 
– towards a complete dataset of VLBI images for VHE blazars 

(Lister talk, Piner poster) 

3. Fermi operation continues, CTA will become operational 
soon, SKA pathfinders/precursors are active 
– let’s use them all!
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