
A New Numerical Scheme for Relativistic Dissipative Hydrodynamics 
and Resistive Magnetohydrodynamics, and Application to Astrophysics

In recent years, various high energy astrophysical phenomena are extensively studied by using the relativistic fluid approximation. However, 
there are only limited descriptions of the dissipative effect in relativistic regime, such as thermal conduction, viscosity, and resistivity. This is 
because a simple relativistic extension of the Navier-Stokes equation and resistive magnetohydrodynamic equation include unphysical 
exponentially growing modes originated from the acausal character of parabolic equation. In this poster, I present a new algorithm and 
numerical code that can treat viscosity, thermal conduction, and resistivity accurately and causally. Our new scheme solves the above problems, 
and can calculate relativistic phenomena stably and rigorously. 

1. Introduction
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・Acausality in dissipation theory

Perturbations grow unphysically in dissipative RHD   
because energy comes from acausal region unphysically!!

e.g.) energy equation (if relativistic extended heat flux is used)

characteristic velocity is infinite

：parabolic partial differential equation

t = 0 + εt = 0 T ≠ 0 even at infinity!
⇔ Heat flows faster than 

light !!

solution : consider the relaxation of dissipation !!

This is a telegrapher equation, and causal equation！

relaxaion timescaleτ and 1/σ is very short compare to 
the characteristic timescale of hydrodynamics

equation is stiff and hard to solve numerically 
by using the ordinal explicit difference scheme !!

Piecewise Exact Solution (PES) method

: stiff equation

The evolution of Q(t) is much faster than that of P(t)

P(t) can be assumed to be constant 

We can obtain the formal solution !!

2. dissipative RHD(Israel-Stewart theory)

ref) T. Inoue, & S. Inutsuka, ApJ 687 (2008) 303
      S. S. Komissarov, MNRAS 382 (2007) 995

ref) M. T & Shu-ichiro inutsuka, (2011), submitting to Journal of Computational Physics

: Piecewise Exact Solutions

1. fluid equations ＝ advection and diffusion equations

advection part   +  diffusion part

Solvable accurately by Riemann solver !!

・Numerical Scheme

2. relaxation equation evolve by using PES method 

・Results of  test simulations  (2D Kelvin-Helmholtz instability)

3. Resistive RMHD ref) M. T & T. Inoue , The Astrophysical Journal, 734, 1, (2011).
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As a result, the evolution part of the Maxwell equations can be rewritten as

∂tB + ∇× E = 0, (45)

∂tE −∇× B = −qv, (46)

∂tE = −Jc. (47)

In component form, Eqs. (45) and (46) reduce to

∂tB
x = 0, (48)

∂tB
y − ∂xE

z = 0, (49)

∂tB
z + ∂xE

y = 0, (50)

∂tE
x = −qvx, (51)

∂tE
y + ∂xB

z = −qvy, (52)

∂tE
z − ∂xB

y = −qvz. (53)

We solve Eqs. (49), (50), (52), and (53) using method of characteristics (MOC), which will

be shown in Sec. 3.2. Eq. (51) is solved using the Runge-Kutta method. The numerical

scheme for the stiff equation Eq. (47) will be shown in Sec. 3.3.

3.2. Method of characteristics

The method of characteristics can be used to solve the initial value problems of

advective and hyperbolic equations. As is well known, the Maxwell equations are

hyperbolic, so we can solve the Maxwell equations accurately by using this method.

The Maxwell equations for the transverse fields are Eqs. (49), (50), (52), and (53). By

adding and subtracting these equations, for Ey, Bz, and Jy, we obtain

[∂t ± cch∂x]
± F = −1

2
Jy, (54)

±F ≡ 1

2
(Ey ± Bz), (55)

1. Electromagnetohydrodynamics equations

fluid part   +  electromagnetic part

・fluid part        = Riemann solver
・electromagnetic part  = method of characteristics
                                      + Constraint transport (CT)

・Numerical Scheme

2. stiff equation of E evolve by using PES method 
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solved analytically

E‖ = E0
‖ exp

[
−σ

γ
t

]
, (70)

E⊥ = E∗
⊥ + (E0

⊥ − E∗
⊥) exp [−σγt] , (71)

where E∗
⊥ = −v × B and suffix 0 indicates the initial component. If we use the explicit

integrator, the stiff equation has to be solved in very small time steps ∆t. However, since

Eqs. (70) and (71) are formal solutions, we can avoid the stability constraints of the time

step. In the context of ambipolar diffusion in partially ionized plasma, a similar numerical

technique using the piecewise formal solution of stiff part is known to be useful scheme

(Inoue et al. 2007; Inoue & Inutsuka 2008; Inoue & Inutsuka 2009).

3.4. Constraint Equations

It is well known that Eqs. (9) and (10) are constraints on the Cauchy surface. Though

Maxwell equations ensure that these constraints are preserved at all times, straightforward

numerical integration of Maxwell equations does not preserve these properties because of

the accumulated numerical error. This causes corruption of numerical results, and results

in a crash in the end. For this reason, there are a number of numerical techniques for

avoiding this problem, and we adopt constrained transport (CT) for the magnetic field

and hyperbolic divergence cleaning for the electric field. The main idea of the hyperbolic

divergence cleaning is that one defines new variable Ψ as the deviation from constraint

equations, and arranges a system of equations to decay or carry the deviation Ψ out

of the computational domain by high speed waves. The detailed explanation of CT is

presented in Sec. 3.7.2 (see also references (Stone & Norman 1992; Stone & Norman 1992;

Stone et al. 1992; Hawley & Stone 1995)).

・Results of  test simulations

・We have developed new numerical scheme for dissipative RHD and resistive RMHD
・If one considers the relativistic dissipation, one has to deal with stiff equation, and it is hard to solve numerically.
    We have solved this problem by using Piecewise Exact Solution.
・Our method based on the splitting the hydrodynamic equation into advection part, EM part, and dissipation part,     
   and calculate advection and EM by using Riemann solver and MOC. 
    ⇒ We can calculate accurately problems with various characteristic velocity. 

Summery:

Dissipative RHD Resistive RMHD
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