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What can drive an outflow?

 Thermal expansion (evaporation, 
hydrodynamical escape)

 Radiation pressure (gas, dust)
 Magnetic fields 
   In most cases, rotation plays a key role 

(directly or indirectly) especially in AD.
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Accretion Disks vs Stars

See a poster by Tim Waters
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Accretion Disks in Various Objects
Two examples:
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 Thermal Disk Winds
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             GRS 1915-105

Neilsen & Lee (2009) fig. from P’s 2009 news & views 
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X-ray Transient Sources
 Most of the accretion energy is 

emitted in X-rays.
 The radiation energy is still too low to 

drive an outflow from the inner disk.
 But the radiation from the inner disk 

can heat up the outer disk.
 However, spectral features of disk 

winds have not been seen from these 
systems until recently (Schulz & 
Brandt 2002; Miller et al. 2006, 2008; 
Kubota et al. 2007; Neilsen & Lee 
2009).

 Thank you “Chandra, XMM-Newton, 
and Suzaku” ... !!! 

 IXO

GRO J1655–40

Observations: Miller et al. (2006) 
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X-ray Transient Sources
GRO J1655–40

Observations: Miller et al. (2006) 

 Interpretation and spectral 
modeling: Miller et al. (2006, 
2008), Netzer (2006), Kallman 
et al. (2009).

 Dedicated hydrodynamical 
simulations (Luketic et al. 2010)
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X-ray and UV source
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Luketic et al. (2010)

Thursday, May 26, 2011



GRO J1655–40
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GRO J1655–40
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GRO J1655–40

 The thermal wind is not dense 
enough to account for the 
observed wind.

 But does it mean that the 
thermal wind is unimportant?

 Maybe not because the wind 
mass lose rate can be as high as 
5 times the disk accretion rate 
(see Neilsen & Lee 2009)!!!
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         GRS 1915-105

Neilsen & Lee (2009) fig. from P’s new&views (2009)

Thursday, May 26, 2011



Radiation-Driven Winds
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Proga, Stone & Drew (1998)
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But the disk emits the UV radiation only 
from a relatively narrow ring.
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L(disk)=3

L(star)=0
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L(disk)=3

L(star)=0

L(disk)=3

L(star)=3
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HD simulations and their line 
profiles
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HD simulations and observations
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HD simulations and observations
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Drew & Proga (1999)
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Drew & Proga (1999)
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€ 

a
˙ M = −81×10 SunM −1yr

WDM =1 SunM

Drew & Proga (1999)
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MHD Driven Winds
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Black Hole Accretion 
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Black Hole Accretion 
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Black Hole Accretion -> Outflow
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Multi-component flow
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Multi-component flow

torus 
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Multi-component flow

torus corona

torus 
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Multi-component flow

torus wind

torus corona
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Multi-component flow

torus wind

torus corona

torus 

low l inflow
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Multi-component flow

torus wind

torus corona

torus 

low l inflow

outflow/jet
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Does it have to be so complex?
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Proga (2005)

Does it have to be so complex?
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Proga (2005)

Does it have to be so complex?

Answer: No, it does not.  
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MHD and Radiation 
Driven Winds
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MHD-LD Disk Winds

DP (2003a)
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MHD-LD Disk Winds

DP (2003a)
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MHD-LD Disk Winds
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MHD-LD Disk Winds

DP (2003a)
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The mass loss rate in MHD-LD winds.
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The mass loss rate in MHD-LD winds.
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Thermal and Radiation-
Driven Winds
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€ 

BHM = 810 Msun
Γ = 0.6
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Proga, Stone, & Kallman (2004)
Proga & Kallman (2000)
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Proga, Stone, & Kallman (2004)
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Proga, Stone, & Kallman (2004)
Proga & Kallman (2000)
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Proga, Stone, & Kallman (2004)
Proga & Kallman (2000)
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Broad band spectra for various l.o.s.

Schurch, Done, &  Proga (2009)
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Broad band spectra for various l.o.s.
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Quasar Irradiation 
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Quasar Irradiation 
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Quasar Irradiation 
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An outflow from an inflow
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Effects of gas rotation, optical depth 
and X-ray background radiation
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Dynamical model for clouds in NLR!?
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3-diminesional simulations

Kurosawa & DP (2009a) 
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density map

temperature map

Kurosawa & DP (2009a) 

Clouds properties
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Kurosawa & DP (2009b) 

What is the limit for 
the mass supply rate?
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What is the geometry of the 

jet like disk-wind likei/o 
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Kurosawa, DP, & Nagamine  (2009) 

How efficient are the outflows?
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Ciotti, Ostriker, & Proga (to be submitted to ApJ)
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Conclusions 

 Simulations of accretion flows and their outflows provide important 
insights into the dynamics and geometry of the material that produces 
radiation. In particular, we can use the simulations to assess the 
effects of radiation on the flow properties. We can also explore 
coupling between accretion flows and they outflows as well as mass 
supply (e.g., various forms of feedback).
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Conclusions 

 Simulations of accretion flows and their outflows provide important 
insights into the dynamics and geometry of the material that produces 
radiation. In particular, we can use the simulations to assess the 
effects of radiation on the flow properties. We can also explore 
coupling between accretion flows and they outflows as well as mass 
supply (e.g., various forms of feedback).

 The simulations can be and are used to compute synthetic spectra for 
direct comparison with the observations. As such, the simulations are 
useful in explaining specific spectral features as well as overall shape 
of the SED (not just pretty movies with complex equations/physics 
behind).
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