

Fermi

Gamma-ray Space Telescope

Observations of Gamma-ray Bursts

Julie McEnery NASA/GSFC and University of Maryland

On behalf of the Fermi-LAT and Fermi-GBM collaborations

The Fermi Observatory

Large Area Telescope (LAT) Observes 20% of the sky at any instant, views entire sky every 3 hrs 20 MeV - 300 GeV - includes unexplored region between 10 - 100 GeV Gamma-ray Burst Monitor (GBM) Observes entire unocculted sky Detects transients from 8 keV - 40 MeV

- Huge improvement over previous missions in this waveband
 - Increased effective area
 - Improved angular resolution
 - Broader energy range
 - Wide field of view

Fermi Observatory

Large Area Telescope (LAT):

- 20 MeV >300 GeV
- 2.4 sr FoV (scans entire sky every ~3hrs)

Gamma-ray Burst Monitor (GBM)

- 8 keV 40 MeV
- views entire unocculted sky

Launched on June 11, 2008

All Sky Coverage

- In survey mode, the LAT observes the entire sky every two orbits (~3 hours).
- Multiwavelength observations in coordination with the LAT are limited only by the ability to coordinate to other observations in other wavebands.
- Can also perform pointed observations of particularly interesting regions of the sky.

GRB090902B - Autonomous repoint

- LAT pointing in celestial coordinates from -120 s to 2000 s
 - Red cross = GRB 090902B
 - Dark region = occulted by Earth (qz>113°)
 - Blue line = LAT FoV (±66°)
 - White lines = 20° (Earth avoidance angle) / 50° above horizon
 - White points = LAT events (no cut on zenith angle)

GRB090902B Fermi LAT —149,4 s 39.0'

Some History

• EGRET detected 4 GRB in its pair conversion telescope.

In one GRB, EGRET observed emission above 30 MeV for more than an hour after the prompt emission.

. 18 GeV photon was observed (the highest ever seen by EGRET from a GRB).

• Due to Earth occultation/telemetry gap, it is unknown for how long the high energy emission lasted.

Unlike optical/X-ray afterglows, gamma-ray luminosity did not decrease with time -> additional processes contributing to high energy emission?

Joint EGRET-BATSE observations

Analysis using EGRET TASC data

- Classic sub-MeV component observed in BATSE data which decays by factor of 1000 and Epeak moves to lower energies
- Higher Energy component observed within 14-47 seconds by EGRET and at later times by both BATSE and EGRET detectors
- Higher Energy Component has
 - $dN_{\rm v}/dE = kE^{-1}$
 - lasts ~200 seconds
 - Increases total energy flux by factor of 3

Joint EGRET-BATSE observations

High energy component not always present in EGRET TASC observations.

• Above 100 MeV, spark chamber observations were much more sensitive than TASC observations (albeit with smaller FoV)

Fermi and GRB

- LAT: <20 MeV to >300 GeV. With both onboard and ground burst triggers.
- GBM: 12 Nal detectors— 8 keV to 1 MeV. Used for onboard trigger, onboard and ground localization, spectroscopy: 2 BGO detectors— 150 keV to 40 MeV. Used for spectroscopy.
- Total of >7 energy decades!

GBM Triggers/Month

Month (starting Jul 2008)

- Nov 9, 2009 add new TGF trigger
 - TGF trigger rate increased by factor of ~10 to 1 per 3.7 days
- Feb/March 2011, solar activity

GBM Observations of GRB

- GBM detects ~250 GRB/year (c.f. 100 with Swift)
 - Exceed pre-launch expectations of ~200/year due to flexible trigger algorithm
- Broad spectral coverage, relatively poor localization

GBM Spectra - Thermal Components?

Fermi detections as of 2011-01-20

Fermi-LAT Observations of GRB

- Prompt emission phase
 - Onset of >100 MeV delayed w.r.t. keV flux
 - Durations of high energy emission longer than keV emission
 - Hard power-law components seen in bright LAT GRB
 - Cutoffs -> fewer detected GRB than hoped
- Afterglows
 - Properties of MeV-GeV afterglows and connection to prompt phase
 - MeV-GeV counterparts to x-ray flares

Delayed Onset and Extended GeV Radiation of Fermi LAT GRBs

Delayed onset of >100 MeV

 The LAT >100 MeV emission starts after the keV emission, sometimes by up to 80 seconds.

Duration Distributions

We measure a systematically longer duration in the LAT

- Emission at GeV energy lasts longer than the emission at MeV energy
 - Different component?
- OR, better sensitivity of the LAT detector (low background) than the GBM detector (background dominated)

Fluence Distributions

GRB 090902B: A Hard Component in Long GRB

Space Telescope

 $(T_0+4.6 \text{ s to } T_0 + 9.6 \text{ s})$ is a band function (smoothly broken powerlaw) + power-law component.

Hadronic model providing additional hard component with excess at low and high energies?

Two non-thermal power-law + thermal component?

GRB 090510: A Short Hard GRB with an extra component

Early onset of afterglow?

GRB090926B

- Sharp spike seen at all measured gamma-ray energies
 - Strongest below 15 keV and above 10 MeV
 - Clear correlation
 between keV and
 MeV/GeV
 lightcurves

Ackermann et al, 2011

GRB090926 - extra spectral component

Dermi

Gamma-ray Space Telescope

- Hard power-law component emerges during the bright spike, with cutoff at 1.4 GeV
- Power-law index remains constant through the afterglow (~5000 seconds)

More on cutoffs and spectral breaks

- Sample of 36 bright BGO detected bursts
 - Extrapolate GBM spectrum to the LAT range
 - Compare LAT upper limit with that "expected" from extrapolation
 - Test that the data cannot be adequately fit by a softer spectrum when fitting LAT and GBM data together.
- Significant evidence for a spectral break in ~10% of the sample.
 - Intrinsic break
 - Or, incorrectly measured spectral parameters

See also Beniamini et al 2011, Guetta et al, 2011

Afterglows

Swift XRT observations of GRB afterglows

- Fermi-LAT bursts are bright!
- X-ray observations typically start ~12 hours after the prompt emission.

Early Afterglows

Large flares/rebrightening often seen during the early afterglow (within an hour or so)

LAT afterglows seen for several GRB with durations lasting up to a few hours

U

LAT Detection during X-ray Flare Activity

• GRB100728A

sermi

Gamma-ray

- Bright GBM burst->ARR
- No prompt LAT detection (but was at edge of FoV, 58 deg)
- Hard spectrum (1.4+-0.2)
- Gamma-ray fluence consistent with extrapolation of the X-ray flare spectrum
- Unable to distinguish between afterglow or flare emission due to weak LAT detection

- Sample of 140 Swift GRB
 - 49 (35%) show flares at early times
 - 12 with good LAT observations (in FoV and away from Earth limb)
 - 29 flares with simultaneous Fermi/Swift observations, 1 detection!

- We have only one joint Swift/LAT trigger
- Swift routinely observes x-ray and optical afterglows
- LAT observes the entire sky every two hours
 - Guaranteed to have LAT observations for every Swift afterglow.
 - Remove the two known detections (GRB090510 and GRB0100728A) and combine the rest of the GRB to seach for a weak signal
- 155 BAT GRBs from Aug 2008 Dec 2010 with XRT detections
- For each burst, perform likelihood analysis between 0.1-300 GeV, 0.1-1 GeV and 1-300 GeV
 - Calculate test statistic (TS) as a function of flux (peak indicates best fit value for each GRB
 - Sum the TS curves for all GRB, the peak in the summed curve is the most probable value for the population

Combining to get a marginally significant Gamma-ray Space Telescope

 Signal becomes more significant if we select UVOT detected bursts, or select bursts with high fluence in prompt phase

Comparing X-ray and Gamma-ray SED

• Evidence for an SSC component?

Summary Table & Highest Energy Events compatible with the GRB position

m.i.

GRB Name	Likelihood Detection >100 MeV	LLE Detection	LAT off axis angle at T ₀ (degrees)	GBM T ₉₀	N Pred. Events (>100MeV, Trans.)	HE Delayed Onset?	Long Lived HE Emission?	Maximum Energy (GeV) meas. during the LAT detection	Arrival time of the highest events (seconds since trigger)	Redshift
GRB080825C	1	1	60.3	21	10	1	1	0.6	28.3	-
GRB080916C	1	1	48.8	63	211	1	1	13.2	16.5	4.35
GRB081006	1	x	10.7	6.4	13	-	1	0.6	1.8	-
GRB081024B	1	1	18.6	0.6	11	1	1	3.1	0.6	-
GRB081215	x	J	97.1	5.6	-	-	-	-	-	-
GRB081224	x	J	17	16.4	-	1	1	-	-	-
GRB090217	1	1	34.5	33.3	17	1	1	0.9	14.8	-
GRB090227B	1	1	70.1	1.3	3	-	-	-	-	-
GRB090323	1	1	57.2	135.2	39	1	1	7.5	195.4	3.57
GRB090328	1	1	64.6	61.7	58	1	1	5.3	698.3	0.736
GRB090510	1	1	13.6	1	183	1	1	31.3	0.8	0.903
GRB090531B	x	1	21.9	0.8	-	-	-	-	-	-
GRB090626	1	1	18.2	48.9	30	1	1	2.1	111.6	-
GRB090902B	1	1	50.8	19.3	323	1	1	33.4	81.7	1.822
GRB090926	1	1	48.1	13.8	252	1	1	19.6	24.8	2.106
GRB091003	1	1	12.3	20.2	33	1	1	2.8	6.5	0.897
GRB091031	1	1	23.8	33.9	16	1	1	1.2	79.7	-
GRB100116A	1	1	26.6	102.5	21	-	1	2.2	105.7	-
GRB100225A	x	1	54.9	13	-	-	-	-	-	-
GRB100325A	1	x	7.4	7.1	5	-	1	0.8	0.4	-
GRB100414A	1	1	69	26.5	28	1	1	4.3	39.3	1.368
GRB100707A	x	1	90.3	81.8	-	-	-	-	-	-
GRB100724B	1	1	48.8	87	24	-	-	0.1	15.4	-
GRB100728A	1	x	59.9	162.9	17	-	1	1.7	709	-
GRB101014A	x	1	54.1	450.9	-	-	-	-	-	-
GRB101123A	x	1	84.2	~160	-	-	-	-	-	-
GRB110120A	1	x	13.7	~20	9	-	J	1.8	72.5	-

Some comments on the extra spectral component

- Leptonic models : Inverse Compton, SSC
 - Low-energy excess and delay -> variability not explained
 - Couple internal shocks to photospheric emission ? (Ryde 2010, Toma 2010)
- Hadronic models : p synchrotron, hadronic cascades (Asano 2009, Razzaque 2009)
 - Low-energy excess (from secondary pairs)
 - Late onset (p acceleration and cascade development)
 - Require large B field and larger energy than observed
 - What about GRB 090926A spike? (variability at all energies)
- External shock synchrotron models (Early afterglow) (Ghisellini 2010, Kumar & Barniol Duran 2009), but also Piran 2010
 - Delayed onset, smooth afterglow
 - High variability of prompt emission not reproduced

in our calculation

How fast is the emission region moving?

- Relativistic motion of the emitting shell:
 - A relativistic motion of the shell allows higher energy events in dense region to escape.
 - Observing high-energy events correlated with the fast variability allows us to constrain to the speed (Γ_{\min}) of the emitting shell.
- For target photon spectrum ٠ Bulk Lorentz factor and its lower limit (from $\tau_{in} = 1$ constraint) assume band function, or powerfor Fermi LAT GRBs with known redshift 090510 1200 law. 080916C PL only **Caveat : target photon field** ٠ 1000 090902B **1** PL only Bulk Lorentz factor assumed uniform, isotropic, timeindependent 800 090926A More realistic modeling yields 600 significantly (~3 times) lower preliminary values 400 PL only - refers to $\tau_{-}=1$ constraint applied using **Caveat II:** Tsvi Piran has power-law component of the spectrum only 200 suggested that there is an error 0.5 4.5 1.5 2.5 3.5 5 Redshift (z)

Summary

- 250 GRB/year detected by GBM
- 27 GRBs detected at high energy by the Fermi LAT
- LAT and GBM catalogs released within 2 months
- Common properties
 - Temporal extended emission
 - Flux decreases as a power-law with time, with no breaks
 - Time onset between the LAT and GBM
 - Existence of an extra spectral component
- Measured a cut-off in the spectrum
 - This could explain why we are seeing fewer bursts than we expected
- New techniques to extend the energy range to the LAT at lower energy (<100 MeV)
 - Study of the cut-offs
 - Filling the gap with the GBM
- Waiting for more MW early afterglow observations (joint Lat-BAT trigger, or LAT onboard trigger + rapid TOO)