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Characterizing Variability 

Variability appears to be stochastic. 

Power spectral densities (PSDs) of blazars are consistent with red 
noise, i.e., power laws. 

Fourier 
transform 

Can we make any theoretical predictions for blazar PSDs? 

Chatterjee et al. (2012), ApJ, 749, 191 

PSD: 
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Blazar variability often described by electron continuity 
equation 

Continuity Equation 

Standard modeling of individual flares:  Choose Q(γ,t) and solve for 
Ne(γ;t), the electron distribution, useful for simulating individual flares 
(e.g., Mastichiadis & Kirk 1995; Chiaberge & Ghisellini 1999; Li & 
Kusunose 2000; Boettcher & Chiang 2002). 

Cooling from synchrotron and 
Compton scattering Electron escape 

Electron injection 

What about the Fourier 
transform and PSDs? 

3C 279; Moderski et al. (2003), 
A&A, 406, 855 

Electron distribution 
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Fourier Transform 

We’ll assume all variability comes only from variations in 
electron injection. 
 
Take Fourier transform of continuity equation: 

Tilde indicates Fourier transform.  Time-derivative has been 
eliminated, and this ODE has a relatively simple solution.   
 
PSDs of blazars are power-laws, and power-laws in electron 
energy are standard.  So we will guess that particle injection 
is a power-law in frequency and energy: 

Fourier-
transformed 
electron injection 
term 

Fourier-
transformed 
electron 
distribution 

Solve equation for  

– 3 –

are independent of t, taking the Fourier transform of both sides of this equation leads to

−2πifÑe(γ, f) +
∂

∂γ
[γ̇(γ)Ñe(γ, f)] +

Ñe(γ, f)

tesc(γ)
= Q̃(γ, f) (2)

where Q̃(γ, f) is the Fourier transformed source term. It is shown in Finke & Becker (2014)
that if γ̇ ≤ 0 and tesc is independent of γ then the solution to Equation (2) is

Ñe(γ, f) =
1

|γ̇(γ)|

∫ ∞

γ

dγ′ Q̃(γ′, f) exp

[
−
(

1

tesc
− iω

)∫ γ′

γ

dγ′′

|γ̇(γ′′)|

]
. (3)

We make the ansatz that the Fourier-transformed source terms is

Q̃(γ, f) = Q0(f/f0)
−a/2γ−qH(γ; γ1, γ2)H(f ; f1, f2) . (4)

In this case, (3) can be rewritten as

γ2Ñe(γ, f) =
γ2Q0(f/f0)−a/2

|γ̇(γ)|(1/tesc − iω)
exp

[
−
(

1

tesc
− iω

)
tcool(γ)

] ∫ umax

umin

du A(u) eu (5)

where

tcool(γ) =

∫ ∞

γ

dγ′

|γ̇(γ′)|
, (6)

A(u) = |γ̇(u)| γ(u)−q , (7)

u(γ) =

(
1

tesc
− iω

)
tcool(γ) , (8)

umin = u(γ2) , (9)

and

umax = u(max(γ, γ1)) . (10)

Performing integration by parts ad infinitum on the integral over u gives

γ2Ñe(γ, f) =
γ2Q0(f/f0)−a/2

|γ̇(γ)|(1/tesc − iω)
exp

[
−
(

1

tesc
− iω

)
tcool(γ)

]

× {eumaxB(umax) − euminB(umin)} (11)

. 
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PSD for electron distribution 

For low γ, break at  
 f=1/(2πtesc) 

For large γ, break at 
f=1/(tcool).  Also 
sinusoidal features at 
integer values of f=1/
(tcool). 
 
Variability on 
timescales shorter than 
cooling timescale is not 
preferred. 
 
In all cases, break is 
from f-a to f-(a+2) 

For synchro-Thomson losses: 
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Emission and light travel time 

blazar We assume blob is entirely homogeneous.  Variations 
take place throughout blob simultaneously. 
 
However, even in this case, photons from closer part of 
the “blob” will reach earth before those from the farther 
part.  For synchrotron or external Compton (δ-function 
approximation): 

So what will the PSD of the flux look like?   
Earth 

where  e.g., Chiaberge & Ghisellini (1999) 
Zacharias & Schlickeiser (2013) 
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Theoretical Flux PSDs 

Synchrotron and EC 
PSDs. 
 
 
Same features from 
electron PSD are seen.  
Namely, for low γ, 
break at f=1/(2πtesc), 
sinusoidal features at 
f=1/tcool. 
 
Additionally, features at 
integer values of f=1/tlc 
in all PSDs. 
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Theoretical Flux PSDs 

Synchrotron and EC 
PSDs. 
 
 
Unphysical region? 
 



Theoretical Flux PSDs 
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Minima features are 
washed out when full 
calculation is used. 
 
PSDs resemble broken 
power-laws. Break is 
from f-a to f-(a+2). 
 
PSDs from electrons 
with energies γ < γ1 are 
not accurate with δ-
function approximation 
(120 GHz curve). 
 
Similar results for EC. 



PSD Observer’s Summary 

10 
f 

PSD ~f-a 

~f-(a+2) 

ν << νcr  
E << Ecr 
tesc << tcool 

PSD 

~f-a 

~f-(a+2) 

ν >> νcr  
E >> Ecr 
tcool << tesc 

1/(2πtesc) 1/tcool 

PKS 2142-75; Dutka et 
al. (2013), ApJ, 779, 
714 

f 

νcr Εcr 

If SED peak is 
associated with 
where tcool = tesc 
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Figure 1. (Continued)

et al. (2001), where k in the range of 5–100 for tvar = 1–10 days
and MCBH = (107–1010) M⊙.

The GeV gamma-ray flux during the strong outburst of
3C 454.3 in 2010 November exhibited a very fast variability
with the rise time of 4.5 ± 1 hr and the fall time of 14 ± 2 hr
(Abdo et al. 2011). We tried to apply the Equation (6) assuming
the variation time scale as this rise time, and the results are
shown in Figures 2 and 3. The central black hole mass inferred

from this time scale (<2×108 M⊙; see Figure 2) is much smaller
than that inferred from the characteristic time scale in NPSD,
and the light crossing time (k < 2; see Figure 3) is less than
the time to cross the last stable orbit of the black hole. Thus it
seems unreasonable to assign the short time scale of 4.5 hr to the
internal shock model under consideration in this paper: it should
be interpreted as, e.g., shocks forming with strong anisotropic
geometries, albeit a low duty cycle (e.g., Salvati et al. 1998),

5

Nakagawa & Mori (2013), ApJ, 
773, 177 

A break is seen in the LAT PSD 
of 3C 454.3! 
 
PSD goes from ~ f-1 to f-3, as 
theory predicts! 
 
Break frequency:  1.5e-6 s, 
corresponding to 7.9 days 
 
How can this be resolved with 
light curves of bright flares, 
where decays are seen on 
timescales of several hours? 
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and S(ϵ, f ) ∝ f −b2 at f > fbrk, shows b1 ≈ 1 and b2 ≈ 3. This
is a break of about 2, which is what is expected from our theory.
The timescale could correspond to the light crossing, cooling,
or escape timescales. If one interprets it as the light-crossing
timescale, tlc, then

R′ ≈ ctlcδD

2(1 + z)
= 1.7 × 1017

(
δD

30

)
cm. (72)

Interpreting it as the cooling timescale, tcool, and assuming
δD = Γ, the external radiation field is

u0 ≈ 3mec
2

4cσTΓ2t ′coolγ
′ = 9.6 × 10−6

(
Γ
30

)−2 (
E

100 MeV

)−1/2

×
(

ϵ0

5 × 10−7

)1/2

erg cm−3

= 6.1 × 10−5
(

Γ
30

)−2 (
E

100 MeV

)−1/2

×
(

ϵ0

2 × 10−5

)1/2

erg cm−3, (73)

where E is the observed photon energy. The first line assumes
the seed photon source is a dust torus with temperature 1000 K;
the second assumes it is Lyα, presumably from the broad-line
region. Both numbers give rather low values for u0.

However, interpreting the break as either the cooling
timescale or the light crossing timescale is problematic, since
variations on timescales much shorter than this have been ob-
served from 3C 454.3, including decreases on much faster
timescales (Ackermann et al. 2010; Abdo et al. 2011a). But
one could also associate the break with the escape timescale
for electrons in the blob, as shown in Section 5.1. This break
will occur at f = (2π tesc)−1, so if tlc = tesc, the break will
still be at a frequency 2π lower than the one related to the light
crossing timescale. Furthermore, the escape timescale could in
principle be longer than the light crossing timescale, since mag-
netic fields in the blob would curve the electron’s path and
decrease the time it takes to escape. We note that in Figure 4,
the break in the 0.1 GeV PSD is indeed associated with the
escape timescale, f = (2π tesc)−1, showing that this is at least
plausible. If the break in the PSD of 3C 454.3 (Nakagawa &
Mori 2013) is due to electron escape, then the escape timescale
in the observer’s frame will be tesc = 7.9 days/(2π ) = 30 hr,
and in the comoving frame,

t ′esc = 20 days
(

δD

30

)
. (74)

How could one distinguish between these interpretations?
One possibility would be to observe the PSDs at more than one
waveband. If the break is due to the light-crossing timescale, the
break frequency should be present independent of the waveband.
The escape timescale break could also be independent of
frequency if the escape timescale is energy independent, as
it is in our model. The cooling timescale should be energy-
dependent, and thus the break frequency will be different in
different wavebands. For 3C 454.3, the light-crossing timescale
interpretation is disfavored since smaller timescale fluctuations
are present in its light curve (e.g., Ackermann et al. 2010; Abdo
et al. 2011a).

6.5. Optical PSDs of Blazars

Chatterjee et al. (2012) compute R band PSDs for 6 blazars
based on about 200–250 days of continuous data. Their PSDs
have power-law indices that are significantly steeper than those
from the same objects’ γ -ray PSDs from Nakagawa & Mori
(2013). The exception is PKS 1510−089, for which Chatterjee
et al. (2012) compute b = 0.6+0.2

−0.5, significantly flatter than
the γ -ray PSD. Our theory predicts that synchrotron and EC
emission should have the same PSD slopes if produced by
the same electron energies, and all but one of their sources
are FSRQs, which are expected to emit γ -rays by EC. One
possible reason for the discrepancy could be the contamination
in the optical by the accretion disk. Another possibility is that the
time intervals used by Chatterjee et al. (2012) are significantly
shorter than the ones used by Nakagawa & Mori (2013). As
Chatterjee et al. (2012) point out, the large number of bright
flares in their time interval for PKS 1510−089 could be the cause
of its especially flat R band PSD power-law index. It could also
be that the different analysis methods used by Chatterjee et al.
(2012) and Nakagawa & Mori (2013) could lead to different
results. Finally, it could be that one of the assumptions of our
theory is just not correct.

The Kepler mission, with its excellent relative photometry
and short timescale sampling is well-suited for measuring high-
frequency PSDs. Wehrle et al. (2013) reported the Kepler
PSDs of several radio-loud AGNs, and found no departure
from a single power law up to ∼10−5 Hz, above which
white noise dominates. Edelson et al. (2013) explored the
Kepler PSD of the BL Lac object W2R1926+42 and found a
“bending” power law provided a good fit to its PSD, with “bend
frequency” corresponding to ≈4 hr. The source W2R1926+42
has a synchrotron peak at 1014.5 Hz according to Edelson et al.
(2013), making it an intermediate synchrotron peaked object by
the classification of Abdo et al. (2010a). However, its optical
SED appears to be dominated by accretion disk emission,
implying its synchrotron peak is probably at !1013.5 Hz,
which would make it a low-synchrotron peaked (LSP). The
Kepler light curve could have a contribution from both the
thermal accretion disk emission and the nonthermal jet emission,
making interpretation of its PSD difficult. If the optical band is
dominated by synchrotron emission, its status as an LSP implies
that the electrons that produce its optical emission are in the
regime γ ′ ≫ (νt ′esc)−1, meaning the “bend frequency” could
be associated with the light-crossing timescale or the cooling
timescale. If it is associated with the light-crossing timescale,
the size of the emitting region is

R′ ≈ 5.5 × 1015
(

δD

30

)
cm. (75)

If it is associated with the cooling timescale, the cooling is
dominated by EC, and δD = Γ, then

u0 ≈ 3.2 × 10−5
(

Γ
30

)−5/2 (
B

1 G

)1/2

×
(

λobs

5000 Å

)−1/2

erg cm−3, (76)

where λobs is the observed wavelength. If the cooling is
dominated by synchrotron, then the cooling timescale can be
used to estimate the magnetic field,

B ≈ 0.81
(

δD

30

)−1/3 (
λobs

5000 Å

)−1/3

G. (77)
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If break is associated with cooling timescale: 

If break is associated with escape timescale: 
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and S(ϵ, f ) ∝ f −b2 at f > fbrk, shows b1 ≈ 1 and b2 ≈ 3. This
is a break of about 2, which is what is expected from our theory.
The timescale could correspond to the light crossing, cooling,
or escape timescales. If one interprets it as the light-crossing
timescale, tlc, then

R′ ≈ ctlcδD

2(1 + z)
= 1.7 × 1017

(
δD

30

)
cm. (72)

Interpreting it as the cooling timescale, tcool, and assuming
δD = Γ, the external radiation field is

u0 ≈ 3mec
2

4cσTΓ2t ′coolγ
′ = 9.6 × 10−6

(
Γ
30

)−2 (
E

100 MeV

)−1/2

×
(

ϵ0

5 × 10−7

)1/2

erg cm−3

= 6.1 × 10−5
(

Γ
30

)−2 (
E

100 MeV

)−1/2

×
(

ϵ0

2 × 10−5

)1/2

erg cm−3, (73)

where E is the observed photon energy. The first line assumes
the seed photon source is a dust torus with temperature 1000 K;
the second assumes it is Lyα, presumably from the broad-line
region. Both numbers give rather low values for u0.

However, interpreting the break as either the cooling
timescale or the light crossing timescale is problematic, since
variations on timescales much shorter than this have been ob-
served from 3C 454.3, including decreases on much faster
timescales (Ackermann et al. 2010; Abdo et al. 2011a). But
one could also associate the break with the escape timescale
for electrons in the blob, as shown in Section 5.1. This break
will occur at f = (2π tesc)−1, so if tlc = tesc, the break will
still be at a frequency 2π lower than the one related to the light
crossing timescale. Furthermore, the escape timescale could in
principle be longer than the light crossing timescale, since mag-
netic fields in the blob would curve the electron’s path and
decrease the time it takes to escape. We note that in Figure 4,
the break in the 0.1 GeV PSD is indeed associated with the
escape timescale, f = (2π tesc)−1, showing that this is at least
plausible. If the break in the PSD of 3C 454.3 (Nakagawa &
Mori 2013) is due to electron escape, then the escape timescale
in the observer’s frame will be tesc = 7.9 days/(2π ) = 30 hr,
and in the comoving frame,

t ′esc = 20 days
(

δD

30

)
. (74)

How could one distinguish between these interpretations?
One possibility would be to observe the PSDs at more than one
waveband. If the break is due to the light-crossing timescale, the
break frequency should be present independent of the waveband.
The escape timescale break could also be independent of
frequency if the escape timescale is energy independent, as
it is in our model. The cooling timescale should be energy-
dependent, and thus the break frequency will be different in
different wavebands. For 3C 454.3, the light-crossing timescale
interpretation is disfavored since smaller timescale fluctuations
are present in its light curve (e.g., Ackermann et al. 2010; Abdo
et al. 2011a).

6.5. Optical PSDs of Blazars

Chatterjee et al. (2012) compute R band PSDs for 6 blazars
based on about 200–250 days of continuous data. Their PSDs
have power-law indices that are significantly steeper than those
from the same objects’ γ -ray PSDs from Nakagawa & Mori
(2013). The exception is PKS 1510−089, for which Chatterjee
et al. (2012) compute b = 0.6+0.2

−0.5, significantly flatter than
the γ -ray PSD. Our theory predicts that synchrotron and EC
emission should have the same PSD slopes if produced by
the same electron energies, and all but one of their sources
are FSRQs, which are expected to emit γ -rays by EC. One
possible reason for the discrepancy could be the contamination
in the optical by the accretion disk. Another possibility is that the
time intervals used by Chatterjee et al. (2012) are significantly
shorter than the ones used by Nakagawa & Mori (2013). As
Chatterjee et al. (2012) point out, the large number of bright
flares in their time interval for PKS 1510−089 could be the cause
of its especially flat R band PSD power-law index. It could also
be that the different analysis methods used by Chatterjee et al.
(2012) and Nakagawa & Mori (2013) could lead to different
results. Finally, it could be that one of the assumptions of our
theory is just not correct.

The Kepler mission, with its excellent relative photometry
and short timescale sampling is well-suited for measuring high-
frequency PSDs. Wehrle et al. (2013) reported the Kepler
PSDs of several radio-loud AGNs, and found no departure
from a single power law up to ∼10−5 Hz, above which
white noise dominates. Edelson et al. (2013) explored the
Kepler PSD of the BL Lac object W2R1926+42 and found a
“bending” power law provided a good fit to its PSD, with “bend
frequency” corresponding to ≈4 hr. The source W2R1926+42
has a synchrotron peak at 1014.5 Hz according to Edelson et al.
(2013), making it an intermediate synchrotron peaked object by
the classification of Abdo et al. (2010a). However, its optical
SED appears to be dominated by accretion disk emission,
implying its synchrotron peak is probably at !1013.5 Hz,
which would make it a low-synchrotron peaked (LSP). The
Kepler light curve could have a contribution from both the
thermal accretion disk emission and the nonthermal jet emission,
making interpretation of its PSD difficult. If the optical band is
dominated by synchrotron emission, its status as an LSP implies
that the electrons that produce its optical emission are in the
regime γ ′ ≫ (νt ′esc)−1, meaning the “bend frequency” could
be associated with the light-crossing timescale or the cooling
timescale. If it is associated with the light-crossing timescale,
the size of the emitting region is

R′ ≈ 5.5 × 1015
(

δD

30

)
cm. (75)

If it is associated with the cooling timescale, the cooling is
dominated by EC, and δD = Γ, then

u0 ≈ 3.2 × 10−5
(

Γ
30

)−5/2 (
B

1 G

)1/2

×
(

λobs

5000 Å

)−1/2

erg cm−3, (76)

where λobs is the observed wavelength. If the cooling is
dominated by synchrotron, then the cooling timescale can be
used to estimate the magnetic field,

B ≈ 0.81
(

δD

30

)−1/3 (
λobs

5000 Å

)−1/3

G. (77)
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(dust torus) 

(broad line region) 

Rb’ < 1018 cm 



That is for synchrotron and External Compton 
(EC).  What about synchrotron self-Compton 

(SSC)?  
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That is for synchrotron and External Compton 
(EC).  What about synchrotron self-Compton 

(SSC)?  

14 

f 

PSD ~f-a 

f 

PSD 
~f-(2a-2) 

Synch/EC 
SSC 

Recall Q(γ,f) ~ f-a 
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Observed Gamma-ray PSDs 

If a is roughly the same for all blazars, what would we expect to observe 
in the PSDs of blazars’ gamma-ray (Fermi-LAT) light curves? 

FSRQs 

BL Lacs 

External Compton 

Synchrotron self-
Compton 

b = a 

b = 2a - 2 

Observed PSD:  S ~ f-b 

So we predict that generally, FSRQs should have steeper PSDs than BL 
Lacs if a < 2. 

Is this observed? 
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Gamma-ray PSD indices 

Essentially all FSRQs have PSD index 
consistent with b=1 (within errors) 
 
Essentially all BL Lacs have PSD index 
consistent with  b=0.5. 
 
In general agreement with out model if 
FSRQs make γ rays from EC and BL 
Lacs make γ rays from SSC. 

Categorized as BL Lacs or FSRQs based on 
Ghisellini et al. (2011) MNRAS, 414, 2674.  
Boundary at LBLR / LEdd  = 5 x 10-4 

– 22 –

Equations (40) and (43) to get

B =
Bc

(δDϵaϵb)1/3

{
3(1 + z)mec2(ϵ1/2

b − ϵ1/2
a )

8cσTuBc∆T

}2/3

(67)

where uBc = B2
c/(8π). With z = 0.03 for Mrk 421 and mec2ϵa = 0.1 keV and mec2ϵb = 2

keV,

B = 0.7

(
δD

30

)−1/3( ∆T

103 s

)−2/3

G . (68)

6.3. The Gamma-Ray PSDs of FSRQs and BL Lacs

Nakagawa & Mori (2013) used more than four years of Fermi-LAT data to compute the
PSD of 15 blazars. The PSDs are fit with a either a single power-law model and in some
cases a broken power-law model. There seems to be a difference in the index b of their PSDs,

where the PSD is S(ϵ, f) ∝ f−b. Their values of b from the single power-law fit or double
power-law fit if that fit is statistically significant are given in Table 1. We neglect the FSRQ

S4 1030+61, which has poor statistics. There is a clear separation between b for FSRQs and
BL Lacs. All BL Lacs have b ≤ 0.6, while all FSRQs except for PKS 1222+216 have b > 0.7.

PKS 1222+216 seems to be an outlier in terms of its PSD power-law index, although its b is
still larger than for any of the BL Lacs.

In Section 5.2 it was noted that at low frequencies (f ! 10−4 Hz) the index for SSC, bSSC

will be smaller than the index for EC, bEC , so that bSSC = 2bEC − 2. This is in qualitative

agreement with the results of Nakagawa & Mori (2013) if FSRQs produce γ-rays by EC and
BL Lacs produce γ-rays by SSC, since the BL Lac objects do have a lower b than the FSRQs.
However, on average, the BL Lac objects have b ≈ 1 and the FSRQs have b ≈ 0.5, which is

not in agreement with our theory. This could be due to our neglect of SSC losses or another
simplifying assumption; see Section 7.

Note that based on the traditional classification, PKS 0537−441 and PKS 0426−380
are classified as BL Lac objects. However, based on the new classification by Ghisellini et al.

(2011) they are considered FSRQs (see also Sbarrato et al. 2012). We use the more recent
classification. For a discussion see D’Ammando et al. (2013) for PKS 0537−441 and Tanaka

et al. (2013) for PKS 0426−380.
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Full Compton cross-section 

Breaks in PSDs can give 
the observer frame cooling 
timescale, defined as: 

The δ-approximation, valid in the Klein-Nishina regime, 
is from Moderski et al. (2005), MNRAS, 363, 954 

So in principle, we can get the 
cooling timescale from the 
PSDs.  



18 

Full Compton cross-section 

Breaks in PSDs can give 
the observer frame cooling 
timescale, defined as: 

The δ-approximation, valid in the Klein-Nishina regime, 
is from Moderski et al. (2005), MNRAS, 363, 954 

Can these breaks be 
observed? 

So in principle, we can get the 
cooling timescale from the 
PSDs.  

1 hour 
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EKN ~ ( Eseed )-1  
 
Dust torus:  103 K black body, Eseed ~ 
0.3 eV 
 
Lyα broad line:  Eseed ~ 10 eV 
 
So if you can determine EKN, one can 
determine Eseed.  But how can you find 
EKN? 
 
Variability! 

Dotson et al. (2012), ApJ, 758, L15 

σ 

EKN 

σ ∼ const σ ∼ log(Ε) E-1 

Thomson regime Klein-Nishina 
regime 

Compton scattering cross section 

photon energy 
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σ 

photon energy EKN(dust) 

Compton scattering cross section 

EKN(BLR) 

EKN ~ ( Eseed )-1  
 
Dust torus:  103 K black body, Eseed ~ 
0.3 eV 
 
Lyα broad line:  Eseed ~ 10 eV 
 
So if you can determine EKN, one can 
determine Eseed.  But how can you find 
EKN? 
 
Variability! 
 
Scattering dust photons will be more 
efficient at higher energies, leading to 
greater cooling and different variability 
than scattering Lyα photons. 
 

Dotson et al. (2012), ApJ, 758, L15 
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Compton Dominance 

We can develop a function 

Lsy 

LC 

AC = LC / Lsy 
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galaxy’s frame, and that it is monochromatic with dimensionless energy ϵ0. We also assume

from the breaks or time lags in the PSDs of blazars at several energy ranges in EC one can
obtain the cooling timescale, as described in Sections 3 and 4. For example, one might find
breaks in Fermi-LAT PSDs at mec2ϵa = 0.1 GeV, mec2ϵb = 0.1 1.0 GeV, and mec2ϵc = 0.1

10.0 GeV, and thus the cooling timescales at these energies.

If one is observing synchrotron or EC, one can use Equation (42) to compute the observer
frame cooling timescale from synchro-Compton losses, which we rewrite as

tcool(ϵ) =
3(1 + z)mec2ϵ0

cσTuB

∫ x2

x1

dx

x2

1

1 + ACM0(x)
(48)

where

x2 = 4Γγ2ϵ0 (49)

and

AC =
Γ2u0

uB
(50)

is the Compton dominance, assuming δD = Γ. If the cooling timescale is estimated from a
PSD or time lag that is emitting synchrotron, the integral’s lower limit is

x1,sy = 4ϵ0

(
ϵ(1 + z)δD

ϵB

)1/2

. (51)

If the cooling timescale is estimated from EC, then the integral’s lower limit is

x1,EC = 4Γγ′
ECϵ0 =

4ϵϵ0(1 + z)

M1(x1,EC)

≈
{

2
√

3ϵϵ0(1 + z) 4Γγ′
ECϵ0 ≪ 1 Thomson Regime

4ϵϵ0(1 + z)/(0.691) 4Γγ′
ECϵ0 ≫ 1 Extreme Klein-Nishina Regime

. (52)

For computing x1 above we have made use of the δ function approximations for synchrotron
and EC, as described in Section 3.1.1 and 3.2.1. For EC, a function created from three
cooling timescales,

r(ϵa, ϵb, ϵc) =
tcool(ϵa) − tcool(ϵc)

tcool(ϵa) − tcool(ϵb)
(53)

is dependent only on ϵ0 and AC . In principle, AC can be determined from the broadband
spectral energy distribution (e.g., Meyer et al. 2012; Finke 2013). For synchrotron, this

function is additionally dependent on the ratio δD/ϵB. Observations of FSRQ synchrotron

that depends only on ε0 and AC, where 

AC can be 
determined from 
broadband SED! 
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Full Compton cross-section 
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galaxy’s frame, and that it is monochromatic with dimensionless energy ϵ0. We also assume

from the breaks or time lags in the PSDs of blazars at several energy ranges in EC one can
obtain the cooling timescale, as described in Sections 3 and 4. For example, one might find
breaks in Fermi-LAT PSDs at mec2ϵa = 0.1 GeV, mec2ϵb = 0.1 1.0 GeV, and mec2ϵc = 0.1

10.0 GeV, and thus the cooling timescales at these energies.

If one is observing synchrotron or EC, one can use Equation (42) to compute the observer
frame cooling timescale from synchro-Compton losses, which we rewrite as

tcool(ϵ) =
3(1 + z)mec2ϵ0

cσTuB

∫ x2

x1

dx

x2

1

1 + ACM0(x)
(48)

where

x2 = 4Γγ2ϵ0 (49)

and

AC =
Γ2u0

uB
(50)

is the Compton dominance, assuming δD = Γ. If the cooling timescale is estimated from a
PSD or time lag that is emitting synchrotron, the integral’s lower limit is

x1,sy = 4ϵ0

(
ϵ(1 + z)δD

ϵB

)1/2

. (51)

If the cooling timescale is estimated from EC, then the integral’s lower limit is

x1,EC = 4Γγ′
ECϵ0 =

4ϵϵ0(1 + z)

M1(x1,EC)

≈
{

2
√

3ϵϵ0(1 + z) 4Γγ′
ECϵ0 ≪ 1 Thomson Regime

4ϵϵ0(1 + z)/(0.691) 4Γγ′
ECϵ0 ≫ 1 Extreme Klein-Nishina Regime

. (52)

For computing x1 above we have made use of the δ function approximations for synchrotron
and EC, as described in Section 3.1.1 and 3.2.1. For EC, a function created from three
cooling timescales,

r(ϵa, ϵb, ϵc) =
tcool(ϵa) − tcool(ϵc)

tcool(ϵa) − tcool(ϵb)
(53)

is dependent only on ϵ0 and AC . In principle, AC can be determined from the broadband
spectral energy distribution (e.g., Meyer et al. 2012; Finke 2013). For synchrotron, this

function is additionally dependent on the ratio δD/ϵB. Observations of FSRQ synchrotronr is a function of only 
observed energies, AC, 
and ε0!  
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Full Compton cross-section 

r is a function of only 
observed energies, AC, 
and ε0!  
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galaxy’s frame, and that it is monochromatic with dimensionless energy ϵ0. We also assume

from the breaks or time lags in the PSDs of blazars at several energy ranges in EC one can
obtain the cooling timescale, as described in Sections 3 and 4. For example, one might find
breaks in Fermi-LAT PSDs at mec2ϵa = 0.1 GeV, mec2ϵb = 0.1 1.0 GeV, and mec2ϵc = 0.1

10.0 GeV, and thus the cooling timescales at these energies.

If one is observing synchrotron or EC, one can use Equation (42) to compute the observer
frame cooling timescale from synchro-Compton losses, which we rewrite as

tcool(ϵ) =
3(1 + z)mec2ϵ0

cσTuB

∫ x2

x1

dx

x2

1

1 + ACM0(x)
(48)

where

x2 = 4Γγ2ϵ0 (49)

and

AC =
Γ2u0

uB
(50)

is the Compton dominance, assuming δD = Γ. If the cooling timescale is estimated from a
PSD or time lag that is emitting synchrotron, the integral’s lower limit is

x1,sy = 4ϵ0

(
ϵ(1 + z)δD

ϵB

)1/2

. (51)

If the cooling timescale is estimated from EC, then the integral’s lower limit is

x1,EC = 4Γγ′
ECϵ0 =

4ϵϵ0(1 + z)

M1(x1,EC)

≈
{

2
√

3ϵϵ0(1 + z) 4Γγ′
ECϵ0 ≪ 1 Thomson Regime

4ϵϵ0(1 + z)/(0.691) 4Γγ′
ECϵ0 ≫ 1 Extreme Klein-Nishina Regime

. (52)

For computing x1 above we have made use of the δ function approximations for synchrotron
and EC, as described in Section 3.1.1 and 3.2.1. For EC, a function created from three
cooling timescales,

r(ϵa, ϵb, ϵc) =
tcool(ϵa) − tcool(ϵc)

tcool(ϵa) − tcool(ϵb)
(53)

is dependent only on ϵ0 and AC . In principle, AC can be determined from the broadband
spectral energy distribution (e.g., Meyer et al. 2012; Finke 2013). For synchrotron, this

function is additionally dependent on the ratio δD/ϵB. Observations of FSRQ synchrotron
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galaxy’s frame, and that it is monochromatic with dimensionless energy ϵ0. We also assume

from the breaks or time lags in the PSDs of blazars at several energy ranges in EC one can
obtain the cooling timescale, as described in Sections 3 and 4. For example, one might find
breaks in Fermi-LAT PSDs at mec2ϵa = 0.1 GeV, mec2ϵb = 0.1 1.0 GeV, and mec2ϵc = 0.1

10.0 GeV, and thus the cooling timescales at these energies.

If one is observing synchrotron or EC, one can use Equation (42) to compute the observer
frame cooling timescale from synchro-Compton losses, which we rewrite as

tcool(ϵ) =
3(1 + z)mec2ϵ0

cσTuB

∫ x2

x1

dx

x2

1

1 + ACM0(x)
(48)

where

x2 = 4Γγ2ϵ0 (49)

and

AC =
Γ2u0

uB
(50)

is the Compton dominance, assuming δD = Γ. If the cooling timescale is estimated from a
PSD or time lag that is emitting synchrotron, the integral’s lower limit is

x1,sy = 4ϵ0

(
ϵ(1 + z)δD

ϵB

)1/2

. (51)

If the cooling timescale is estimated from EC, then the integral’s lower limit is

x1,EC = 4Γγ′
ECϵ0 =

4ϵϵ0(1 + z)

M1(x1,EC)

≈
{

2
√

3ϵϵ0(1 + z) 4Γγ′
ECϵ0 ≪ 1 Thomson Regime

4ϵϵ0(1 + z)/(0.691) 4Γγ′
ECϵ0 ≫ 1 Extreme Klein-Nishina Regime

. (52)

For computing x1 above we have made use of the δ function approximations for synchrotron
and EC, as described in Section 3.1.1 and 3.2.1. For EC, a function created from three
cooling timescales,

r(ϵa, ϵb, ϵc) =
tcool(ϵa) − tcool(ϵc)

tcool(ϵa) − tcool(ϵb)
(53)

is dependent only on ϵ0 and AC . In principle, AC can be determined from the broadband
spectral energy distribution (e.g., Meyer et al. 2012; Finke 2013). For synchrotron, this

function is additionally dependent on the ratio δD/ϵB. Observations of FSRQ synchrotronr is a function of only 
observed energies, AC, 
and ε0!  
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galaxy’s frame, and that it is monochromatic with dimensionless energy ϵ0. We also assume

from the breaks or time lags in the PSDs of blazars at several energy ranges in EC one can
obtain the cooling timescale, as described in Sections 3 and 4. For example, one might find
breaks in Fermi-LAT PSDs at mec2ϵa = 0.1 GeV, mec2ϵb = 0.1 1.0 GeV, and mec2ϵc = 0.1

10.0 GeV, and thus the cooling timescales at these energies.

If one is observing synchrotron or EC, one can use Equation (42) to compute the observer
frame cooling timescale from synchro-Compton losses, which we rewrite as

tcool(ϵ) =
3(1 + z)mec2ϵ0

cσTuB

∫ x2

x1

dx

x2

1

1 + ACM0(x)
(48)

where

x2 = 4Γγ2ϵ0 (49)

and

AC =
Γ2u0

uB
(50)

is the Compton dominance, assuming δD = Γ. If the cooling timescale is estimated from a
PSD or time lag that is emitting synchrotron, the integral’s lower limit is

x1,sy = 4ϵ0

(
ϵ(1 + z)δD

ϵB

)1/2

. (51)

If the cooling timescale is estimated from EC, then the integral’s lower limit is

x1,EC = 4Γγ′
ECϵ0 =

4ϵϵ0(1 + z)

M1(x1,EC)

≈
{

2
√

3ϵϵ0(1 + z) 4Γγ′
ECϵ0 ≪ 1 Thomson Regime

4ϵϵ0(1 + z)/(0.691) 4Γγ′
ECϵ0 ≫ 1 Extreme Klein-Nishina Regime

. (52)

For computing x1 above we have made use of the δ function approximations for synchrotron
and EC, as described in Section 3.1.1 and 3.2.1. For EC, a function created from three
cooling timescales,

r(ϵa, ϵb, ϵc) =
tcool(ϵa) − tcool(ϵc)

tcool(ϵa) − tcool(ϵb)
(53)

is dependent only on ϵ0 and AC . In principle, AC can be determined from the broadband
spectral energy distribution (e.g., Meyer et al. 2012; Finke 2013). For synchrotron, this

function is additionally dependent on the ratio δD/ϵB. Observations of FSRQ synchrotronr is a function of only 
observed energies, AC, 
and ε0!  

Is it practical to measure the breaks in 3 PSDs of a blazar, 
each with a different energy bin? 
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Can also use this model to calculate Fourier frequency-dependent time 
lags between two channels. 

– 14 –

4. Time Lags

Time lags as a function of Fourier frequency are given by

∆T (ϵa, ϵb, f) =
1

2πf
arctan

[
YI(ϵa, ϵb, f)

YR(ϵa, ϵb, f)

]
(45)

where YR(ϵa, ϵb, f) and YI(ϵa, ϵb, f) are defined by

F̃ (ϵa, f)F̃ ∗(ϵb, f) = YR(ϵa, ϵb, f) + i YI(ϵa, ϵb, f) . (46)

Equations (45) and (46) above are combined with Equations (34) and (39) to compute the
time lags in the with the Moderski approximation and full calculation for the EC time lags.
The results are shown in Figure 3. Note that light travel time effects will play no part in

time lags, since they are energy-independent. Time lags in the limits f ≪ [2πtcool(ϵb)]−1 and
f ≪ [2πtcool(ϵb)]−1, are

∆T (ϵa, ϵb, f) ≈ [tcool(ϵb) − tcool(ϵa)] /3 (47)

for the full calculation, where tcool(ϵ) is the new definition from this paper, Equation (42).
The Moderski δ function approximation however is about 15% higher in all cases. This is also
true for synchrotron time lags, which are not shown. Clearly the δ function approximations

are not as accurate for time lags as they are for PSDs.

In this paper, we use the standard convention that ϵb < ϵa (e.g., Kroon & Becker 2014),
so that positive lags refer to hard lags (i.e., the hard channel lags behind the soft channel),
and negative lags to soft lags (i.e., the soft channel lags behind the hard channel). Thus,

Figure 3 shows our model only reproduces soft lags. Note that this is in contrast to Paper I,
where we did not use this convention. In X-ray observations of BL Lac objects, both soft

lags (e.g. Zhang et al. 2002) and hard lags (e.g., Zhang 2002) have been observed. Our model
can reproduce the soft lags but not the hard lags, contrary to our discussion in Section 6.2

of Paper I. This is because the continuity equation treated here only includes losses (due to
synchrotron and EC emission) and does not include any energization processes. Inclusion of
time-dependent acceleration effects in our model may be able to explain the hard lags, as

suggested by Zhang (2002). We will explore this possibility in future work (Lewis, Becker,
& Finke 2015, in preparation).

5. Method for Determining Seed Photon Energy

Here we outline a technique for determining the energy of the seed photon source for

EC. We assume the external seed photon source can be approximated as isotropic in the
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Time Lags 

If f << tcool/(2π), time 
delay is independent 
of frequency. 
 
 
Lags are always soft in 
this model (soft 
channel lags behind 
hard).   
 
A result of longer 
cooling time for lower 
energy electrons. 
 
But what is observed? 
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Hard lags are observed for Mrk 
421 with BeppoSAX! 
 
 

Zhang (2002), MNRAS, 337, 609 
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Fourier Transformed Transport Equation for X-Ray

Time Lags in Blazars

T.R. Lewis J.D. Finke P.A. Becker

April 13, 2015

1 Motivation

Previously, we have addressed several version if the particle transport equation in an at-
tempt to understand the data resulting from observations of blazar jets. Specifically, we are
working with data from Zhang 2002, figure 5a, which is time lags derived from Beppo SAX
observations of Markarian 421.

In an e↵ort to reconcile theory with observation, we have added terms to the particle
transport equation which model synchrotron radiation, quadratic di↵usion, Bohm di↵usion,
and now shock acceleration, which o↵ers a promising improvement to our previous attempts.
In the course of the analysis, we do eventually introduce a conversion to the radiation
solution, which is what can be detected, in addition to corrections for relativistic e↵ects.

Transport equations in our subfield are often expressed in terms of momentum, which in
our case is
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whose components we will discuss momentarily. This is related to our previous notation
by

p = �mv (2)

where � is the Lorentz factor with units of energy, p is momentum, m is mass, and v is
velocity. Additionally, we wish to adopt a dimensionless notation, where

x =
p

mc

= �� (3)

where x is a dimensionless energy, c is the speed of light, and � = v/c.
The first term in the transport equation is the quadratic di↵usion term, where
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> 0 signifying the loss of energy to radiation.
The third term represents gains
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where A / s
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Substituting each of these more specific definitions into our transport equation gives
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Change variables to the dimensionless energy x = p

mc
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Now, we want to non-dimensionalize the time as well. So, we divide through by D

0

and
obtain

y ⌘ tD

0

(9)

and the transport equation becomes
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where a ⌘ A

D0
, b ⌘ B0

D0
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, which is the Bohm momentum
dependence. Note that the D

0

from the delta transformation cancels as we divide through
by D

0

in the same step.
We define the Fourier Transform as
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where !̃ must be dimensionless, thus ! = !̃D
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Hard sphere scattering: 

Synchro-Compton losses 
(Thomson regime): 

Ne(γ;t) à p2 f(p;t) 
γ à p 

Second order acceleration, represented by Fokker-Planck equation: 

Fourier Transformed Transport Equation for X-Ray

Time Lags in Blazars

T.R. Lewis J.D. Finke P.A. Becker

April 16, 2015

1 Motivation

Previously, we have addressed several version if the particle transport equation in an at-
tempt to understand the data resulting from observations of blazar jets. Specifically, we are
working with data from Zhang 2002, figure 5a, which is time lags derived from Beppo SAX
observations of Markarian 421.

In an e↵ort to reconcile theory with observation, we have added terms to the particle
transport equation which model synchrotron radiation, quadratic di↵usion, Bohm di↵usion,
and now shock acceleration, which o↵ers a promising improvement to our previous attempts.
In the course of the analysis, we do eventually introduce a conversion to the radiation
solution, which is what can be detected, in addition to corrections for relativistic e↵ects.

Transport equations in our subfield are often expressed in terms of momentum, which in
our case is
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Here, t

2

(p) is the momentum-dependent escape timescale, and t

1

is the timescale for catas-
trophic energy losses. The first term in the transport equation is the hard-sphere momentum
di↵usion term, where
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where D is the di↵usion constant, and D
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�1. The second term describes synchrotron
losses, with momentum loss rate,
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> 0. The third term represents gains due to first order Fermi
processes, with
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p , (4)

where A
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�1. An example of this process would be acceleration due to multiple shock
crossings.
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Fourier transform: 

Analytic solution: 

Where W and M are Whittaker functions 
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And similarly for C Which provides the solution
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3.1 Relativistic and Cosmological E↵ects

As we proceed with numerical calculations of the time lags, we stayed in terms of the particle
solution. However, we included relativistic and cosmological e↵ects in the relativistic term,

� =
�

D

1 + z

(42)

where z is the cosmological redshift, and �

D

is the relativistic Doppler shift, for Mark
421. Anywhere there is a Fourier frequency in the solution, it is divided by � and the time
lag is multiplied by �.

Abdo et al 2011 provides the values for the magnetic field B = 3.8⇥10�2

G, the relativistic
Doppler shift �

D

= 21, and the cosmological redshift z = 0.03.
From these values describing Markarian 421 in particular, we were able to calculate

several of our model parameters. Numerically, we work with the nondimensional b, but it is
the dimensional B

0

, which is related to the magnetic field, B. So, first, we reintroduce the
dimensional parameter,

B

0

= bD

0

(43)

which is related to the magnetic field by
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It seems possible to use this model to get a reasonable fit to 
observed X-ray time lags from Mrk 421 (Zhang 2002): 

The Astrophysical Journal, 736:131 (22pp), 2011 August 1 Abdo et al.
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Figure 11. SED of Mrk 421 with two one-zone SSC model fits obtained with
different minimum variability timescales: tvar = 1 day (red curve) and tvar = 1
hr (green curve). The parameter values are reported in Table 4. See the text for
further details.

Table 4
Parameter Values from the One-zone SSC Model Fits to the SED from

Mrk 421 Shown in Figure 11

Parameter Symbol Red Curve Green Curve

Variability timescale (s)a tv,min 8.64 × 104 3.6 × 103

Doppler factor δ 21 50
Magnetic field (G) B 3.8 × 10−2 8.2 × 10−2

Comoving blob radius (cm) R 5.2 × 1016 5.3 × 1015

Low-energy electron spectral index p1 2.2 2.2
Medium-energy electron spectral index p2 2.7 2.7
High-energy electron spectral index p3 4.7 4.7
Minimum electron Lorentz factor γmin 8.0 × 102 4 × 102

Break1 electron Lorentz factor γbrk1 5.0 × 104 2.2 × 104

Break2 electron Lorentz factor γbrk2 3.9 × 105 1.7 × 105

Maximum electron Lorentz factor γmax 1.0 × 108 1.0 × 108

Jet power in magnetic field (erg s−1)bx Pj,B 1.3 × 1043 3.6 × 1042

Jet power in electrons (erg s−1) Pj,e 1.3 × 1044 1.0 × 1044

Jet power in photons (erg s−1)b Pj,ph 6.3 × 1042 1.1 × 1042

Notes.
a The variability timescale was not derived from the model fit, but rather used
as an input (constrain) to the model. See the text for further details.
b The quantities Pj,B and Pj,ph are derived quantities; only Pj,e is a free
parameter in the model.

so that
R = δctv,min

1 + z
! δctv

1 + z
. (1)

During the observing campaign, Mrk 421 was in a rather
low activity state, with multifrequency flux variations occurring
on timescales larger than one day (Paneque 2009), so we used
tv,min = 1 day in our modeling. In addition, given that this
only gives an upper limit on the size scale, and the history of
fast variability detected for this object (e.g., Gaidos et al. 1996;
Giebels et al. 2007), we also performed the SED model using
tv,min = 1 hr. The resulting SED models obtained with these
two variability timescales are shown in Figure 11, with the
parameter values reported in Table 4. The blob radii are large
enough in these models that synchrotron self-absorption (SSA)
is not important; for the tv,min = 1 hr model, νSSA = 3×1010 Hz,
at which frequency a break is barely visible in Figure 11. It is
worth stressing the good agreement between the model and the

data: the model describes very satisfactorily the entire measured
broadband SED. The model goes through the SMA (225 GHz)
data point, as well as through the VLBA (43 GHz) data point
for the partially resolved radio core. The size of the VLBA
core of the 2009 data from Mrk 421 at 15 GHz and 43 GHz
is ≃0.06–0.12 mas (as reported in Section 5.1.1) or using the
conversion scale 0.61 pc mas−1 ≃ 1–2 ×1017 cm. The VLBA
size estimation is the FWHM of a Gaussian representing the
brightness distribution of the blob, which could be approximated
as 0.9 times the radius of a corresponding spherical blob
(Marscher 1983). That implies that the size of the VLBA core is
comparable (a factor of about two to four times larger) than that
of the model blob for tvar = 1 day (∼5 × 1016 cm). Therefore,
it is reasonable to consider that the radio flux density from the
VLBA core is indeed dominated by the radio flux density of the
blazar emission. The other radio observations are single dish
measurements and hence integrate over a region that is orders
of magnitude larger than the blazar emission. Consequently, we
treat them as upper limits for the model.

The powers of the different jet components derived from
the model fits (assuming Γ = δ) are also reported in Table 4.
Estimates for the mass of the supermassive black hole in
Mrk 421 range from 2×108 M⊙ to 9×108 M⊙ (Barth et al. 2003;
Wu et al. 2002), and hence the Eddington luminosity should be
between 2.6 × 1046 and 1.2 × 1047 erg s−1, that is, well above
the jet luminosity.

It is important to note that the parameters resulting from
the modeling of our broadband SED differ somewhat from
the parameters obtained for this source of previous works
(Krawczynski et al. 2001; Błażejowski et al. 2005; Revillot
et al. 2006; Albert et al. 2007b; Giebels et al. 2007; Fossati
et al. 2008; Finke et al. 2008; Horan et al. 2009; Acciari et al.
2009). One difference, as already noted, is that an extra break is
required. This could be a feature of Mrk 421 in all states, but we
only now have the simultaneous high quality spectral coverage
to identify it. For the model with tvar = 1 day (which is the
time variability observed during the multifrequency campaign),
additional differences with previous models are in R, which is an
order of magnitude larger, and B, which is an order of magnitude
smaller. This mostly results from the longer variability time in
this low state. Note that using a shorter variability (tvar = 1 hr;
green curve) gives a smaller R and bigger B than most models
of this source.

Another difference in our one-zone SSC model with respect
to previous works relates to the parameter γmin. This parameter
has typically not been well constrained because the single-dish
radio data can only be used as upper limits for the radio flux
from the blazar emission. This means that the obtained value for
γmin (for a given set of other parameters R, B, and δ) can only be
taken as a lower limit: a higher value of γmin is usually possible.
In our modeling we use simultaneous Fermi-LAT data as well as
SMA and VLBA radio data, which we assume are dominated by
the blazar emission. We note that the size of the emission from
our SED model fit (when using tvar ∼1 day) is comparable to
the partially resolved VLBA radio core and hence we think this
assumption is reasonable. The requirement that the model SED
fit goes through those radio points further constrains the model,
and in particular the parameter γmin: a decrease in the value of
γmin would overpredict the radio data, while an increase of γmin
would underpredict the SMA and VLBA core radio data, as
well as the Fermi-LAT spectrum below 1 GeV if the increase in
γmin would be large. We explored model fits with different γmin
and p1, and found that, for the SSC model fit with tvar = 1 day
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•  We have created a new theory for the Fourier analysis of blazar variability. 

•  The simple model assumes variations are only due to changes in the rate of 
electron injection.  Other parameters (B, uext, Γ, etc.) do not change with time. 
 
•  LAT γ-ray PSD indices for BL Lacs and FSRQs (Nakagawa & Mori 2013, ApJ, 
773, 177) in agreement with theory 

•  In principle, one can determine ε0 from the breaks in several γ-ray PSDs at 
different energies (Finke & Becker, submitted). 

• Would it be more effective with VHE experiment with large effective area?  
CTA? 

•  Treatment of particle acceleration will allow reproduction of hard lags (Lewis, 
Becker & Finke in preparation) 
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Analytic Solution 
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3.3. Colored Noise

Since the PSDs of blazars resemble colored noise, and
electrons are generally thought to be injected as power laws
in γ , one might expect that

Q̃(γ , f ) = Q0(f/f0)−a/2γ −qH (γ ; γ1, γ2)H (f ; f1, f2),
(14)

where f0 is some constant frequency and a ! 0. That is, in the jet,
shocks will occur randomly which accelerate and inject particles
as a power-law distribution in γ between γ1 and γ2 with index
q. We will deal only with frequencies in the range f1 " f " f2.
These limits are needed for the PSD to be normalized to a
finite value. Frequencies greater than the inverse of the blob’s
light crossing timescale are particularly unphysical, although we
allow this for two reasons. First, it allows us to compare with
other theoretical studies that allow variations faster than the light
crossing timescale (e.g., Chiaberge & Ghisellini 1999; Zacharias
& Schlickeiser 2013). Second, our blob is already unphysical,
since we allow variations throughout the blob simultaneously
in the blob’s comoving frame. The normalization constant is
related to the time-averaged power injected in electrons ⟨Linj⟩
over a time interval ∆t by

Q0 =
2π∆t⟨Linj⟩

mec2G
√

I 2
r + I 2

i − 2IrI0 + I 2
0

. (15)

A derivation of this equation and definitions of the quantities G,
Ir, Ii, and I0 can be found in Appendix B. With Q̃(γ , f ), given
by Equation (14), Equation (11) can be rewritten as
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and

umax = 1
ν max(γ , γ1)

(
1

tesc
− iω

)
. (18)

3.4. Electron Injection Index q = 2

It is instructive to look at the case where q = 2. In this case,
the remaining integral in Equation (16) can easily be performed
analytically. Then

γ 2Ñe(γ , f ) = Q0(f/f0)−a/2

1/tesc − iω
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and the PSD is
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Figure 1. Electron PSD from Equation (20) resulting from an instantaneous
flash (a = 0) of electrons injected with a power-law energy index q = 2. Here
we set tesc = 105 s, ν = 3.1 × 10−8 s−1, ⟨Linj⟩ = 1042 erg s−1, ∆t = 1 yr,
γ1 = 102, γ2 = 105. Dashed lines indicate f = t−1

cool for each curve, and the
dotted line indicates f = (2π tesc)−1.
(A color version of this figure is available in the online journal.)
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We identify asymptotes for the PSD for q = 2, Equation (20).
For these asymptotes we assume γ ≪ γ2.

1. If 1/(νtesc) ≪ γ and 2πf/ν ≪ γ , then

S(γ , f ) ≈ Q2
0(f/f0)−a

ν2γ 2
. (21)

2. If 1/(νtesc) ≪ γ ≪ 2πf/ν, then

S(γ , f ) ≈
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f 2
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sin2
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πf
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. (22)

3. If γ ≪ 1/(νtesc), then

S(γ , f ) ≈
Q2

0(f/f0)−a
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exp
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, (23)

where we define t−1
cool = ν max(γ , γ1).

The electron PSD resulting from Equation (20) is plotted in
Figure 1 for parameters described in the caption, which are
fairly standard ones for flat-spectrum radio quasars (FSRQs).
We use a = 0 here, which represents an instantaneous injection
of power-law particles at t = 0, to more easily display the
observable features, a number of which are present. For the
γ = 78, 170, and 103 curves, where γ ≪ (νtesc)−1), a break in
the power law from

S(γ , f ) ∝ f −a

3
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other theoretical studies that allow variations faster than the light
crossing timescale (e.g., Chiaberge & Ghisellini 1999; Zacharias
& Schlickeiser 2013). Second, our blob is already unphysical,
since we allow variations throughout the blob simultaneously
in the blob’s comoving frame. The normalization constant is
related to the time-averaged power injected in electrons ⟨Linj⟩
over a time interval ∆t by

Q0 =
2π∆t⟨Linj⟩

mec2G
√

I 2
r + I 2

i − 2IrI0 + I 2
0

. (15)

A derivation of this equation and definitions of the quantities G,
Ir, Ii, and I0 can be found in Appendix B. With Q̃(γ , f ), given
by Equation (14), Equation (11) can be rewritten as
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3.4. Electron Injection Index q = 2

It is instructive to look at the case where q = 2. In this case,
the remaining integral in Equation (16) can easily be performed
analytically. Then

γ 2Ñe(γ , f ) = Q0(f/f0)−a/2
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and the PSD is
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Figure 1. Electron PSD from Equation (20) resulting from an instantaneous
flash (a = 0) of electrons injected with a power-law energy index q = 2. Here
we set tesc = 105 s, ν = 3.1 × 10−8 s−1, ⟨Linj⟩ = 1042 erg s−1, ∆t = 1 yr,
γ1 = 102, γ2 = 105. Dashed lines indicate f = t−1

cool for each curve, and the
dotted line indicates f = (2π tesc)−1.
(A color version of this figure is available in the online journal.)
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We identify asymptotes for the PSD for q = 2, Equation (20).
For these asymptotes we assume γ ≪ γ2.

1. If 1/(νtesc) ≪ γ and 2πf/ν ≪ γ , then

S(γ , f ) ≈ Q2
0(f/f0)−a

ν2γ 2
. (21)

2. If 1/(νtesc) ≪ γ ≪ 2πf/ν, then
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3. If γ ≪ 1/(νtesc), then
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where we define t−1
cool = ν max(γ , γ1).

The electron PSD resulting from Equation (20) is plotted in
Figure 1 for parameters described in the caption, which are
fairly standard ones for flat-spectrum radio quasars (FSRQs).
We use a = 0 here, which represents an instantaneous injection
of power-law particles at t = 0, to more easily display the
observable features, a number of which are present. For the
γ = 78, 170, and 103 curves, where γ ≪ (νtesc)−1), a break in
the power law from

S(γ , f ) ∝ f −a
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3.3. Colored Noise

Since the PSDs of blazars resemble colored noise, and
electrons are generally thought to be injected as power laws
in γ , one might expect that

Q̃(γ , f ) = Q0(f/f0)−a/2γ −qH (γ ; γ1, γ2)H (f ; f1, f2),
(14)

where f0 is some constant frequency and a ! 0. That is, in the jet,
shocks will occur randomly which accelerate and inject particles
as a power-law distribution in γ between γ1 and γ2 with index
q. We will deal only with frequencies in the range f1 " f " f2.
These limits are needed for the PSD to be normalized to a
finite value. Frequencies greater than the inverse of the blob’s
light crossing timescale are particularly unphysical, although we
allow this for two reasons. First, it allows us to compare with
other theoretical studies that allow variations faster than the light
crossing timescale (e.g., Chiaberge & Ghisellini 1999; Zacharias
& Schlickeiser 2013). Second, our blob is already unphysical,
since we allow variations throughout the blob simultaneously
in the blob’s comoving frame. The normalization constant is
related to the time-averaged power injected in electrons ⟨Linj⟩
over a time interval ∆t by
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It is instructive to look at the case where q = 2. In this case,
the remaining integral in Equation (16) can easily be performed
analytically. Then
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Figure 1. Electron PSD from Equation (20) resulting from an instantaneous
flash (a = 0) of electrons injected with a power-law energy index q = 2. Here
we set tesc = 105 s, ν = 3.1 × 10−8 s−1, ⟨Linj⟩ = 1042 erg s−1, ∆t = 1 yr,
γ1 = 102, γ2 = 105. Dashed lines indicate f = t−1

cool for each curve, and the
dotted line indicates f = (2π tesc)−1.
(A color version of this figure is available in the online journal.)
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We identify asymptotes for the PSD for q = 2, Equation (20).
For these asymptotes we assume γ ≪ γ2.

1. If 1/(νtesc) ≪ γ and 2πf/ν ≪ γ , then
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where we define t−1
cool = ν max(γ , γ1).

The electron PSD resulting from Equation (20) is plotted in
Figure 1 for parameters described in the caption, which are
fairly standard ones for flat-spectrum radio quasars (FSRQs).
We use a = 0 here, which represents an instantaneous injection
of power-law particles at t = 0, to more easily display the
observable features, a number of which are present. For the
γ = 78, 170, and 103 curves, where γ ≪ (νtesc)−1), a break in
the power law from

S(γ , f ) ∝ f −a
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q=2: 



Long-term monitoring of PKS 0537-441 2489

between optical and γ -ray bands during 2008–2011, a strong optical
flare without a γ -ray counterpart has been detected from the FSRQ
4C +38.41 in 2011 July (Raiteri et al. 2012).

During 2008–2010 an increase with an amplitude of a factor
of ∼7 was observed in V band, significantly lower with respect
to 2004–2005 observations (a factor of ∼60), confirming the huge
flaring activity observed by REM and Swift in 2005 (Dolcini et al.
2005; Pian et al. 2007). A decreasing variability amplitude was
observed from NIR (a factor of ∼12–13) to UV (a factor of ∼5).
In particular, a clear change of variability amplitude was observed
between R band (a factor of ∼14) and V band (a factor of ∼7).

There appears to be a good correlation between the 23 GHz light
curve collected by SMA and the γ -ray light curve, in particular
a similar increase was observed in 2010 reaching a peak value of
8.05 Jy on 2010 March 9 for SMA during the brightest γ -ray flaring
period. The lack of SMA observations after this date does not allow
us to determine if the 230 GHz flux density is still increasing and
whether the mm peak is strictly simultaneous with the γ -ray peak.
However, the contemporaneous increase in the two energy bands in
2010 seems to indicate that the emission region at mm and γ -rays is
co-spatial and thus the γ -ray flaring activity probably originates at
large distance from the central engine, beyond the broad line region.

7 MO D E L L I N G T H E SE D S

We build three SEDs for PKS 0537−441 in three different activ-
ity states: low, average and high. We used REM, ATOM and Swift
data collected on 2009 March 4 (MJD 548 94), 2009 June 4 (MJD
549 86) and 2010 March (MJD 552 58), and LAT spectra calculated
over the period 2009 February 28–May 11 (MJD 548 90–549 62),
2008 August 4–2010 February 4 (MJD 546 82–552 31) and 2010
February 28–April 4 (MJD 552 55–552 90) for the low, average
and high activity states, respectively. For each SED, we used the
SMA observation available nearest to the Swift observation, i.e.
2009 February 27, 2009 July 15 and 2010 March 7. For the high
activity state also the Planck and Wide-Field Infrared Survey Ex-
plorer (WISE) data collected on 2010 March 7–22 (from Giommi
et al. 2012) and March 4–7, respectively, has been reported. Finally,
we report in the SED the average BAT spectrum.

All three SEDs indicate a lower frequency component peak-
ing at ∼1013–1014 Hz and a higher frequency component peaking
around ∼1021–1022 Hz. We attempted to reproduce the SEDs with
leptonic models which include synchrotron and synchrotron self-
Compton (SSC) scattering (Finke, Dermer & Böttcher 2008). These
attempts failed, as expected for FSRQs and some LSP BL Lacs. We
then added an external Compton (EC) component of seed photons
from a dust torus. We were able to obtain reasonable fits to all three
states, with the only difference between states being the electron
distribution. These model fits are shown as curves in Fig. 10, and
the model parameters can be found in Table 3. See Dermer et al.
(2009) for a description of the model parameters. The dust torus
was modelled as a one-dimensional ring around the black hole,
aligned orthogonal to the jet, and its parameters are approximately
in agreement with dust emitting at the sublimation radius with the
formula given by Nenkova et al. (2008). The dust luminosity in the
model is rather low, but note that there is no hint of dust or disc
emission in the IR–optical portion of the SED, in agreement with
the results reported in Impiombato et al. (2011). For all states, we
found that an electron distribution with two power laws (a single
break) was not enough to explain the observed SED; an additional
power law and break were needed, in particular for reproducing the
NIR–optical part of the spectrum, so that the electron distribution

Figure 10. Modelling of the SEDs of PKS 0537−441 in a low, average and
high state including Fermi, Swift, ATOM, REM and SMA data. See the text
for details.

is given by

Ne(γ ′) ∝ γ ′−p1 , γ ′
min < γ ′ < γ ′

brk,1

Ne(γ ′) ∝ γ ′−p2 , γ ′
brk,1 < γ ′ < γ ′

brk,2

Ne(γ ′) ∝ γ ′−p3 , γ ′
brk,2 < γ ′ < γ ′

max.

For the modelling, the variability time was chosen to be a bit more
than 2 d, consistent with the observed light curve. This constrains
the size of the emitting region, given a Doppler factor. In our model
fits, the primary emitting region is optically thin to synchrotron self-
absorption down to ∼200 GHz, so that it can reproduce the data
at higher frequencies. Below this frequency, presumably the radio
emission comes from other, larger emitting regions (e.g. Konigl
1981). In our model fits, this blob is quite far from the black
hole, ≥1 pc. If the emitting blob takes up the entire cross-section of
the jet, then it would have an opening angle of θopen ∼ 2◦. This is
approximately consistent with the opening angles found for other
blazars based on multi-epoch very long baseline interferometry ob-
servations (Jorstad et al. 2005).

In the ‘average state’, the LAT spectrum shows a clear deviation
from a single power-law (see Section 3). This has been found for
numerous other FSRQs and LSP BL Lacs (Abdo et al. 2010d), most
notably for the extremely γ -ray bright FSRQ 3C 454.3 (Abdo et al.
2009; Ackermann et al. 2010; Abdo et al. 2011). The cause of this
curvature, often characterized as a spectral break (when fitted with
a double power law) is a bit of a mystery. It has been suggested
that it is due to a feature in the electron distribution (Abdo et al.
2009); due to γ γ absorption of γ -rays with He II Lyα broad line
photons (Poutanen & Stern 2010; Stern & Poutanen 2011); due to
a combination of Compton scattering of two seed photon sources,
for example, directly from the accretion disc, and from broad line
emission (Finke & Dermer 2010); or due to Klein–Nishina effects
from Compton scattering of H I Lyα photons (Ackermann et al.
2010). In the ‘high-state’ SED for PKS 0537−441, there is clearly
a spectral break in the IR–optical spectrum, around 3 × 1014 Hz
(∼1 µm). The combination of a break found in both the synchrotron
and Compton-scattered spectrum seems to indicate a common ori-
gin for the break, most likely due to an intrinsic feature in the
underlying electron distribution. Indeed, that is how we model it for
this source. Although the broken IR/optical spectrum in the ‘high
state’, and the curved γ -ray spectrum in the ‘average state’ are not
contemporaneous, there does seem to be a hint of curvature in the
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PKS 0537-441 

D’Ammando et al. (2013), MNRAS, 431, 2481 

z=0.896 
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PKS 0426-380 

z=1.11 

2046 G. Ghisellini, F. Tavecchio and G. Ghirlanda

Figure 2. SED of PKS 0227−369, AO 0235+164 and PKS 0347−221.
Symbols and lines as in Fig. 1.

Extragalactic Database (NED) and reported in Table 3, but not for
the (possible) absorption in the host galaxy nor for Lyα absorption
(line and edge) due to intervening matter along the line of sight. Ac-
cording both to theoretical consideration (see Madau, Haardt & Rees
1999) and optical–UV spectra of high-redshift quasars (e.g. Hook
et al. 2003) this kind of absorption, in quasars, should be at most
marginal. This is an important point, since it allows us to consider
the bluer photometric points of UVOT as a relatively good estimate
of the intrinsic flux of the source. Inspection of the optical–UV SED
shown in Figs 1–9 strongly suggests that in some cases this emission
is due to the accretion disc. This is when there is a peak in the νF ν

optical–UV spectrum with an exponential decline. This cannot be
the synchrotron peak, since the steep spectral index implied by the

Figure 3. SED of PKS 0426−380, PKS 0445−234 and PKS 0820+560.
Symbols and lines as in Fig. 1.

steep γ -ray energy emission (bow-ties) is incompatible with this
interpretation.

This fact, together with the theoretical considerations mentioned
in the previous section, allow us to consider the optical–UV emis-
sion of nearly half of our blazars as due to the accretion disc emis-
sion. Among the sources with UVOT data exceptions are 0215+015,
0235+164, 0454−234, 0528+134, 1454−354, 2251−158 and
2325+093. For these sources either the non-thermal continuum
dominates the flux, or the quality of the data is not sufficient to
discriminate between the thermal and the non-thermal processes.
For them, the black hole mass and disc luminosity has been chosen
(when summed to the non-thermal emission) not to overproduce the
observed flux.

C⃝ 2009 The Authors. Journal compilation C⃝ 2009 RAS, MNRAS 399, 2041–2054

Ghisellini et al. (2009), MNRAS, 399, 2041 
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SSC PSD 

 

Quadratic variability 
gives different PSD 
shape.  At low 
frequencies, SSC PSD 
related to injected 
electron PSD by: 

For synchrotron and EC: 
 

S(ε,f) ~ f-a 

Recall: 
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f 

PSD ~f-a 

~f-(a+2) 

For synch: 

For EC: 

ν << νcr  
E << Ecr 

PSD 

~f-a 

~f-(a+2) 

ν >> νcr  
E >> Ecr 

1/(2πtesc) 1/tcool 

Assuming uB << Γ2uext, as is likely the case for FSRQs: 

Assuming uB >> Γ2uext, as is likely the case for BL Lacs: 

For synch: 
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For synchrotron or EC, at low frequencies, for two channels a and b: 

1) If νcr << νa and νcr << νb (syn) 
then ΔT(Ea,Eb) = ½(tcool,a – tcool,b) 

2) If νa << νcr << νb (syn) then ΔT(Ea,Eb)  = tesc(1 + …)  

3) If νa << νcr and νb << νcr (syn)  
then ΔT(Ea,Eb)  à 0 

   or Ecr << Ea and Ecr << Eb (EC) 

 or  Ea << Ecr << Eb (EC) 

 or Ea << Ecr and Eb << Ecr (EC)  

See slide 9 for definitions of νcr and Ecr.  
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Full Compton cross-section 

In principle, we can get the cooling timescale from the PSDs.  For only 
synchrotron and EC losses, the ratio of two cooling timescales will be 
dependent only on the Compton dominance AC, and seed photon energy, 
ε0. 

AC can in principle be determined from a blazar’s SED.  Can one use the 
ratio of two cooling timescales to get ε0?  Similar to Dotson et al. (2012), 
ApJ, 758, 15 . 

where 


