MAGNETIC RECONNECTION IN APPLICATION TO RELATIVISTIC JETS OF ACTIVE GALAXIES

KRZYSZTOF NALEWAJKO

NICOLAUS COPERNICUS ASTRONOMICAL CENTER
POLISH ACADEMY OF SCIENCES

UNIFIED MODEL OF ACTIVE GALAXIES

SPECTRAL ENERGY DISTRIBUTIONS OF BLAZARS

GAMMA-RAY VARIABILITY OF BLAZARS

GAMMA-RAY VARIABILITY OF BLAZARS AND MISALIGNED AGNS

PKS 2155-304 H.E.S.S. Collaboration (2007)

Fig. 4. Light curve of IC 310 observed with the MAGIC telescopes on the night of 12/13 November 2012, above 300 GeV. As a flux reference, the two gray lines indicate levels of 1 and 5 times the flux level of the Crab Nebula, respectively. The precursor flare (MJD 56243.972-56243.994) has been fitted with a Gaussian distribution. Vertical error bars show 1 SD statistical uncertainity. Horizontal error bars show the bin widths.

IC 310
MAGIC Collaboration (2014)

PKS 1222+216

- quasar
- r > 0.5 pc
- $R \leq 8 \times 10^{-5} pc (D / 20)$
- compactness problem

MAGIC (Cerenkov Telescope) 70 - 400 GeV tvar = 10 min

Minute-timescale γ -ray variability of quasar 3C 279 in 2015 June

2015
FLARE

OF
3C 279

Fermi-LAT
Collaboration
(Ackermann et al.)
(2016)

2018 FLARE OF 3C 279

a

 $Flux \times 10^{-6} (Ph cm^{-2} sec^{-1})$

Time [Minute since 2018 April 19 21:30:00 UT ~ MJD 58227.8958]

Shukla & Mannheim (Nature Comm. 2020)

COMPARING SUBORBITAL VARIATIONS

see also

KN (Galaxies 2017)

Meyer, Blandford & Scargle (2019)

RAPID GEV VARIABILITY IN 3C 279

- emitting region size 10^{-4} pc dissipation region may be larger by factor 10-100 distance scale as short as $100~\text{M}_{bh}$ gamma-ray opacity (15 GeV)
- $\Gamma > 25$ from intrinsic opacity, $\Gamma > 35$ for sub-Eddington jet
- ERC scenario: Γ > 50 from SSC constraint
 Γ > 120 from equipartition
- synchrotron scenario: kG B-field, γ ~ 10⁶
 cf. the Crab flares
- hadronic models: viable at very short distances

Fermi-LAT Collaboration (Ackermann et al. 2016)

input from M. Hayashida, G. Madejski, M. Sikora, R. Blandford

MAGNETIZATION OF JETS

- relativistic hot magnetization $\sigma = B^2 / 4\pi w$, where $w = \rho c^2 + e + \rho$ is the relativistic enthalpy density
- traditional picture: initial $\sigma_{base} \sim 20$ (jet base) converts to Γ_{pc} (parsec-scale), leaving $\sigma_{pc} \lesssim 1$
- whether shocks or reconnection, emitting regions close to equipartition, can be very different from the background (Sironi, Petropoulou & Giannios 2015)

MAGNETIZATION OF JETS

- highly inhomogeneous jets due to filamentary loading with protons; mean initial magnetization $\langle \sigma_{base} \rangle \sim 20$; maximum pc-scale magnetization $\sigma_{pc,max} \sim 10^3$ required for electron $\gamma_{max} \sim 10^6$ in TeV blazars (KN, Galaxies, 2016)
- turbulent magnetic fields enable impulsive particle acceleration despite radiative cooling (Zhdankin, Uzdensky, Werner & Begelman 2020)
- turbulent particle energies determined by electron (pair) magnetization:

 $\sigma_{0e} \sim 10^2$ for the FSRQs, $\sigma_{0e} \sim 10^3$ -106 for the BL Lacs (Sobacchi & Lyubarsky 2020)

MAGNETIC RECONNECTION

magnetic diffusion region (X-point)

 $E \sim (v_{in}/c) B_0$

 $v_{in} \sim 0.1 v_A$

Vout ~ VA

reconnecting magnetic field (background, upstream)

reconnection outflow (downstream)

RECONNECTION MODELS

Sweet-Parker

Petschek

plasmoid-dominated

MINIJETS MODEL

- reconnection produces localized relativistic outflows (minijets) with Γ_{mj} within a larger relativistic jet
- explains additional relativistic Lorentz boost $(\Gamma_{fl} \sim \Gamma_{jet} \Gamma_{mj})$ and local dissipation
- based on relativistic Petschek reconnection model (Lyubarsky 2005)
- depends on the scaling of minijet Lorentz factor with jet magnetization $\Gamma_{mj} \propto \sigma_0^{1/2}$ in relativistic regime (Giannios, Uzdensky & Begelman 2009)

KN,
Giannios,
Begelman,
Uzdensky
& Sikora
(MNRAS 2011)

KINETIC BEAMING

Anisotropy increasing with particle/photon

Yuan et al. (2016)

Cerutti et al. (2012)

HARD PARTICLE SPECTRA IN RELATIVISTIC RECONNECTION

- reconnection produces power-law distributions that are hardening with increasing sigma $\mathrm{d}N/\mathrm{d}\gamma\propto\gamma^{-p} \text{ with }p\to 1 \text{ for }\sigma\gg 1$ (Sironi & Spitkovsky 2014, Guo et al. 2014, Werner et al. 2016)
- high-energy cut-off is exponential with $\gamma_{\rm max} \sim \mathcal{O}(\sigma)$
- $p \rightarrow 2$ in very large plasmoids in 2D (Petropoulou & Sironi 2018)
- 3D relativistic reconnection produces hard particle spectra $f(\gamma) \propto \gamma^{-p} \text{ with } p \sim 1.5$ (Zhang, Sironi & Giannios 2021)

PARTICLE ACCELERATION SITES

- magnetic diffusion regions (X-points):
 non-ideal E-fields (Zenitani & Hoshino 2001)
 most energetic particles pass through them
 (Sironi & Spitkovsky 2014)
 short interaction times (Quo et al. 2019)
- reconnection outflows (minijets):
 Speiser orbits
 exceeding radiation reaction (Kirk 2004)
 low particle density
- plasmoids:
 converging "magnetic mirror" (Prake et al. 2006)
 particle traps, high particle density
 limited by radiation reaction
- plasmoid mergers:
 secondary reconnection layers
 production of rapid and luminous flares
 (KN et al. 2015, Ortuño-Macías & KN 2020)

KN et al. (2015)

Sironi & Beloborodov (2020)

PLASMOID RECONNECTION WITH OPEN BOUNDARIES

J. Ortuño-Macías & KN (2020)

see also Paughton et al. (2006) Sironi et al. (2016)

PARTICLE-IN-CELL SIMULATION OF RELATIVISTIC RECONNECTION WITH OPEN BOUNDARIES

- left/right boundaries: freely outflowing particles, injection of inflowing particles, absorption of field perturbations
- fixed tall domain with $L_v = 4 L_x$ for long steady-state simulations

J. Ortuño-Macías & KN (2020)

PARTICLE-IN-CELL SIMULATION OF RELATIVISTIC RECONNECTION WITH OPEN BOUNDARIES

J. Ortuño-Macías & KN (2020)

RECONNECTION WITH OPEN BOUNDARIES: SPACETIME DIAGRAMS

PARTICLE ACCELERATION: PLASMOIDS VS MINIJETS

KINETIC SIMULATIONS OF INSTABILITIES IN CYLINDRICAL JETS WITH TOROIDAL MAGNETIC FIELDS

gas pressure balanced (Z-pinch)

Alves, Zrake & Fiuza (2018)

axial magnetic field balanced (force-free screw-pinch)

Pavelaar, Philippov, Bromberg & Singh (2020)

efficient particle acceleration found in both cases; Hillas-type energy limit $E_{
m lim} \sim e B_0 R_{
m core}$

KINETIC SIMULATIONS OF INSTABILITIES IN CYLINDRICAL JETS WITH TOROIDAL MAGNETIC FIELDS

3D, periodic boundaries, static equilibrium, pair plasma, moderately relativistic magnetization, highly relativistic temperature

José Ortuño-Macías, KN, D. Uzdensky, M. Begelman, G. Werner, A. Chen, B. Mishra (2022)

TOROIDAL FIELD INDEX

- Steep toroidal fields ($\alpha_{B\phi} \leq -1$) produce modes stalling at intermediate radii (a few R_0).
- Shallow toroidal fields ($\alpha_{B\phi} > -1$) produce modes propagating towards large radii.

José Ortuño-Macías, KN, D. Uzdensky, M. Begelman, G. Werner, A. Chen, B. Mishra (2022)

PARTICLE ACCELERATION VS. MAGNETIC DISSIPATION

 B_{ϕ} flux dissipation

particle acceleration

• rapid particle acceleration until the confinement limit $\gamma_{\rm lim}=eB_0R_0/mc^2$ coincides with the fast magnetic dissipation phase

José Ortuño-Macías, KN, D. Uzdensky, M. Begelman, G. Werner, A. Chen, B. Mishra (2022)

"BLACK HOLE FLARES"

Ripperda et al. (2022)

- "Magnetically arrested disks" accumulate large magnetic fluxes at the BH horizon.
- Magnetic reconnection in the plunging region can eject part of the accretion flow, driving outflows, heating and particle acceleration, cancelling much of the BH magnetic flux (possibly a saturation mechanism).
- Potential explanation of gamma-ray flares from misaligned AGN like M87, IC 310, and orbital hotspots in Sgr A*.

knalew@camk.edu.pl

SUMMARY

- Relativistic magnetic reconnection is a promising dissipation mechanism in relativistic magnetized jets.
- Rapid progress in understanding relativistic reconnection has been made in recent years, primarily due to kinetic numerical simulations.
- Relativistic reconnection has been proven to be a very efficient mechanism of particle acceleration, with the particle distribution index p \sim 1-2 in the limit of $\sigma \gg 1$.
- Reconnection results in fast localized outflows (minijets) and hierarchical chains of dense plasmoids.
- Radiation produced at reconnection sites is characterized by rapid variability time scales, potentially explaining even the most extreme gamma-ray flares observed in relativistic jets and pulsar winds.
- Reconnection requires locally reversed magnetic field lines, may be triggered by plasma instabilities. Possibly regulates magnetic fluxes (jet powers) at accreting black holes.
- Magnetization of relativistic jets may be highly inhomogeneous, up to $\sigma \sim 10^3$ locally to account for particle acceleration in blazars.

Thank You!