Cracow 9.10.08

Gyrokinetic Turbulence

arXiv:0704.0044; 0806.1069

Alexander Schekochihin Imperial College London → Oxford

w i t h Steve Cowley (UCLA → Culham) Greg Howes (Berkeley → Iowa) Bill Dorland, Tomo Tatsuno (Maryland) Michael Barnes (Maryland → Oxford) Eliot Quataert (Berkeley) Greg Hammett (Princeton) Gabriel Plunk (UCLA → Maryland)

Reprints/references on <u>http://www2.imperial.ac.uk/~aschekoc/</u>

[Image: Y. Kaneda et al., Earth Simulator, isovorticity surfaces, 4096³]

[Image: Y. Kaneda et al., Earth Simulator, isovorticity surfaces, 4096³]

[Image: Y. Kaneda et al., Earth Simulator, isovorticity surfaces, 4096³]

[Image: Y. Kaneda et al., Earth Simulator, isovorticity surfaces, 4096³]

Turbulence: A Nonlinear Route to Dissipation

Turbulence: A Nonlinear Route to Dissipation

Turbulence: A Nonlinear Route to Dissipation

Plasma Turbulence: Analogous?

Plasma Turbulence Extends to Collisionless Scales

Plasma Turbulence Extends to Collisionless Scales

Plasma Turbulence Extends to Collisionless Scales

Intracluster (intergalactic) medium Hydra A cluster [Vogt & Enßlin 2005, *A*&A **434**, 67]

100

 $L \sim 10^{19} \text{ km} (\sim 1 \text{ Mpc})$ 1e-11 $\lambda_{\rm mfp} \sim 10^{16} \, \rm km \; (\sim 1 \; \rm kpc)$ $\rho_i \sim 10^4 \,\mathrm{km}$ 1e-12 _{EB}(k)*k [erg cm⁻³] 1e-13 1e-14 10 0.1 k [kpc⁻¹]

Plasma Turbulence Is Kinetic

- What is cascading in kinetic turbulence? (What is conserved?) What do the observed spectra tell us and how do we explain them?
- Dissipation

 (as usually understood)
 is "collisionless"
 (Landau damping)
 How does that
 heat particles?
 (ions, electrons,
 minority ions)

$$\frac{\partial f_s}{\partial t} + \boldsymbol{v} \cdot \boldsymbol{\nabla} f_s + \frac{q_s}{m_s} \left(\boldsymbol{E} + \frac{\boldsymbol{v} \times \boldsymbol{B}}{c} \right) \cdot \frac{\partial f_s}{\partial \boldsymbol{v}} = \left(\frac{\partial f_s}{\partial t} \right)_{\rm c}$$

$$oldsymbol{
abla} oldsymbol{
abla} oldsymbol{
abla} oldsymbol{E} = 4\pi \sum_{s} q_{s} n_{s}, \qquad n_{s} = \int \mathrm{d}^{3} oldsymbol{v} f_{s}, \ oldsymbol{
abla} oldsymbol{
abla} \nabla imes oldsymbol{B} - rac{1}{c} rac{\partial oldsymbol{E}}{\partial t} = rac{4\pi}{c} \left(oldsymbol{j} + oldsymbol{j}_{ ext{ext}}
ight), \qquad oldsymbol{j} = \sum_{s} q_{s} \int \mathrm{d}^{3} oldsymbol{v} oldsymbol{v} f_{s}, \ rac{\partial oldsymbol{B}}{\partial t} = -c oldsymbol{
abla} imes oldsymbol{E}, \qquad oldsymbol{
abla} oldsymbol{
abla} = 0.$$

$$\frac{\mathrm{d}}{\mathrm{d}t} \int \frac{\mathrm{d}^3 r}{V} \sum_s \int \mathrm{d}^3 v \, \frac{m_s v^2}{2} f_s = \int \frac{\mathrm{d}^3 r}{V} \mathbf{E} \cdot \mathbf{j} = \varepsilon - \frac{\mathrm{d}}{\mathrm{d}t} \int \frac{\mathrm{d}^3 r}{V} \frac{E^2 + B^2}{8\pi}$$
Work done
$$\varepsilon = -(1/V) \int \mathrm{d}^3 r \, \mathbf{E} \cdot \mathbf{j}_{\text{ext}}$$

$$oldsymbol{
abla}
abla \cdot oldsymbol{E} = 4\pi \sum_{s} q_{s} n_{s}, \qquad n_{s} = \int \mathrm{d}^{3} v \, f_{s},$$
 $oldsymbol{
abla}
abla \times oldsymbol{B} - \frac{1}{c} rac{\partial E}{\partial t} = rac{4\pi}{c} \left(oldsymbol{j} + oldsymbol{j}_{\mathrm{ext}}
ight), \qquad oldsymbol{j} = \sum_{s} q_{s} \int \mathrm{d}^{3} v \, v f_{s},$
 ∂B

 $\frac{\partial \boldsymbol{B}}{\partial t} = -c\boldsymbol{\nabla}\times\boldsymbol{E}, \qquad \boldsymbol{\nabla}\cdot\boldsymbol{B} = 0.$

$$\frac{\mathrm{d}}{\mathrm{d}t} \int \frac{\mathrm{d}^3 r}{V} \sum_s \int \mathrm{d}^3 v \, \frac{m_s v^2}{2} \, f_s = \int \frac{\mathrm{d}^3 r}{V} \, \mathbf{E} \cdot \mathbf{j} = \varepsilon - \frac{\mathrm{d}}{\mathrm{d}t} \int \frac{\mathrm{d}^3 r}{V} \frac{E^2 + B^2}{8\pi}$$
Work done
$$\varepsilon = -(1/V) \int \mathrm{d}^3 r \, \mathbf{E} \cdot \mathbf{j}_{\text{ext}}$$

Entropy produced:

$$\frac{\mathrm{d}S_s}{\mathrm{d}t} \equiv \frac{d}{dt} \left[-\int \frac{\mathrm{d}^3 r}{V} \int \mathrm{d}^3 v \, f_s \ln f_s \right] = -\int \frac{\mathrm{d}^3 r}{V} \int \mathrm{d}^3 v \, \ln f_s \left(\frac{\partial f_s}{\partial t} \right)_{\mathrm{c}} \ge 0$$

Boltzmann 1872

$$\frac{\mathrm{d}}{\mathrm{d}t} \int \frac{\mathrm{d}^3 r}{V} \sum_s \int \mathrm{d}^3 v \, \frac{m_s v^2}{2} \, f_s = \int \frac{\mathrm{d}^3 r}{V} \, \mathbf{E} \cdot \mathbf{j} = \varepsilon - \frac{\mathrm{d}}{\mathrm{d}t} \int \frac{\mathrm{d}^3 r}{V} \frac{E^2 + B^2}{8\pi}$$
Work done
$$\varepsilon = -(1/V) \int \mathrm{d}^3 r \, \mathbf{E} \cdot \mathbf{j}_{\text{ext}}$$

Entropy produced:

$$\begin{split} T_{0s} \frac{\mathrm{d}S_s}{\mathrm{d}t} &= \frac{\mathrm{d}}{\mathrm{d}t} \left[\int \frac{\mathrm{d}^3 r}{V} \int \mathrm{d}^3 v \, \frac{m_s v^2}{2} \left(F_{0s} + \delta f_s \right) - \int \frac{\mathrm{d}^3 r}{V} \int \mathrm{d}^3 v \, \frac{T_{0s} \delta f_s^2}{2F_{0s}} \right] \\ &= -\int \frac{\mathrm{d}^3 r}{V} \int \mathrm{d}^3 v \, \frac{T_{0s} \delta f_s}{F_{0s}} \left(\frac{\partial \delta f_s}{\partial t} \right)_{\mathrm{c}} - n_{0s} \nu_E^{ss'} (T_{0s} - T_{0s'}) \end{split}$$

$$f_s = F_{0s} + \delta f_s$$

$$F_{0s} = n_{0s} (\pi v_{\text{ths}}^2)^{-3/2} \exp(-v^2/v_{\text{ths}}^2)$$

$$v_{\text{ths}} = (2T_{0s}/m_s)^{1/2}$$

$$\frac{\mathrm{d}}{\mathrm{d}t} \int \frac{\mathrm{d}^3 \mathbf{r}}{V} \sum_s \int \mathrm{d}^3 \mathbf{v} \, \frac{m_s v^2}{2} \, f_s = \int \frac{\mathrm{d}^3 \mathbf{r}}{V} \, \mathbf{E} \cdot \mathbf{j} = \varepsilon - \frac{\mathrm{d}}{\mathrm{d}t} \int \frac{\mathrm{d}^3 \mathbf{r}}{V} \, \frac{E^2 + B^2}{8\pi}$$
Work done
$$\varepsilon = -(1/V) \int \mathrm{d}^3 \mathbf{r} \, \mathbf{E} \cdot \mathbf{j}_{\text{ext}}$$
Entropy produced:
$$T_{0s} \frac{\mathrm{d}S_s}{\mathrm{d}t} = \frac{\mathrm{d}}{\mathrm{d}t} \left[\int \frac{\mathrm{d}^3 \mathbf{r}}{V} \int \mathrm{d}^3 \mathbf{v} \, \frac{m_s v^2}{2} \, (F_{0s} + \delta f_s) - \int \frac{\mathrm{d}^3 \mathbf{r}}{V} \int \mathrm{d}^3 \mathbf{v} \, \frac{T_{0s} \delta f_s^2}{2F_{0s}} \right]$$

$$= -\int \frac{\mathrm{d}^3 \mathbf{r}}{V} \int \mathrm{d}^3 \mathbf{v} \, \frac{T_{0s} \delta f_s}{F_{0s}} \left(\frac{\partial \delta f_s}{\partial t} \right)_c - n_{0s} \nu_E^{ss'} (T_{0s} - T_{0s'})$$

$$\frac{\mathrm{d}}{\mathrm{d}t} \int \frac{\mathrm{d}^{3} \boldsymbol{r}}{V} \left[\sum_{s} \int \mathrm{d}^{3} \boldsymbol{v} \, \frac{T_{0s} \delta f_{s}^{2}}{2F_{0s}} + \frac{E^{2} + B^{2}}{8\pi} \right]_{\mathsf{r}}$$
$$= \varepsilon + \int \frac{\mathrm{d}^{3} \boldsymbol{r}}{V} \sum_{s} \int \mathrm{d}^{3} \boldsymbol{v} \, \frac{T_{0s} \delta f_{s}}{F_{0s}} \left(\frac{\partial \delta f_{s}}{\partial t} \right)_{\mathsf{c}}$$

$$\frac{d}{dt} \int \frac{d^3r}{V} \sum_{s} \int d^3v \frac{m_s v^2}{2} f_s = \int \frac{d^3r}{V} E \cdot j = \varepsilon - \frac{d}{dt} \int \frac{d^3r}{V} \frac{E^2 + B^2}{8\pi}$$
Work done
$$\varepsilon = -(1/V) \int d^3r E \cdot j_{ext}$$
Heating:
$$\frac{3}{2} n_{0s} \frac{dT_{0s}}{dt} = -\overline{\int \frac{d^3r}{V} \int d^3v \frac{T_{0s} \delta f_s}{F_{0s}} \left(\frac{\partial \delta f_s}{\partial t}\right)_c} - n_{0s} v_E^{ss'} (T_{0s} - T_{0s'})$$
Fluctuation energy budget:
$$\frac{d}{dt} \int \frac{d^3r}{dt} \int \frac{d^3r}{dt} = -\frac{T_{0s} \delta f_s}{F_{0s}} \left(\frac{\partial \delta f_s}{\partial t}\right)_c - n_{0s} v_E^{ss'} (T_{0s} - T_{0s'})$$

$$\frac{\mathrm{d}}{\mathrm{d}t} \int \frac{\mathrm{d}^3 r}{V} \left[\sum_s \int \mathrm{d}^3 v \, \frac{T_{0s} \delta f_s^2}{2F_{0s}} + \frac{E^2 + B^2}{8\pi} \right]$$
 heating
energy
$$= \varepsilon + \int \frac{\mathrm{d}^3 r}{V} \sum_s \int \mathrm{d}^3 v \, \frac{T_{0s} \delta f_s}{F_{0s}} \left(\frac{\partial \delta f_s}{\partial t} \right)_{\mathrm{c}}$$

Plasma Turbulence: Generalised Energy Cascade

$$\begin{split} \frac{\mathrm{d}}{\mathrm{d}t} \int \frac{\mathrm{d}^3 r}{V} \left[\sum_s \int \mathrm{d}^3 v \, \frac{T_{0s} \delta f_s^2}{2F_{0s}} + \frac{E^2 + B^2}{8\pi} \right] \\ & \quad \text{energy} \end{split} + \frac{E^2 + B^2}{8\pi} \\ & \quad \text{energy} \end{bmatrix} + \frac{1}{2F_{0s}} + \frac{1}{2F_{0s}$$

Generalised energy = free energy of the particles + fields

Fowler 1968 Krommes & Hu 1994 Krommes 1999 Sugama et al. 1996 Hallatschek 2004 Howes et al. 2006 Schekochihin et al. 2007 Scott 2007

Plasma Turbulence: Generalised Energy Cascade

$$\frac{\mathrm{d}}{\mathrm{d}t} \int \frac{\mathrm{d}^3 r}{V} \left[\sum_{s} \int \mathrm{d}^3 v \, \frac{T_{0s} \delta f_s^2}{2F_{0s}} + \frac{E^2 + B^2}{8\pi} \right]_{\text{energy}} + \frac{e^2 + B^2}{8\pi} = \varepsilon + \int \frac{\mathrm{d}^3 r}{V} \sum_{s} \int \mathrm{d}^3 v \, \frac{T_{0s} \delta f_s}{F_{0s}} \left(\frac{\partial \delta f_s}{\partial t} \right)_{\mathrm{c}}$$

Generalised energy = free energy of the particles + fields

Fowler 1968 Krommes & Hu 1994 Krommes 1999 Sugama et al. 1996 Hallatchek 2004 Howes et al. 2006 Schekochihin et al. 2007 Scott 2007

Landau damping is a redistribution between e-m fluctuation energy and (negative) perturbed entropy (free energy). It was pointed out already by Landau 1946 that δf_s does not decay: "ballistic response" $\delta f_s \propto e^{-i\mathbf{k}\cdot \mathbf{v}t}$

Plasma Turbulence: Analogous to Fluid, But...

$$\frac{\mathrm{d}}{\mathrm{d}t} \int \frac{\mathrm{d}^3 r}{V} \left[\sum_s \int \mathrm{d}^3 v \, \frac{T_{0s} \delta f_s^2}{2F_{0s}} + \frac{E^2 + B^2}{8\pi} \right]_{\text{energy}} + \frac{E^2 + B^2}{8\pi} = \varepsilon + \int \frac{\mathrm{d}^3 r}{V} \sum_s \int \mathrm{d}^3 v \, \frac{T_{0s} \delta f_s}{F_{0s}} \left(\frac{\partial \delta f_s}{\partial t} \right)_{\mathrm{c}}$$

small scales in 6D phase space

$$\frac{\partial_t u + u \cdot \nabla u = -\nabla p + \nu \nabla^2 u + f_s}{\frac{\mathrm{d}}{\mathrm{d}t} \int \frac{\mathrm{d}^3 r}{V} \frac{u^2}{2}} = \varepsilon - \nu \int \frac{\mathrm{d}^3 r}{V} |\nabla u|^2 + \frac{\mathrm{small scales in 3D}}{\mathrm{physical space}}$$

Plasma Turbulence: Analogous to Fluid, But...

In gyrokinetic turbulence, the velocity-space and x-space cascades are intertwined, giving rise to a single phase-space cascade

Plasma Turbulence: Analogous to Fluid, But...

$$\frac{\mathrm{d}}{\mathrm{d}t} \int \frac{\mathrm{d}^3 r}{V} \left[\sum_s \int \mathrm{d}^3 v \, \frac{T_{0s} \delta f_s^2}{2F_{0s}} + \frac{E^2 + B^2}{8\pi} \right]_{\mathrm{energy}} \int \frac{\mathrm{heating}}{\mathrm{heating}} = \varepsilon + \int \frac{\mathrm{d}^3 r}{V} \sum_s \int \mathrm{d}^3 v \, \frac{T_{0s} \delta f_s}{F_{0s}} \left(\frac{\partial \delta f_s}{\partial t} \right)_{\mathrm{c}}$$

SO, <u>IDEA #1</u>: GENERALISED ENERGY CASCADE THROUGH PHASE SPACE

Critical Balance

IDEA #2: CRITICAL BALANCE

Critical Balance

• Strong anisotropy:

$$\frac{k_\parallel}{k_\perp} \ll 1$$

In magnetised plasma, confirmed by numerics (MHD) and observations (solar wind, ISM)

• Strong nonlinearity: $\omega \sim k_{\parallel} v_A \sim k_{\perp} u_{\perp}$

Critical balance as a physical principle proposed for Alfvénic turbulence by Goldreich & Sridhar 1995 [*ApJ* **438**, 763]

- More generally, one might argue that *in a magnetised plasma, parallel linear propagation scale and perpendicular nonlinear interaction scale will adjust to each other* and the turbulent cascade route will be determined by this principle
 - Weak turbulence drives itself into strong regime
 - 2D turbulence ("overstrong") parallel-decorrelates and returns to critical balance

What Is Gyrokinetics?

- **Strong anisotropy:** $\epsilon \sim \frac{k_{\parallel}}{k_{\perp}} \ll 1$ (this is the small parameter!)
- **Strong nonlinearity:** $\omega \sim k_{\parallel} v_A \sim k_{\perp} u_{\perp}$ (*critical balance as an ordering assumption*)

What Is Gyrokinetics?

• **Strong anisotropy:** $\epsilon \sim \frac{k_{\parallel}}{k_{\perp}} \ll 1$ (this is the small parameter!)

- Strong nonlinearity: $\omega \sim k_{\parallel} v_A \sim k_{\perp} u_{\perp} \rightarrow$ (critical balance as an ordering assumption)
- Finite Larmor radius: $k_{\perp}\rho_i \sim 1$ —

$$\frac{\omega}{\Omega_i} \sim \frac{k_{\parallel} v_A}{\Omega_i} \sim \frac{k_{\perp} \rho_i}{\sqrt{\beta_i}} \epsilon$$

Low frequency

• Weak collisions: $\frac{\omega}{\nu_{ii}} \sim \frac{k_{\parallel}\lambda_{\rm mfp}}{\sqrt{\beta_i}} \sim 1$

GK ORDERING:

$$\frac{\omega}{\Omega_i}\sim \frac{e\phi}{T_e}\sim \frac{\delta B_\perp}{B_0}\sim \frac{\delta B_\parallel}{B_0}\sim \frac{\rho_i}{\lambda_{\rm mfp}}\sim \frac{k_\parallel}{k_\perp}\sim \epsilon$$

[Taylor & Hastie 1968, *Plasma Phys.* 10, 479; Rutherford & Frieman 1968, *Phys. Fluids* 11, 569; Catto 1977, *Plasma Phys.* 20, 719; Frieman & Chen 1982, *Phys. Fluids* 443, 209; for our derivation, notation, etc. see Howes et al. 2006, *ApJ* 651, 590]

Gyrokinetics: Kinetics of Larmor Rings

Particle dynamics can be averaged over the Larmor orbits and everything reduces to kinetics of Larmor rings centered at

$$\mathbf{R}_{s} = \mathbf{r} + \frac{\mathbf{v} \times \mathbf{\hat{z}}}{\Omega_{s}} \qquad Catto \\ transformation$$

and interacting with the electromagnetic fluctuations.

$$\delta f_s = -q_s \varphi F_{0s} / T_{0s} + h_s(t, \mathbf{R}_s, v_\perp, v_\parallel)$$

only two velocity variables,
i.e., 6D \rightarrow 5D

[Howes et al. 2006, ApJ 651, 590]

Gyrokinetics: Kinetics of Larmor Rings

Particle dynamics can be averaged over the Larmor orbits and everything reduces to kinetics of Larmor rings centered at

$$\mathbf{R}_{s} = \mathbf{r} + \frac{\mathbf{v} \times \mathbf{\hat{z}}}{\Omega_{s}} \qquad Catto \\ transformation$$

and interacting with the electromagnetic fluctuations.

$$\frac{\delta f_s = -q_s \varphi F_{0s} / T_{0s} + h_s(t, \mathbf{R}_s, v_\perp, v_\parallel)}{\frac{\partial h_s}{\partial t} + v_\parallel \frac{\partial h_s}{\partial z} + \frac{c}{B_0} \left\{ \langle \chi \rangle_{\mathbf{R}_s}, h_s \right\} = \frac{q_s F_{0s}}{T_{0s}} \frac{\partial \langle \chi \rangle_{\mathbf{R}_s}}{\partial t} + \left(\frac{\partial h_s}{\partial t}\right)$$

$$\chi = \varphi - \boldsymbol{v} \cdot \boldsymbol{A}/c, \ \boldsymbol{B} = B_0 \hat{\boldsymbol{z}} + \delta \boldsymbol{B}, \ \delta \boldsymbol{B} = \boldsymbol{\nabla} \times \boldsymbol{A}$$

+ Maxwell's equations (quasineutrality and Ampère's law)

$$\langle \chi(t,\mathbf{r},\mathbf{v})\rangle_{\mathbf{R}_{s}} = \frac{1}{2\pi} \int_{0}^{2\pi} d\varphi \chi\left(t,\mathbf{R}_{s}-\frac{\mathbf{v}\times\hat{\mathbf{z}}}{\Omega_{s}},\mathbf{v}\right)$$

[Howes et al. 2006, *ApJ* **651**, 590]

Gyrokinetics: Kinetics of Larmor Rings

[[]Howes et al. 2006, *ApJ* **651**, 590]

Why is Gyrokinetics Valid?

- Because it is a simplifying analytical step that is a natural staring point for further theory
 [Howes et al. 2006, *ApJ* 651, 690 Schekochihin et al., arXiv:0704.0044]
- Because it reduces the kinetic problem to 5D, making it numerically tractable

(publicly available codesdeveloped in fusion research:e.g., GS2, GENE, GYRO...)

- Because it is a simplifying analytical step that is a natural staring point for further theory [Howes et al. 2006, *ApJ* **651**, 690 Schekochihin et al., arXiv:0704.0044]
- Because it reduces the kinetic problem to 5D, making it numerically tractable
 (publicly available codes created in fusion research: e.g., GS2, GENE, GYRO...)

[Howes et al. 2008, *PRL* **100**, 065004]

Kinetics vs. Fluid Models: What Is New?

- What is cascading in kinetic turbulence? (What is conserved?) What do the observed spectra tell us and how do we explain them?
- Dissipation

 (as usually understood)
 is "collisionless"
 (Landau damping)
 How does that
 heat particles?
 (ions, electrons,
 minority ions)

Gyrokinetics: Kinetics of Larmor Rings

SO, <u>IDEA #3</u>: GYROAVEARGED KINETIC THEORY AT LOW FREQUENCIES

Only two velocity variables, i.e., 6D → 5D
All high-frequency stuff averaged out

$$\begin{split} \delta f_s &= -q_s \varphi F_{0s} / T_{0s} + h_s(t, \boldsymbol{R}_s, \boldsymbol{v}_\perp, \boldsymbol{v}_\parallel) \qquad \boldsymbol{R}_s = \boldsymbol{r} + \boldsymbol{v}_\perp \times \hat{\boldsymbol{z}} / \Omega_s \\ \frac{\partial h_s}{\partial t} + \boldsymbol{v}_\parallel \frac{\partial h_s}{\partial z} + \frac{c}{B_0} \left\{ \langle \chi \rangle_{\boldsymbol{R}_s}, h_s \right\} = \frac{q_s F_{0s}}{T_{0s}} \frac{\partial \langle \chi \rangle_{\boldsymbol{R}_s}}{\partial t} + \left(\frac{\partial h_s}{\partial t} \right)_c \\ \chi &= \varphi - \boldsymbol{v} \cdot \boldsymbol{A} / c, \ \boldsymbol{B} = B_0 \hat{\boldsymbol{z}} + \delta \boldsymbol{B}, \ \delta \boldsymbol{B} = \boldsymbol{\nabla} \times \boldsymbol{A} \end{split}$$

+ Maxwell's equations (quasineutrality and Ampère's law) $\langle \chi(t, \mathbf{r}, \mathbf{v}) \rangle_{\mathbf{R}_s} = \frac{1}{2\pi} \int_0^{2\pi} d\varphi \chi \left(t, \mathbf{R}_s - \frac{\mathbf{v} \times \hat{\mathbf{z}}}{\Omega_s}, \mathbf{v} \right)$ [Howes et al. 2006, *ApJ* **651**, 590]

Generalised Energy in Gyrokinetics

$$\begin{split} \frac{\mathrm{d}}{\mathrm{d}t} \int \frac{\mathrm{d}^3 r}{V} \left[\sum_s \int \mathrm{d}^3 v \, \frac{T_{0s} \delta f_s^2}{2F_{0s}} + \frac{E^2 + B^2}{8\pi} \right] \\ \stackrel{\mathrm{energy}}{=} \varepsilon + \int \frac{\mathrm{d}^3 r}{V} \sum_s \int \mathrm{d}^3 v \, \frac{T_{0s} \delta f_s}{F_{0s}} \left(\frac{\partial \delta f_s}{\partial t} \right)_{\mathrm{c}} \end{split}$$

Generalised Energy in Gyrokinetics

$$\begin{split} \frac{\mathrm{d}W}{\mathrm{d}t} &= \frac{\mathrm{d}}{\mathrm{d}t} \int \frac{\mathrm{d}^3 r}{V} \left[\sum_s \left(\int \mathrm{d}^3 v \, \frac{T_{0s} \langle h_s^2 \rangle_r}{2F_{0s}} - \frac{q_s^2 \varphi^2 n_{0s}}{2T_{0s}} \right) + \frac{|\delta B|^2}{8\pi} \right] \\ \frac{-T\delta S}{\varepsilon} & \text{energy} \\ &= \varepsilon + \sum_s \int \mathrm{d}^3 v \, \int \frac{\mathrm{d}^3 R_s}{V} \frac{T_{0s} h_s}{F_{0s}} \left(\frac{\partial h_s}{\partial t} \right)_{\mathrm{c}} \end{split}$$

arXiv:0704.0044

$$W = \int d^3 \mathbf{r} \left(\sum_{s} \int d^3 \mathbf{v} \frac{T_{0s} \delta f_s^2}{2F_{0s}} + \frac{|\delta \mathbf{B}|^2}{8\pi} \right)$$

$$W = \int d^{3}\mathbf{r} \left[\frac{m_{i}n_{0i}}{2} \left(|\nabla\zeta^{+}|^{2} + |\nabla\zeta^{-}|^{2} \right) + \frac{m_{i}n_{0i}}{2} \left(|z_{\parallel}^{+}|^{2} + |z_{\parallel}^{-}|^{2} \right) + \frac{3}{4} n_{0i}T_{0i} \frac{1 + Z/\tau}{5/3 + Z/\tau} \frac{\delta s^{2}}{s_{0}^{2}} \right]$$

Alfvén waves slow waves entropy fluctuations

Ion Gyroscale Transition: GK DNS by G. Howes

Alfvén-wave turbulence in the solar wind [by Bale et al. 2005, *PRL* **94**, 215002]

Alfvén-wave turbulence using GS2 [by Howes et al. 2008, *PRL* **100**, 065004]

Ion Gyroscale Transition: GK DNS by G. Howes

Alfvén-wave turbulence in the solar wind [by Bale et al. 2005, *PRL* **94**, 215002]

Alfvén-wave turbulence using GS2 [by Howes et al. 2008, *PRL* **100**, 065004]

Main Points So Far

- <u>IDEA #1</u>: Kinetic turbulence is a generalised energy cascade in phase space towards collisional scales
- <u>IDEA #2</u>: Cascade is anisotropic and critically balanced (linear parallel propagation scale = nonlinear perpendicular interaction scale)
- <u>IDEA #3</u>: Can be described by gyrokinetics gyroangle averaged low frequency kinetics of Larmor rings
- IDEA #4: Cascade splits into various non-energy-exchanging channels in different ways, depending on scales (some of these described by fluid/hybrid models); mixing and resplitting of these subcascades at ion gyroscale determines relative heating of the two species

Details are in these preprints: arXiv:0704.0044, 0806.1069

Further Topics

- Alfvénic turbulence and passive compressive fluctuations in the inertial range
- Energetic minority ions and their heating
- Kinetic Alfvén wave turbulence in the "dissipation range"
- Entropy cascade in phase space and nonlinear phase mixing
- Pressure anisotropies and resulting instabilities
- Magnetogenesis
- The answer to the general question about life, universe, and everything...

Details are in these preprints: arXiv:0704.0044, 0806.1069

Further Topics

- Alfvénic turbulence and passive compressive fluctuations in the inertial range
- Energetic minority ions and their heating
- Kinetic Alfvén wave turbulence in the "dissipation range"
- Entropy cascade in phase space and nonlinear phase mixing
- Pressure anisotropies and resulting instabilities
- Magnetogenesis
- The answer to the general question about life, universe, and everything...

$$\sqrt{\frac{m_i}{m_e}}\approx 42$$

Details are in these preprints: arXiv:0704.0044, 0806.1069

Kinetic Reduced MHD

• Alfvénic fluctuations $\mathbf{u}_{\perp} = \hat{\mathbf{z}} \times \nabla_{\perp} \Phi$, $\Phi = \frac{c}{B_0} \phi$ and $\frac{\delta \mathbf{B}_{\perp}}{\sqrt{4\pi\rho_0}} = \hat{\mathbf{z}} \times \nabla_{\perp} \Psi$

rigourously satisfy Reduced MHD Equations:

$$\frac{\partial}{\partial t} \nabla_{\perp}^{2} \Phi + \left\{ \Phi, \nabla_{\perp}^{2} \Phi \right\} = v_{A} \frac{\partial}{\partial z} \nabla_{\perp}^{2} \Psi + \left\{ \Psi, \nabla_{\perp}^{2} \Psi \right\}$$
$$\frac{\partial \Psi}{\partial t} + \left\{ \Phi, \Psi \right\} = v_{A} \frac{\partial \Phi}{\partial z}$$

[Strauss 1976, Phys. Fluids 19, 134]

• Alfvénic fluctuations $\mathbf{u}_{\perp} = \hat{\mathbf{z}} \times \nabla_{\perp} \Phi$, $\Phi = \frac{c}{B_0} \phi$ and $\frac{\delta \mathbf{B}_{\perp}}{\sqrt{4\pi\rho_0}} = \hat{\mathbf{z}} \times \nabla_{\perp} \Psi$ rigourously satisfy *Reduced MHD Equations*:

$$\begin{aligned} &\frac{\partial}{\partial t} \nabla_{\perp}^{2} \Phi + \left\{ \Phi, \nabla_{\perp}^{2} \Phi \right\} = v_{A} \frac{\partial}{\partial z} \nabla_{\perp}^{2} \Psi + \left\{ \Psi, \nabla_{\perp}^{2} \Psi \right\} \\ &\frac{\partial \Psi}{\partial t} + \left\{ \Phi, \Psi \right\} = v_{A} \frac{\partial \Phi}{\partial z} \end{aligned}$$

[Kadomtsev & Pogutse 1974, Sov. Phys. JETP 38, 283]

• *Alfvénic fluctuations* $\mathbf{u}_{\perp} = \hat{\mathbf{z}} \times \nabla_{\perp} \Phi$, $\Phi = \frac{c}{B_0} \phi$ and $\frac{\delta \mathbf{B}_{\perp}}{\sqrt{4\pi\rho_0}} = \hat{\mathbf{z}} \times \nabla_{\perp} \Psi$ rigourously satisfy *Reduced MHD Equations*:

$$\begin{aligned} &\frac{\partial}{\partial t} \nabla_{\perp}^{2} \Phi + \left\{ \Phi, \nabla_{\perp}^{2} \Phi \right\} = v_{A} \frac{\partial}{\partial z} \nabla_{\perp}^{2} \Psi + \left\{ \Psi, \nabla_{\perp}^{2} \Psi \right\} \\ &\frac{\partial \Psi}{\partial t} + \left\{ \Phi, \Psi \right\} = v_{A} \frac{\partial \Phi}{\partial z} \end{aligned}$$

[Kadomtsev & Pogutse 1974, *Sov. Phys. JETP* **38**, 283 Strauss 1976, *Phys. Fluids* **19**, 134]

- Alfvén-wave cascade is indifferent to collisions and damped only at the ion gyroscale
- The GS95 theory describes this part of the turbulence
- Alfvén waves are decoupled from density and magnetic-field-strength fluctuations (slow waves and entropy mode in the fluid limit)

• *Alfvénic fluctuations* $\mathbf{u}_{\perp} = \hat{\mathbf{z}} \times \nabla_{\perp} \Phi$, $\Phi = \frac{c}{B_0} \phi$ and $\frac{\delta \mathbf{B}_{\perp}}{\sqrt{4\pi\rho_0}} = \hat{\mathbf{z}} \times \nabla_{\perp} \Psi$ rigourously satisfy *Reduced MHD Equations:*

$$\frac{\partial}{\partial t} \nabla_{\perp}^{2} \Phi + \left\{ \Phi, \nabla_{\perp}^{2} \Phi \right\} = v_{A} \frac{\partial}{\partial z} \nabla_{\perp}^{2} \Psi + \left\{ \Psi, \nabla_{\perp}^{2} \Psi \right\}$$
$$\frac{\partial \Psi}{\partial t} + \left\{ \Phi, \Psi \right\} = v_{A} \frac{\partial \Phi}{\partial z}$$

[Kadomtsev & Pogutse 1974, Sov. Phys. JETP **38**, 283 Strauss 1976, Phys. Fluids **19**, 134]

SO, <u>IDEA #5</u>: *DECOUPLED RMHD ALFVENIC CASCADE IN THE INERTIAL RANGE*

ISM: Density Fluctuations

[Armstrong et al. 1995, ApJ 443, 209]

ISM: Density Fluctuations

"Great Power Law In the Sky" ... coined by Steve Spangler

Electron-density fluctuations in the interstellar medium [Armstrong *et al.* 1995, *ApJ* **443**, 209]

SW: Density and Field-Strength Fluctuations

Density fluctuations in the solar wind at ~1 AU (31 Aug. 1981) [Celnikier, Muschietti & Goldman1987, A&A 181, 138] Spectrum of magnetic-field strength in the solar wind at ~1 AU (1998) [Bershadskii & Sreenivasan 2004, *PRL* 93, 064501]

$$\begin{split} \delta n_e \ \text{and} \ \delta B_{\parallel} \ \text{require kinetic description: our expansion gives} \\ \frac{\mathrm{d}}{\mathrm{d}t} \left(\delta f_i - \frac{v_{\perp}^2}{v_{\mathrm{th}i}^2} \frac{\delta B_{\parallel}}{B_0} f_{0i} \right) + v_{\parallel} \hat{b} \cdot \nabla \left(\delta f_i + \frac{\delta n_e}{n_{0e}} f_{0i} \right) = 0 \\ \frac{\delta n_e}{n_{0e}} = \frac{1}{n_{0i}} \int \mathrm{d}^3 v \ \delta f_i \\ \frac{\delta B_{\parallel}}{B_0} = -\frac{\beta_i}{2} \frac{1}{n_{0i}} \int \mathrm{d}^3 v \left(1 + \frac{v_{\perp}^2}{v_{\mathrm{th}i}^2} \right) \delta f_i \\ \mathbf{KRMHD} \qquad \qquad \\ \frac{\mathrm{d}}{\mathrm{d}t} = \frac{\partial}{\partial t} + u_{\perp} \cdot \nabla_{\perp} = \frac{\partial}{\partial t} + \{\Phi, \cdots\} \\ \hat{b} \cdot \nabla = \frac{\partial}{\partial z} + \frac{\delta B_{\perp}}{B_0} \cdot \nabla_{\perp} = \frac{\partial}{\partial z} + \frac{1}{v_A} \{\Psi, \cdots\} \end{split}$$

Density and field-strength fluctuations are passively mixed by Alfvén waves [Schekochihin et al., arXiv:0704.0044 cf. Higdon 1984, *ApJ* 285, 109; Lithwick & Goldreich 2001, *ApJ* 562, 279]

$$\begin{split} &\delta n_e \text{ and } \delta B_{\parallel} \text{ require kinetic description: our expansion gives} \\ &\frac{\mathrm{d}}{\mathrm{d}t} \left(\delta f_i - \frac{v_{\perp}^2}{v_{\mathrm{th}i}^2} \frac{\delta B_{\parallel}}{B_0} f_{0i} \right) + v_{\parallel} \hat{\boldsymbol{b}} \cdot \boldsymbol{\nabla} \left(\delta f_i + \frac{\delta n_e}{n_{0e}} f_{0i} \right) = 0. \\ &\frac{\delta n_e}{n_{0e}} = \frac{1}{n_{0i}} \int \mathrm{d}^3 \boldsymbol{v} \, \delta f_i \\ &\frac{\delta B_{\parallel}}{B_0} = -\frac{\beta_i}{2} \frac{1}{n_{0i}} \int \mathrm{d}^3 \boldsymbol{v} \left(1 + \frac{v_{\perp}^2}{v_{\mathrm{th}i}^2} \right) \delta f_i \\ &\text{In the Lagrangian frame of the Alfvén waves...} \qquad &\hat{\boldsymbol{b}} \cdot \boldsymbol{\nabla} = \frac{\partial}{\partial z} + \frac{\delta B_{\perp}}{B_0} \cdot \boldsymbol{\nabla}_{\perp} \to \frac{\partial}{\partial l_0} \end{split}$$

[Schekochihin et al., arXiv:0704.0044]

1

• ,•

$$\begin{split} \delta n_e & \text{and } \delta B_{\parallel} \text{ require kinetic description: our expansion gives} \\ \hline \partial \partial \partial t & \left(\delta f_i - \frac{v_{\perp}^2}{v_{\text{thi}}^2} \frac{\delta B_{\parallel}}{B_0} f_{0i} \right) + v_{\parallel} \begin{pmatrix} \partial \partial \partial d \theta \\ \partial d \theta \end{pmatrix} \begin{pmatrix} \delta f_i + \frac{\delta n_e}{n_{0e}} f_{0i} \end{pmatrix} = 0. \\ \hline \delta n_e \\ n_{0e} &= \frac{1}{n_{0i}} \int d^3 v \, \delta f_i \\ \hline \delta B_{\parallel} \\ B_0 &= -\frac{\beta_i}{2} \frac{1}{n_{0i}} \int d^3 v \left(1 + \frac{v_{\perp}^2}{v_{\text{thi}}^2} \right) \delta f_i \\ \hline In \text{ the Lagrangian } & \frac{d}{dt} = \frac{\partial}{\partial t} + u_{\perp} \cdot \nabla_{\perp} \rightarrow \frac{\partial}{\partial t} \\ frame \text{ of the Alfvén } & \hat{b} \cdot \nabla = \frac{\partial}{\partial z} + \frac{\delta B_{\perp}}{B_0} \cdot \nabla_{\perp} \rightarrow \frac{\partial}{\partial l_0} \end{split}$$

1 .

1 0 0

[Schekochihin et al., arXiv:0704.0044]

٠

In the Lagrangian frame of the Alfvén waves...

No refinement of scale along perturbed magnetic field (but there is along the guide field, i.e. k_z grows)

Collisionless Damping

 δn_e and δB_{\parallel} require kinetic description: our expansion gives $\left(\frac{\partial}{\partial t}\left(\delta f_i - \frac{v_{\perp}^2}{v_{\perp i}^2}\frac{\delta B_{\parallel}}{B_0}f_{0i}\right) + v_{\parallel}\left(\frac{\partial}{\partial l_0}\left(\delta f_i + \frac{\delta n_e}{n_{0e}}f_{0i}\right) = 0\right)$ $\frac{\delta n_e}{n_{0e}} = \frac{1}{n_{0i}} \int \mathrm{d}^3 v \, \delta f_i$ equation is linear! $\frac{\delta B_{\parallel}}{B_0} = -\frac{\beta_i}{2} \frac{1}{n_{0i}} \int \mathrm{d}^3 v \left(1 + \frac{v_{\perp}^2}{v_{1i}^2}\right) \delta f_i$ For $\beta_i \sim 1$, $\gamma \sim k_{\parallel 0} v_{\text{th}i} \sim k_{\parallel 0} v_A \ll k_{\parallel} v_A$ [Barnes 1966, *Phys. Fluids* 9, 1483] time to be cascaded in k_{\perp} by Alfvén waves, for which $k_{\parallel} \sim k_{\perp}^{2/3}$ **Cascades of density and field strength fluctuations** are undamped above ion gyroscale

... but parallel cascade might be induced due to dissipation [Lithwick & Goldreich 2001, *ApJ* **562**, 279]

Damping of Cascades

Damping of Cascades

Damping of Cascades

Electron Reduced MHD

Electron Reduced MHD

Start with GK, consider the scales such that $k_{\perp}\rho_i \gg 1$, $k_{\perp}\rho_e \ll 1$

$$\frac{\partial \Psi}{\partial t} = v_A \left(1 + Z/\tau \right) \mathbf{\hat{b}} \cdot \nabla \Phi,$$

$$\frac{\partial \Phi}{\partial t} = -\frac{v_A}{2 + \beta_i \left(1 + Z/\tau \right)} \mathbf{\hat{b}} \cdot \nabla \left(\rho_i^2 \nabla_\perp^2 \Psi \right)$$

$$\delta n = Z e \phi \qquad 2 = \Phi$$

This is the anisotropic version of EMHD [Kingsep et al. 1990, Rev. Plasma Phys. 16, 243], which is derived (for $\beta_I >>1$) by assuming magnetic field frozen into electron fluid and doing a RMHD-style anisotropic expansion:

$$\frac{\partial n_e}{n_{0e}} = -\frac{Ze\phi}{T_{0i}} = -\frac{Z}{\sqrt{\beta_i}} \frac{\Phi}{\rho_i v_A}, \qquad \qquad \frac{\partial \mathbf{B}}{\partial t} = -\frac{c}{4\pi e n_{0e}} \nabla \times \left[(\nabla \times \mathbf{B}) \times \mathbf{B} \right]$$
$$\frac{\delta B_{\parallel}}{B_0} = \frac{\beta_i}{2} \left(1 + \frac{Z}{\tau} \right) \frac{Ze\phi}{T_{0i}} = \sqrt{\beta_i} \left(1 + \frac{Z}{\tau} \right) \frac{\Phi}{\rho_i v_A} \qquad \qquad \frac{\delta \mathbf{B}}{B_0} = \frac{1}{v_A} \mathbf{\hat{z}} \times \nabla_{\perp} \Psi + \mathbf{\hat{z}} \frac{\delta B_{\parallel}}{B_0}$$

$$u_{\parallel e} = \frac{c}{4\pi e n_{0e}} \nabla_{\perp}^2 A_{\parallel} = -\frac{\rho_i \nabla_{\perp}^2 \Psi}{\sqrt{\beta_i}}$$

 $\frac{\partial n_e}{n_{0e}} = -\frac{2e\varphi}{T_{0i}} = -\frac{2}{\sqrt{\beta_i}}\frac{\varphi}{\rho_i v_A},$

Start with GK, consider the scales such that $k_{\perp}\rho_i \gg 1, \ k_{\perp}\rho_e \ll 1$

$$\begin{split} &\frac{\partial\Psi}{\partial t} = v_A \left(1 + Z/\tau\right) \mathbf{\hat{b}} \cdot \boldsymbol{\nabla} \Phi, \\ &\frac{\partial\Phi}{\partial t} = -\frac{v_A}{2 + \beta_i \left(1 + Z/\tau\right)} \mathbf{\hat{b}} \cdot \boldsymbol{\nabla} \left(\rho_i^2 \nabla_{\perp}^2 \Psi\right) \end{split}$$

Linear wave solutions:

$$\omega = \pm \sqrt{\frac{1 + Z/\tau}{2 + \beta_i \left(1 + Z/\tau\right)}} k_{\perp} \rho_i k_{\parallel} v_A$$

Eigenfunctions:

$$\Theta_{\mathbf{k}}^{\pm} = \sqrt{\left(1 + Z/\tau\right) \left[2 + \beta_i \left(1 + Z/\tau\right)\right]} \Phi_{\mathbf{k}} \mp k_{\perp} \rho_i \Psi_{\mathbf{k}}$$

• There is a cascade of KAW,

$$\delta B_{\parallel}/B_0 \sim \Phi/\rho_i v_A \sim k_{\perp} \Psi/v_A \sim \delta B_{\perp}/B_0$$

• Critical balance + constant flux argument à la K41/GS95 give $k_{\perp}^{-7/3}$ spectrum of magnetic field with anisotropy $k_{\parallel} \sim k_{\perp}^{1/3}$

[Biskamp et al. 1996, *PRL* **76**, 1264; Cho & Lazarian 2004, *ApJ* **615**, L41] • Electric field has $k_{\perp}^{-1/3}$ spectrum: $\delta E \sim k_{\perp} \phi \sim k_{\perp} \rho_i (v_A/c) \delta B$. arXiv:0704.0044

Kinetic Alfvén Waves

Start with GK, consider the scales such that $k_{\perp}\rho_i \gg 1, \ k_{\perp}\rho_e \ll 1$

$$\begin{aligned} \frac{\partial \Psi}{\partial t} &= v_A \left(1 + Z/\tau \right) \mathbf{\hat{b}} \cdot \boldsymbol{\nabla} \Phi, \\ \frac{\partial \Phi}{\partial t} &= -\frac{v_A}{2 + \beta_i \left(1 + Z/\tau \right)} \mathbf{\hat{b}} \cdot \boldsymbol{\nabla} \left(\rho_i^2 \nabla_{\perp}^2 \Psi \right) \end{aligned}$$

Linear wave solutions:

$$\omega = \pm \sqrt{\frac{1 + Z/\tau}{2 + \beta_i \left(1 + Z/\tau\right)}} k_{\perp} \rho_i k_{\parallel} v_A$$

Eigenfunctions:

$$\Theta_{\mathbf{k}}^{\pm} = \sqrt{\left(1 + Z/\tau\right) \left[2 + \beta_i \left(1 + Z/\tau\right)\right]} \Phi_{\mathbf{k}} \mp k_{\perp} \rho_i \Psi_{\mathbf{k}}$$

SO, <u>IDEA #7</u>: *CRITICALLY BALANCED KAW CASCADE IN THE DISSIPATION RANGE*

arXiv:0704.0044
Dissipation Range of the SW: KAW?

Magnetic- and electric-field fluctuations in the solar wind at ~1 AU (19 Feb. 2002) [Bale *et al.* 2005, *PRL* 94, 215002]

Dissipation Range of the SW: ???

IDEA #8: *DUAL (ION) ENTROPY CASCADE IN VELOCITY AND POSITION SPACE*

$$\begin{split} \frac{\partial h_{i}}{\partial t} + v_{\parallel} \frac{\partial h_{i}}{\partial z} + \frac{c}{B_{0}} \left\{ \langle \varphi \rangle_{\boldsymbol{R}_{i}}, h_{i} \right\} - \left(\frac{\partial h_{i}}{\partial t} \right)_{c} &= \frac{\partial}{\partial t} \frac{Ze \langle \varphi \rangle_{\boldsymbol{R}_{i}}}{T_{0i}} F_{0i} \\ \left(1 + \frac{\tau}{Z} \right) \frac{Ze\varphi}{T_{0i}} &= \sum_{\boldsymbol{k}} e^{i\boldsymbol{k}\cdot\boldsymbol{r}} \frac{1}{n_{0i}} \int d^{3}\boldsymbol{v} J_{0} \left(\frac{k_{\perp}v_{\perp}}{\Omega_{i}} \right) h_{i}(\boldsymbol{k}) & \begin{array}{c} \text{low-frequency} \\ \text{electrostatic} \\ \text{fluctuations} \end{array} \\ This comes from \\ gyroaveraging \end{split}$$

NB: In fluid models (like EMHD) these fluctuations are invisible

$$\begin{aligned} \frac{\partial h_{i}}{\partial t} + v_{\parallel} \frac{\partial h_{i}}{\partial z} + \frac{c}{B_{0}} \left\{ \langle \varphi \rangle_{\mathbf{R}_{i}}, h_{i} \right\} - \left(\frac{\partial h_{i}}{\partial t} \right)_{c} &= \frac{\partial}{\partial t} \frac{Ze \langle \varphi \rangle_{\mathbf{R}_{i}}}{T_{0i}} F_{0i} \\ \left(1 + \frac{\tau}{Z} \right) \frac{Ze\varphi}{T_{0i}} &= \sum_{\mathbf{k}} e^{\mathbf{i}\mathbf{k}\cdot\mathbf{r}} \frac{1}{n_{0i}} \int d^{3}v J_{0} \left(\frac{k_{\perp}v_{\perp}}{\Omega_{i}} \right) h_{i}(\mathbf{k}) & ele_{flue} \\ flue &= flue \end{aligned}$$

Low-frequency electrostatic fluctuations

• Potential mixes h_i via this term, so h_i developes small (perpendicular) scales in the gyrocenter space: $k_{\perp}\rho_i \gg 1$

$$\frac{\partial h_i}{\partial t} + v_{\parallel} \frac{\partial h_i}{\partial z} + \frac{c}{B_0} \left\{ \langle \varphi \rangle_{\mathbf{R}_i}, h_i \right\} - \left(\frac{\partial h_i}{\partial t} \right)_{\mathbf{c}} = \frac{\partial}{\partial t} \frac{Ze \langle \varphi \rangle_{\mathbf{R}_i}}{T_{0i}}$$
$$\left(1 + \frac{\tau}{Z} \right) \frac{Ze\varphi}{T_{0i}} = \sum_{\mathbf{k}} e^{\mathbf{i}\mathbf{k}\cdot\mathbf{r}} \frac{1}{n_{0i}} \int d^3 v J_0 \left(\frac{k_{\perp}v_{\perp}}{\Omega_i} \right) h_i(\mathbf{k})$$

Low-frequency electrostatic fluctuations

 F_{0i}

- Potential mixes h_i via this term, so h_i developes small (perpendicular) scales in the gyrocenter space: $k_{\perp}\rho_i \gg 1$
- Two values of the gyroaveraged potential $\langle \varphi \rangle_{\mathbf{R}_i}(\mathbf{v})$ and $\langle \varphi \rangle_{\mathbf{R}_i}(\mathbf{v}')$ come from spatially decorrelated fluctuations if

$$\frac{v_{\perp}}{\Omega_i} - \frac{v_{\perp}'}{\Omega_i} \sim \frac{1}{k_{\perp}} \ \Rightarrow \ \frac{\delta v_{\perp}}{v_{\mathrm{th}i}} \sim \frac{1}{k_{\perp}\rho_i}$$

[The perpendicular nonlinear phase-mixing mechanism was anticipated in the work of Dorland & Hammett 1993]

 $\nabla_{\perp}/\Omega_{i}$ v_{\perp}/Ω_{i} v_{\perp}/Ω_{i} v_{\perp

Entropy Cascade

$$\begin{split} \frac{\partial h_{i}}{\partial t} + v_{\parallel} \frac{\partial h_{i}}{\partial z} + \frac{c}{B_{0}} \left\{ \langle \varphi \rangle_{\boldsymbol{R}_{i}}, h_{i} \right\} - \begin{pmatrix} \frac{\partial h_{i}}{\partial t} \end{pmatrix}_{c} &= \frac{\partial}{\partial t} \frac{Ze \langle \varphi \rangle_{\boldsymbol{R}_{i}}}{T_{0i}} F_{0i} \\ \left(1 + \frac{\tau}{Z}\right) \frac{Ze\varphi}{T_{0i}} &= \sum_{\boldsymbol{k}} e^{i\boldsymbol{k}\cdot\boldsymbol{r}} \frac{1}{n_{0i}} \int d^{3}\boldsymbol{v} J_{0} \begin{pmatrix} \frac{k_{\perp}v_{\perp}}{\Omega_{i}} \end{pmatrix} h_{i}(\boldsymbol{k}) \\ fluctuations \end{split}$$

• Electrostatic fluctuations come from ion-entropy fluctuations:

$$\frac{Ze\varphi(\boldsymbol{k})}{T_{0i}} \sim \frac{v_{\text{th}i}^3}{n_{0i}} \frac{1}{\sqrt{k_{\perp}\rho_i}} \left(\frac{\delta v_{\perp}}{v_{\text{th}i}}\right)^{1/2} h_i(\boldsymbol{k}) \sim \frac{v_{\text{th}i}^3}{n_{0i}} \frac{h_i(\boldsymbol{k})}{k_{\perp}\rho_i}$$

• Entropy is conserved, so use const-flux argument:

$$\frac{m_i v_{\mathrm{th}i}^8}{n_{0i}} \frac{h_{i\lambda}^2}{\tau_\lambda} \sim \varepsilon$$

4

• Nonlinear decorrelation time:

$$au_{\lambda} \sim \left(\frac{\rho_i}{\lambda}\right)^{1/2} \frac{\lambda^2}{c\varphi_{\lambda}/B_0}$$

Entropy Cascade

$$\begin{split} \frac{\partial h_{i}}{\partial t} + v_{\parallel} \frac{\partial h_{i}}{\partial z} + \frac{c}{B_{0}} \left\{ \langle \varphi \rangle_{\boldsymbol{R}_{i}}, h_{i} \right\} - \begin{pmatrix} \frac{\partial h_{i}}{\partial t} \end{pmatrix}_{c} &= \frac{\partial}{\partial t} \frac{Ze \langle \varphi \rangle_{\boldsymbol{R}_{i}}}{T_{0i}} F_{0i} \\ Low-frequency \\ \left(1 + \frac{\tau}{Z}\right) \frac{Ze\varphi}{T_{0i}} &= \sum_{\boldsymbol{k}} e^{i\boldsymbol{k}\cdot\boldsymbol{r}} \frac{1}{n_{0i}} \int d^{3}\boldsymbol{v} J_{0} \begin{pmatrix} \frac{k_{\perp}v_{\perp}}{\Omega_{i}} \end{pmatrix} h_{i}(\boldsymbol{k}) \\ fluctuations \end{split}$$

• Electrostatic fluctuations come from ion-entropy fluctuations:

$$\frac{Ze\varphi(\boldsymbol{k})}{T_{0i}} \sim \frac{v_{\mathrm{th}i}^3}{n_{0i}} \frac{1}{\sqrt{k_{\perp}\rho_i}} \left(\frac{\delta v_{\perp}}{v_{\mathrm{th}i}}\right)^{1/2} h_i(\boldsymbol{k}) \sim \frac{v_{\mathrm{th}i}^3}{n_{0i}} \frac{h_i(\boldsymbol{k})}{k_{\perp}\rho_i} - \frac{v_{\mathrm{th}i}^3}{k_{\perp}\rho_i} - \frac{v_{\mathrm{th}i}^3}{k_{\perp}\rho_i} \frac{h_i(\boldsymbol{k})}{k_{\perp}\rho_i} - \frac{v_{\mathrm{th}i}^3}{k_{\perp}\rho_i} \frac{h_i(\boldsymbol{k})}{k_{\perp}\rho_i} - \frac{v_{\mathrm{th}i}^3}{k_{\perp}\rho_i} - \frac{v_{\mathrm{th}i}^3}{k_{\perp}\rho_$$

• Entropy is conserved, so use const-flux argument:

•

$$\frac{m_i v_{\text{th}i}^8}{n_{0i}} \frac{h_{i\lambda}^2}{\tau_{\lambda}} \sim \varepsilon$$

$$c\varphi_{\lambda}/B_0 \sim v_{\text{th}i}^4 h_{i\lambda} \lambda/n_{0i}$$
Nonlinear decorrelation time:
$$\tau_{\lambda} \sim \left(\frac{\rho_i}{\lambda}\right)^{1/2} \frac{\lambda^2}{c\varphi_{\lambda}/B_0} \sim \frac{\rho_i^{1/2} \lambda^{1/2} n_{0i}}{v_{\text{th}i}^4 h_{i\lambda}}$$
arXiv:0806.1069

Entropy Cascade

$$\begin{aligned} \frac{\partial h_{i}}{\partial t} + v_{\parallel} \frac{\partial h_{i}}{\partial z} + \frac{c}{B_{0}} \left\{ \langle \varphi \rangle_{\boldsymbol{R}_{i}}, h_{i} \right\} - \left(\frac{\partial h_{i}}{\partial t} \right)_{c} &= \frac{\partial}{\partial t} \frac{Ze \langle \varphi \rangle_{\boldsymbol{R}_{i}}}{T_{0i}} F_{0i} \\ \left(1 + \frac{\tau}{Z} \right) \frac{Ze\varphi}{T_{0i}} &= \sum_{\boldsymbol{k}} e^{i\boldsymbol{k}\cdot\boldsymbol{r}} \frac{1}{n_{0i}} \int d^{3}\boldsymbol{v} J_{0} \left(\frac{k_{\perp}v_{\perp}}{\Omega_{i}} \right) h_{i}(\boldsymbol{k}) & ele \\ flue &= flue \end{aligned}$$

Low-frequency electrostatic fluctuations

We get the following set of scaling relations:

$$\begin{aligned} \frac{Ze\varphi_{\lambda}}{T_{0i}} \sim \frac{\lambda^{7/6}}{\rho_i^{5/6}l_0^{1/3}} & \stackrel{l_0 = m_i n_{0i} v_{\text{th}i}^3 / \varepsilon}{\rho_i^{5/6}l_0^{1/3}} & \Rightarrow \text{ spectrum} \sim k_{\perp}^{-10/3} \\ h_{i\lambda} \sim \frac{n_{0i}}{v_{\text{th}i}^3} \frac{\rho_i^{1/6} \lambda^{1/6}}{l_0^{1/3}} & \Rightarrow \text{ spectrum} \sim k_{\perp}^{-4/3} \\ \tau_{\lambda} \sim \frac{l_0^{1/3} \rho_i^{1/3} \lambda^{1/3}}{v_{\text{th}i}} & \xrightarrow{\text{arg}} \end{aligned}$$

Distribution function develops small-scale structure in velocity space

$$\frac{\delta v_{\perp}}{v_{\mathrm{th}i}} \sim \left(\frac{\nu_{ii}}{\omega}\right)^{1/2} \sim \frac{1}{k_{\perp}\rho_i}$$

Distribution function develops small-scale structure in velocity space

$$\frac{\delta v_{\perp}}{v_{\mathrm{th}i}} \sim \left(\frac{\nu_{ii}}{\omega}\right)^{1/2} \sim \frac{1}{k_{\perp}\rho_i}$$

Distribution function develops small-scale structure in velocity space

$$\frac{\delta v_{\perp}}{v_{\mathrm{th}i}} \sim \left(\frac{\nu_{ii}}{\omega}\right)^{1/2} \sim \frac{1}{k_{\perp}\rho_i}$$

Distribution function develops small-scale structure in velocity space

G. Plunk has developed a *"kinematics of phase-space turbulence"* to quantify perpendicular velocity-space structure via Hankel transforms and derived scaling relations à la K41

$$egin{aligned} \hat{h}_i(\mathbf{k},p,v_\parallel) &= 2\pi \int dv_\perp v_\perp J_0(pv_\perp) h_i(\mathbf{k},v_\perp,v_\parallel) \ E(k,p) &= p \langle |\hat{h}_i(\mathbf{k},p)|^2
angle \end{aligned}$$

G. Plunk has developed a *"kinematics of phase-space turbulence"* to quantify perpendicular velocity-space structure via Hankel transforms and derived scaling relations à la K41

$$egin{aligned} \hat{h}_i(\mathbf{k},p,v_\parallel) &= 2\pi \int dv_\perp v_\perp J_0(pv_\perp) h_i(\mathbf{k},v_\perp,v_\parallel) \ & E(k,p) &= p \langle |\hat{h}_i(\mathbf{k},p)|^2
angle \end{aligned}$$

Phase-Space Cutoff

Distribution function develops small-scale structure in velocity space

Phase-Space Cutoff

Distribution function develops small-scale structure in velocity space

$$\frac{\delta v_{\perp c}}{v_{\text{th}i}} \sim \frac{1}{k_{\perp c} \rho_i} \sim (\nu_{ii} \tau_{\rho_i})^{3/5} \sim \frac{l_0^{1/5} \rho_i^{2/5}}{\lambda_{\text{mfp}}^{3/5}}$$

 $au_{
ho_i} \sim (m_i n_{0i}
ho_i^2 / arepsilon)^{1/3}$ chat at t

characteristic time at the ion gyroscale

$$l_0 = m_i n_{0i} v_{\rm thi}^3 / \varepsilon$$

Phase-Space Cutoff

Distribution function develops small-scale structure in velocity space

$$\frac{\delta v_{\perp c}}{v_{\text{th}i}} \sim \frac{1}{k_{\perp c}\rho_i} \sim \text{Do}^{-3/5} \qquad \begin{array}{l} x- \text{ and } v-\text{space resolution} \\ \text{are related} \end{array}$$

 $Do = \frac{1}{\nu_{ii}\tau_{\rho_i}} \qquad \tau_{\rho_i} \sim (m_i n_{0i} \rho_i^2 / \varepsilon)^{1/3} \quad \text{characteristic time} \\ \text{at the ion gyroscale} \end{cases}$

Dorland Number

cf. $k_c L \sim \text{Re}^{3/4}$ in Kolmogorov fluid turbulence

Linear Parallel Phase Mixing

Dissipation Range With and Without KAW

With KAW

Without KAW

 $E_{E}(k_{\perp}) \propto k_{\perp}^{-1/3}$ $E_{B}(k_{\perp}) \propto k_{\perp}^{-7/3}$ $E_{n}(k_{\perp}) \propto k_{\perp}^{-7/3}$ $E_{n}(k_{\perp}) \propto k_{\perp}^{-7/3}$ (FMHD)(EMHD)

Low-frequency electrostatic. purely kinetic (GK ions)

$$E_E(k_\perp) \propto k_\perp^{-4/3}$$

$$E_B(k_\perp) \propto k_\perp^{-16/3}$$

$$E_n(k_\perp) \propto k_\perp^{-10/3}$$

Dissipation Range With and Without KAW

With KAW

Without KAW

Low-frequency, electrostatic, purely kinetic (GK ions)

Dissipation Range of the Solar Wind

With KAW

Without KAW

Variable spectral index in the dissipation range may be due to superposition of KAW and no KAW cascades

Dissipation Range of the Solar Wind

With KAW

Without KAW

Variable spectral index in the dissipation range may be due to superposition of KAW and no KAW cascades

arXiv:0704.0044