Recent ELF Studies in Cracow

Two bands: 0.03-300 Hz and 0.03 Hz - 1000 Hz

J. Kubisz, Z. Nieckarz, A. Michalec, M. Ostrowski, et al.

Jagiellonian University Astronomical Observatory & Institute of Physics

J. Młynarczyk, A. Kułak

AGH University of Science and Technology Department of Electronics

a long way since 1992

Magnetic sensors manufactured in Astronomical Observatory

ver. Ela220.asm

0000

collaboration with Dept. of Electronics, AGH UST

Bieszczady, a site with a <u>very low EM pollution</u>

http://www.oa.uj.edu.pl/elf/

"Hylaty" ELF Station: ELA10: 0.03-300 Hz ELA11: 0.03-1000 Hz earlier also ELA7: 0.03-60 Hz

A roof cover above a container with electronics antenna field

Underground

Inside the underground container

World ELF Radiolocation Array (WERA)

Hylaty - Poland, Hugo - USA, Patagonia - Argentina

ELA11 wave spectrum

3.10.2023 - 3-4 UTC

Frequency (Hz)

ELF studies supporting

Gravitational Wave detection

Eddy currents

are induced within conductors by a varying magnetic field

ELF EM waves can penetrate into structures of GW detectors perturbing measurements

E. Thrane, N. Christensen and R. M. S. Schofield

"Correlated magnetic noise in global networks of gravitational-wave detectors: Observations and implications", PHYS. REV. D (2013)

Correlated 1–1000 Hz magnetic field fluctuations from lightning over Earth-scale distances and their impact on gravitational wave searches

Kamiel Janssens[®],^{1,2} Matthew Ball[®],³ Robert M. S. Schofield,³ Nelson Christensen[®],² Raymond Frey[®],³ Nick van Remortel[®],¹ Sharan Banagiri[®],^{4,5} Michael W. Coughlin,⁴ Anamaria Effler,⁶ Mark Gołkowski,⁷ Jerzy Kubisz,⁸ and Michał Ostrowski[®]

Third observing run by LIGO and Virgo was free of an impact from correlated magnetic fluctuations,

but future runs could be affected !

Thus, future detector design should consider reducing magnetic coupling

Recent work:

Propagation of ELF EM impulses

Ionosphere - refraction, non-uniformities

- solar UV and X-ray emissions

- solar flares

also: EM signals from volcanos

Space Weather effects (energetic particles)

EM effects from earthquakes (?)

Data from the ELA11 sensor

JGR Atmospheres

Research Article 🔂 Full Access

New Method for Determining Azimuths of ELF Signals Associated With the Global Thunderstorm Activity and the Hunga Tonga Volcano Eruption

J. Kubisz, M. Gołkowski, J. Mlynarczyk, M. Ostrowski 🔀, A. Michalec

First published: 12 February 2024 | https://doi.org/10.1029/2023JD040318 | Citations: 1

97,989

97,989

2024

 $\Delta B_{(i, n)} = B_{(i+n)} - B_{(i)}$

ELF signal power spectrum in the EW antenna on 15 January 2022

Measurements of ELF waves' azimuths

$$\tan(A_{(i, n)}) = -\Delta B_{\text{NS}(i, n)} / \Delta B_{\text{EW}(i, n)}$$

 $n=1 (\Delta t = 1/3 ms)$

Ionospheric effects

Refraction of ELF electromagnetic waves by the ionospheric gradients at the day/night
terminator measured at the Hylaty stationM. Ostrowski¹, M. Gołkowski², J. Kubisz¹, A. Michalec¹, J. Mlynarczyk³, Z. Nieckarz⁴

JGR Space Physics **2024**

Effects of a Solar Flare on Global Propagation of Extremely Low Frequency Waves

M. Ostrowski¹, M. Gołkowski², J. Kubisz¹, Z. Nieckarz³, A. Michalec¹, J. Mlynarczyk⁴,

J. Lichtenberger^{5,6}, A. Maxworth⁷

JGR Space Physics **2024**

Monitoring Global Ionospheric Conditions With Electromagnetic Lightning Impulses Registered In Extremely Low Frequency Measurements

Z. Nieckarz¹, M. Gołkowski², J. Kubisz³, M. Ostrowski³, A. Michalec³, J. Mlynarczyk⁴, J. Lichtenberger⁵, A. Maxworth⁶

Refraction of ELF electromagnetic waves by the ionospheric gradients at the day/night terminator

ELF waves' refraction at sunrise and sunset

ELF "grey path" propagation

in analogy to

grey line HF radio propagation

Refraction effects during the morning hours in days of September 2023

Panels: Time 1 – 7 UT Azimuth –45 – +135 deg

Solar flare M8

500

400

300 200 100

0 -100

signal [s.u.]

(a)

T0 = 14:12:00

NS

EW

- WWLLN

World Wide Lightning Location Network (WWLLN)

VLF (3-30 kHz)

http://wwlln.net

Monitoring Global Ionospheric Conditions with EM Impulses Registered in ELF

> The work led by Zenon Nieckarz

ELA11 timing accuracy better than 0.1 ms

Calibration of

a signal delay

in ELA11 electronics

"African" impulses

 $v_{test} = 0.85c$

VS.

"American <mark>impulses"</mark>

SOLAR FLARES (1.5 h data)

Note lower velocities after flares with relatively higher X-ray fluxes

long modification of the low ionosphere structure (?)

Time [s]

Additional info in colour: azimuth distribution

Separation of positive and negative WWLLN discharges with measured azimuths

2024 Earthquake in Slovakia

