FIOBIVNRAS 196- ~Z57S!

Mon. Not. R, astr. Soc. (1981) 196,257—-268

Superluminous accretion discs

Marek Sikora mstituze of Astronomy™, Madingley Road, Cambridge CB3 OHA
and N. Copernicus Astronomical Center, Polish Academy of Sciences, Bartycka 18,
00-716 Warszawa, Poland

Received 1980 November 25; in original form 1980 July 4

Summary. In this paper I compute upper limits for the total luminosities and
collimation of radiation from thick, radiation supported accretion discs
around black holes. I present numerical results obtained for the ‘extreme’
discs with 74, = 10°GMygy/c?, the angular momentum of the black hole
being Jgy = 0.998 GMpy/c. The high luminosity (L ~ 8.5 Lgya4) and substan-
tial collimation of radiation found for these discs indicate that such discs can
explain both the high luminosities of quasars and similar objects and may
produce some of the observed beams and jets.

1 Introduction

The theory of thick accretion discs has recently been developed in both Newtonian (Paczyriski
& Wiita 1980 = PW) and general relativistic (Jaroszyriski, Abramowicz & Paczyniski 1980 =
JAP) cases. In these papers, the whole uncertainty connected with our poor knowledge of
such physical properties as the mechanisms of viscosity, energy transport, convection, etc.
is summarized in just one free function: the surface distribution of the angular momentum.
Assuming a specific form for this, one can compute not only the shape of the disc but also
the properties of the radiation with no references to the disc interior at all. Neither PW nor
JAP took into account the reflection effect, i.e. absorption and re-emission of radiation in
the surface layer of the disc. Most of the luminosity in a thick disc is radiated from the
surface of two funnels formed along the rotation axis, so reflections are very important and
are included in my numerical calculations.

The computer code I developed and used here has application for calculations of the
radiation field on the surface of the disc and at infinity. In this paper I describe briefly the
theory (Section 2) and numerical methods (Appendix A) on which such calculations are
based. In Section 3 results are presented of calculations for the special case of JAP’s model,
for the thickest discs.

The high luminosity (L ~ 8.5 Lgyq4) and strong collimation of radiation along the rotation
axis, found for extremely thick discs with fixed roy = 103GMpgy/c?, indicate that thick
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accretion discs around supermassive black holes can explain the high luminosities of quasars
and similar objects and may be able to accelerate and collimate some of the observed beams
and jets. This idea was suggested by Lynden-Bell (1978) and developed by Paczyriski (PW
and JAP) and his co-workers.

2 Theory
2.1 THE SHAPE OF THE DISC

Following PW and JAP, I shall assume that a non-self-gravitating disc orbiting a Kerr black
hole is steady and axisymmetric, and is built from a perfect fluid matter in mechanical
equilibrium. The disc is thick for 7 < ryy¢ and it is Keplerian beyond 7. The inner edge is
located between the marginally bound orbit and marginally stable orbit (Abramowicz,
Jaroszynski & Sikora 1978; Kozlowski, Jaroszyniski & Abramowicz 1978). From JAP
(equation A.13) the shape of the disc surface is given by

49 _ PV (gulp®) +21 V, @iple®) + Vi @polp®) (1)
dr 12 Vo (811/0*) + 21 Vo (819/0*) + Vo €polp*)’

with boundary conditions

lin = lKepler (rin)
and
lout = lKepler (rout) .

The distribution of angular momentum should satisfy two additional conditions dl/dr>
0 — according to stability criteria and d2/dr < 0 — because the angular momentum has to
be transported outward to make accretion possible.

If the mass of the black hole and r,; are fixed, then the thickest and most luminous discs

have the extreme distribution of angular velocity and momentum (JAP; Abramowicz,
Calvani & Nobili 1980)

Q=const=Qy, for rp<r<r,
I =const=[, for r, <r<r., )

2 =const = Qg for re, <7 <rou,

where [, can be derived from JAP (equation A.19).

2.2 THE DISTRIBUTION OF THE RADIATION FIELD ON THE DISC SURFACE

Following PW and JAP, I adopt the assumption that the net flux of radiation on the surface
of the disc is ‘critical’ in the sense that the radial pressure-gradient force balances the effective
gravity, g.r, the latter being a composition of gravitational and centrifugal acceleration. Of
the reflection effect I shall assume that the absorbed radiation is re-emitted isotropically in
the rest frame of the surface element of the disc. Then the balance of forces in the direction
normal to the surface will be achieved if

Fe — Fabs(N) = geflK 3)

where k is the opacity per unit mass, Fﬂ) is the normal component of the absorbed flux and
F, is the sum of the flux generated in the disc and the flux re-emitted isotropically in the
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surface layer of the disc. The tangent components of the absorbed radiation are left
unbalanced, but I assume that their influence on the shape of the disc is negligible*. Taking
into account the following relations, known from geometrical optics (JAP; Misner, Thorne &
Wheeler 1973; Cunningham & Bardeen 1973)

7O ) =f I, 1D ,® 40 ,
Q
lLy=1I.¢g*

and equation (A.1), the normal component of the absorbed flux can be expressed as

1
FppdV = 7O = ;f g'F.n™Maq, 4)
Q

where €2 is the solid angle in which the observer sees the source of radiation and

_Vobs 1

Substituting equation (4) in equation (3) we obtain an integral equation for F,. Dividing
the disc into a finite number of r-rings with quasi-uniform surface properties we can rewrite
our equation in the approximate version

(Fede — X B (Fo) = (ge)y/x (5)
1
with
1
B;l¢=“f £2n™Maq, (6)
T Ja k0

where § (k, ) denotes the solid angle in which the observer located at the kth ring sees the
Ith ring. Elements B} are computed numerically by the method presented in Appendix A,
whereas values for (ger); result directly from JAP equation (A.12). As a solution of the

system of algebraic linear equations (5) we obtain the distribution of the surface flux, F,.
Computing the following elements

1
(BF)L =~ J. ¢ n®aq
Q (&, 1)

™
and
;! S
BS): =—f g2 n® a0
T JQ (k,1)

we can find tangent components of the absorbed flux, Fg‘ﬁ)s and Ff,ls,’g using the approximate
formulae:

FEP=TRO), = ¥ B (F,),
l

and

ESDr = (THO,

N

Y B (F),.
1

*Consistency of this assumption with the model was partially tested by me and results are discussed in
Section 3.
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2.3 THE DISTRIBUTION OF THE EFFECTIVE LUMINOSITY AT INFINITY

The effective luminosity at infinity is defined as:
*

L. (0 =4 oL (7
ef (0,0)= Wm , )

where 0 and ¢ are in our case Boyer—Lindquist coordinates and 6L is the energy which
reaches a distant (0, ¢)-observer in the infinitesimal solid angle, 5 £2. As we have an axisym-
metric case, it is useful to divide the angle 6 into finite number of segments. Then the average
effective luminosity in the ith segment can be expressed as follows:

47
Le L= Ck % , 8
( f)t AQ,- % i k ( )

where AQ; =27 (cosO; —cosb;y1), £ is the energy ‘at infinity’ emitted from the kth disc
ring per unit time, ¢, and Cf‘ is that part of this energy, which reaches infinity in the kth
segment. From JAP equation (A.33a)

Fr+1 da 2q1/2
L = 27r{ UF, p [grr + 8o (—) ] dr, )
Yk dr

and from equation (A.3) of this paper
J g% nMdQ
RLN )

Ci - > (10)
f g2 nMdq
2w

where (i, k) denotes the solid angle measured in the emitter rest frame located in the kth
disc ring, into which the photons reaching infinity in the ith segment are emitted and g.. =
Voo [Vem - Derivation of the above formula as well as the numerical method for calculations of
CF are presented in the Appendix A.

24 PHOTON TRAJECTORIES

Computations of the elements Bj. and CF require numerical calculations including accurate
tracing of thousands of photons. This can be done if it is assumed that the funnels are void
or filled with optically thin matter. Then trajectories of photons will be null-geodesies,
which are described in the case of the Kerr spacetime by the system of four first-order
ordinary differential equations (Misner ez al. 1973). For axisymmetric and steady-state discs
the calculations simplify immensely, since it is unnecessary to consider the motion in coordi-
nates ¢ and ¢. Thus, the problem will reduce to one equation:

dcosf G (cos9)
=% f—, (11)
dr F(@)
where

G (cosf)=—a*E?%cos*0 — (®*+Q — a’E*)cos®0 +Q,
F(r)=E** — (®*+Q - *E>)r*+ 2 [(aE — ®)*+ Q] r — a*Q,

*This is the total luminosity of the source that will be deduced by the distant (0,)-observer, if he
assumes that the source is shining isotropically.
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whereas £, ® and Q are constants of motion, which can be expressed as a function of the
components of photon four-momentum (Misner ez al. 1973).

3 Results

I chose for my calculations extreme discs i.e. ones with ‘€2 — [ — Q’ and ‘I —Q’ surface radia-
tion laws (see equation 2 and Fig. 1), orbiting a black hole spinning with angular momentum
Jeu = 0.998 GM3y/c (Thorne 1974). In this paper I present the results only for discs with
out = 103GMpy/c?, but in a subsequent paper I shall review the radiation features for
extreme discs with different 7,,;. As it was shown by JAP, for r,,; fixed the luminosity of
‘Q—1— & discs increases very slowly with increasing accretion rate, M (curve 2 in JAP
Fig. 5) which results from the fact that the shapes of this type of disc are very similar for
different values of r;,. Therefore I confined my calculations only to two marginal casesi.e.
with 7, =7y and 7, = ryp. As it is seen from Table 1 obtusenesses of both such discs and
luminosities generated by them differ very little. However, significant differences occur in
the distribution of the surface flux near the inner edge (Fig. 2), but radiation emitted in this
region contributes weakly to the luminosity at infinity (Fig. 5). In consequence, the lumin-
osities observed by distant observer and collimations of the radiation are practically the same
for two extreme positions of r;,. Constructing the disc by JAP’s method I had to assume
that radiation filling the funnels does not influence the shape of the disc. Consistency of this
assumption with the model can be verified only a posteriori from the knowledge of the
surface distribution of radiation exerting pressure and shear on the walls of the funnels. It
can be seen from Fig. 3, that the disc is most susceptible to destruction by exteral pressure
at its highest parts, this resulting from the fact that the decrease of the external pressure
with increasing distance from the black hole is smaller than the same decrease of the inner
pressure just below the surface of the disc. Therefore central pressure (equation B2) must be
sufficiently high to make the whole disc resistant to the external pressure. On the other
hand, the central pressure cannot be too high without violating the assumption about
negligible self-gravity effects (equation B5). Then, the central pressure must lie between
certain limits (Fig. 4) in order to maintain consistency with the above assumptions. The role
of the tangent components of the absorbed radiation is not clear and it may be different in
different parts of the disc. Relatively big Fa(gz components in higher parts of the disc may
pull out matter from the surface layer causing a disc wind. In these parts the role of compon-
ents szﬁg is negligible as F® < get/k. In the inner region the components of radiation are

Figure 1. The distribution of angular momentum for a family of discs with fixed 74yt (no scale).
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Table 1. The numerical values describing the main features of a thick accretion disc and its radiation. The
results presented here are obtained for discs with roy¢ = 10°GMpy/c?, the angular momentum of the
black hole being Jgpy = 0.998 GMpf/c.

Type of the 7;,/(GM/c?) Obtuseness Efficiency Total Accretion  Total Collimation
distribution of the (1 -U) luminosity rate luminosity (8 co)*
of the disc’s generated (M X 1yr/M) reaching
angular funnels by the disc infinity
momentum (2 X6 min) (‘?/LEdd) (L/LEdd)
I-Q 1.091516 12°8 0.001432 12.2 1.78x10° 8.5 25°
rmb =1.091443
Q-1-Q 1.236971 13°2 0.320994 11.8 7.67%x10" 8.5 25°
=Tms

*Bcol is defined as an angle corresponding to the solid angle A2 =2 X 27 cosf,o1 (2 X — because two
funnels) in which half of L is reaching infinity.

very big and exert strong torque on the disc, which can cause redistribution of the angular
momentum and change the shape of the inner parts of the disc. Accurate treatment of this
problem is very important in order to establish the position of the inner edge and therefore
M, but it will be possible to do it only in future models of thick discs based on a full theory
of their interior. Final results, i.e. the distribution of the luminosity at infinity and the
contribution of different parts of the disc to this distribution, are presented in Fig. 5.

Fem

26
24+
22
20

18t

Figure 2. The distribution of surface fluxes in the inner region (solid line — for disc with ri, = rpp,
dotted line — for disc with 7;, = r1s)-
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Figure 3. Values of flux components of radiation captured by the / — (rin = rmp) disc. Isobars close to
the surface of the disc are drawn, and critical values of central pressure required to balance external
pressure by pressure on these isobars also indicated.
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Figure 4. Limits for the central pressure of the disc as a function of the black hole’s mass. Upper line
corresponds to the requirement that self-gravity effects should be negligible (equation BS5); the lower
line corresponds to the requirement that the internal pressure be high enough to balance the external
pressure (equation B3).
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Figure 5. The distributions of the luminosity at infinity as a function of cosépg_y . Contributions of
different parts of disc to this distribution are also marked.

4 Conclusions

It is impossible to tell now whether the results derived from the JAP model are adequate for
quasar nuclei, but it is certain that these results give upper limits for such features as total
luminosities and collimation of radiation for accreting discs which are in mechanical equili-
brium. Some observational data suggest that the real situation can approach these limits. For
example, for quasars with L > 10%ergs™, either spherical or thin disc accretion models
require masses of the black holes Mpy > 108M,, . If we assume that the quasar phenomenon
is an early stage of a galaxy, we might expect observational evidence for such massive black
holes in the nuclei of present galaxies. Excepting M87 we have no observational data favouring
Mgy > 10®M,. But taking into account results for 7oy = 10°x GMgy/c?, it is possible to
explain L = 10%ergs™ by a model with thick accretion disc orbiting black hole of mass only
108M,, (if we assume a favourable orientation of object relative to us so that Leg/Lggq ~
70 from Fig. 5). The main difficulty of such discs is connected with very high accretion rates
required when ry, is close to 7y, (implying a small efficiency). For an ‘7 — ’ disc with 7y =
103x GMgy/c? we have M ~ 1075 Mgy yr~! (see Table 1); therefore the hole’s mass increases
by a factor 10 during a period of only Af=10%yr. For ‘Q — 7 — Q’ discs the situation radic-
ally improves; in such discs with the same 7, as above M ~ 8 x 1078 Mgy yr''.

As Rees (1980) remarked, very thick discs can also be realized in physical conditions
different from those assumed here. The electron and ion temperatures may be different, the
pressure being dominated by very hot ions. These conditions can exist, when the time-scale
of cooling of ions is longer than the time-scale for inflow of the matter. Such a model would
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permit a thick disc with very low luminosity in galactic nuclei containing massive black
holes, such as M87. Electron—positron plasma, perhaps produced by some exotic process
near the hole (Blandford & Znajek 1977, Eilek 1980) and collimated in the funnels, could
give observed jets.
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Appendix A
A.1 NUMERICAL METHOD OF CALCULATING BL

Values of B} can be computed by the following procedure:

1. Establish position of the observer in the kth disc ring and divide his hemisphere into a
finite number of small solid angles,

8 (X 8%=2m),
J

with a quasi-isotropic distribution on the hemisphere.

2. For each n; chosen as a central direction in the § §2; calculate constants of the motion,
E, ®, 0, and integrate backwords equation (11) in order to establish whether the observer
looking in m; direction sees the disc or not.

3.1f he does, calculate g = vopg/Vem j and therefore (1/7r)g;-1 n](N)S 2, and add these values
to the contents of the ‘memory-boxes’ with [ depending on which rrings are observed
in the directions n;.

4. Repeating the above calculations for the observers located in different rrings obtain
the values of all boxes,

1 !
(— Y g}‘n](N)SQj> ,
m j k
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which approximate real values of the integrals

1

Bl =—f ¢ n™NMaq
TIQ (k1)

with an error depending on how dense a division of the hemisphere was used. In my calcula-
tions I used (6 £2;) ~ 2m/2200 and many numerical tests preceding my final computations
confirm that the error made is less than 4 per cent.

A.2 DERIVATION OF THE FORMULA FOR CF

Locally measured energy, €, carried by photons from the element of the disc per unit of the

locally measured time, 7, and per unit of the locally measured surface of the disc element,
63, is:

88
0867

=F, =J I.n®™aQ=1n (isotropic emission). (A1)
2m

In the case when we calculate the ‘energy at infinity’, E, per unit of the coordinate time, ¢,

the quantity

88
676586 Q2

il

Ie

must be replaced by

SE 868 J
= =gi I,
51558 (87/20)8568 ¢
where
Voo
oo =
Vem
and hence
SF
=[ef g2 n™Maq . (A2)
888t ).

If we define Q (7, k) as the solid angle, measured in the rest frame of the emitter located on
the kth disc ring, into which the photons reaching infinity in the ith segment are emitted,
then the ratio of the energy carried by photons into the ith segment to the energy carried by
all photons is, according to equation (A.2)

f g% nMNMaq
Q Gk
ck =240 . (A3)

f g2 n™M 40
27w
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A3 NUMERICAL METHOD OF CALCULATING CF
Values of Cf are computed in the following way:

1. Establish the position of the emitter on the kth disc ring and divide his hemisphere into
small solid angles, 6 ;.

2. For each n; calculate g% i n](N) 6 &; and integrate forwards equation (11) in order to see
which photons are reaching infinity.

3. Forj connected with photons reaching infinity add values g2 i n,(N) 8 Q; to the contents
of the box with i depending on which 6-segments are reached by photons. Simultan-
eously sum values g2 i n}N )s 2 in box C¥ for all directions and divide the final contents of

@I by the value of @ .
4. Repeating the above procedure for all values of k obtain the values

(‘ji g ™ § Q))¥

(Y g%, nfV s Q))F
i

which approximate real values of

f g% n™gq
QGk)

f g2 n™Maq
27w

Ct

Appendix B*

In general, JAP theory does not require any assumptions about physical conditions in the
interior of the disc. However,as radiation in the funnels has a very high density, it is necessary
to assume something about the interior in order to study the resistance of the disc to external
pressure. I shall assume that the disc is barotropic and pressure is dominated by its radiation
component, i.e. p =K p*3. In this case, thanks to the theorem about von Zeipel cylinders
(Abramowicz 1974) I can extrapolate the distribution of the angular momentum from the
surface of the disc to its interior. Therefore by using equation (1) I am able to construct
isobars in the disc, which coincide with equipotential surfaces W (r, 8) = const, where poten-
tial W is defined by the equality VW = g,¢. Integrating the Euler equation, Vp/(p + pc?) =
g.¢, with the equation of state as assumed above I obtain the following relations:

plpc=exp [(Wo— W)/(4c®)] —1=6y
and
p=c®8% K>, (B.1)

where W, is the potential on the surface of the disc. From the above relations one can find
the central pressure, peen =P (Fcen),t required for p to be equal to the external pressure at
some point in the disc near the surface (see Fig. 3), i.e.

Deon © (8chn/5W)4p = (5chn/8W)4 (Fabs(N)/c) . (B.2)

* In this Appendix I use physical units.
1 rcen is defined in Fig. 1; p has its maximum value at this point.
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Results of calculations made according to the above equations show that the disc is most
susceptible to destruction by external pressure in its highest region (see Section 3 and Fig. 3).
So, requiring the equality of the external pressure in this region and the internal pressure
corresponding to the isobar relatively close to the disc surface in its highest parts, we can
estimate the minimal central pressure necessary to ensure that most of the disc is not
destroyed. From Fig. 3 we see that the isobar with p =pg, 107!° is adequate for this
purpose. As the pressure of external radiation in the highest parts of the funnel is of order
10™*¢*/GMgy we obtain following condition for the central pressure (the lower solid line
in Fig. 4)

Dcen = 1015p = 1011C4/GMBH ~ 1027(MBH/M®)-1 dyn (.‘«rn-2 . (B.3)

An upper limit for p., can be obtained from the requirement that self-gravity effects should
be negligible. Fortunately, for very thick discs a sufficiently good estimate of the disc mass
can be obtained by assuming that we have a point source of the gravity potential and a
spherical object not contributing to the potential, which is empty below 7 .,. Then we get:

P (@)3
Pcen r

and

Fout 2 3
M gise ~ 4 predr =4mpcen Feen 1N

r,
Ycen cen

Yout

Now from the assumption that My;./Mgy < 1 we obtain:

o cen

. Mgy 1 o 1 (MBH)—z 1 gom (B4)
4/37rn 310 Fout/cen) Feon N Mo/ 3In7ou/7cen

where

Teen = Teen/(GMpy/c?) .

For the case of the discs calculated in this work we have (the upper solid line in Fig. 4)

Peen < 10" Mpy/Ms)*gem™

and

Pcen © chen Pcen 2 < 10% (MBH/]M@T2 dyn cm™. (B.5)
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