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Magnetars’ bursts and flares

- Magnetars: special class of NS:
- Produce X-ray bursts, flares and 
persistent emission
- Powered by B-field,  B~ 1014 G 
outside, > 1015 G inside
- How?
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S.Mereghetti

Mostly young, ~ 104-5 yrs, high(ish) B-fields, > 1013 G
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Magnetars are powered by 
dissipation of super-strong

 B-field, B~            G
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1014�15

- LX = 1034 - 1036 erg s-1  > 100 Lspindown , 

Lspindown = I Ω    (not rotationally powered)

- Spin periods P = 5 – 12 s - slow

- Characteristic ages 3 10 3 -- 4 105  yr 

�̇

- From spindown

- From flare energetics: 
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Thompson & Dunkan
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Amplification of magnetic field:
Dynamo in neutron stars: first 10 secs

• Stars burn lighter elements, up to Fe. 

• No fuel left: collapse of the core

• Neutrino-driven convection

• Rotation

• B ~ 1016 G in special types of NSs, 
“magnetars”

•              inside,                right outside 
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• Turbulent dynamo

• alpha-omega dynamo

• Saturation at

• But Rossby #> 1: need ~ 1 for  
efficient dynamo 

“Cut” & “glue”
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 Second: 10-100 secs
• Turbulence dies out, NS relaxes to  an MHD equilibrium.

• Big Q.: What is the stable B-field structure of fluid stars? 

• B-field must be a combination of toroidal and poloidal field, 
otherwise unstable

• Pure toroidal is unstable to sausage instability:

• Pure poloidal is also unstable:

6
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Stability! (?)

• Braithwaite & Spruit:

• Similar toroidal and poloidal fluxes needed for stability
•

7

Large initial toroidal flux Small initial toroidal flux

Lander and  Jones: any barotropic  (          ) B-field equilibrium is 
unstable - need              (?)

p(⇢)
p(⇢, ✏)
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For stability B-field must be linked
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B� 6= 0
- Similar toroidal and poloidal fluxes needed 

- Smaller volume for toroidal: toroidal field can be 
locally >> poloidal (e.g. 1016 in magnetars)

Lyutikov

Lander & Jones
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@ 100 secs crust freezes

• no shear stresses at freezing (was fluid)

• Electron MHD: 
• After freezing ions form a fixed lattice
• electrons flow as fluid, J = - n e v

• B-field frozen into electrons:

• Electrons flow as an inertialess fluid
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  MHD equilibrium is, generally,  
not EMHD equilibrium

• MHD:

• EMHD: 
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After freezing B-field starts evolving  in the crust under EMHD conditions
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Electron MHD: Very heavy ions, very light 
electrons

• NS crusts
• Turbulent cascade in collisionless plasmas (Solar wind, BH 

magnetospheres, clusters of galaxies)

• sub-ion skin depth dynamics in reconnection layers
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Electron MHD

• Normal modes: whistlers (Fully non-linear!)

• Energy and helicity conserved

• Time scales

• can vary from ~ 1yr for small patches near the surface, to 
1Mys at the base of the crust for magnetars
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Quo Vadis: are there stable/attractors 
configurations in EMHD?

Stability of EMHD configurations 
• RT-type instability: the system can decrease it energy 

internally 
• the energy principle - reaching a special state with 

min E.
• MHD

• KH-type instability: energy of the system does not 
change, re-distributed to “other” modes 
• incompressible fluid -  no special state
• turbulence - transferring energy to small scales and 

dissipating

13
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EMHD: no energy principle

• Whistlers do no work (infinitely stiff lattice, no dynamo in 
EMHD)

• (in MHD                               ) 
• There is no energy principle in EMHD: cannot change 

energy internally

unless 
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B J

external shear &
density gradient

KH-like instability in EMHD
Wood, Hollerbach, Lyutikov, 2014
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Density-shear instability in electron MHD

• Driven both by B-field and density gradients

• driven by

• need 

•  

• growth rate ~ Hall time scale
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X

Shearing instability of EMHD

• Shear against rotation in whistler mode, v’<0 

• circular - elliptic - linear - instability

k
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Density-shear instability in NSs
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Density-shear instability in NSs
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Sidetrack: EMHD turbulence

•Unstable whistlers launched in the crust: non-linear 
interaction?  
•Whistler interaction is very different from Alfven waves 
•Whistlers do not interact for 

• co-linear propagation (including counter-
propagating case)

• k1 =k2,  (but  propagating in different directions)

21

Lyutikov 2014
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MHD & EMHD turbulence

• MHD: counter-propagating Alfven wave packets interact

22
Monday, October 27, 14



MHD & EMHD turbulence

• MHD: counter-propagating Alfven wave packets interact
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• EMHD: aligned-propagating wave packets do not interact, but spread
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MHD & EMHD turbulence

• MHD: counter-propagating Alfven wave packets interact
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• EMHD: aligned-propagating wave packets do not interact, but spread

• non-aligned wave packets do interact
via 3-wave, including with zero-mode
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• 3-way processes are important! 
• simple decay favors highly oblique modes 
• Very stiff: 
• daughter modes have very different k, theta
• Non-universal - depends on the injection (coupled to MHD:  

perp. driving, freezing of MHD - quasi-isotropic driving)
• Quasi-isotropic (given enough time) - resonance condition 

couples very different angles and scales
• transiently show anisotropy

• Remains weak
• -2 spectrum
• May not reach steady state at all 

 (Weak) EMHD turbulence: different from 
MHD

23

Lyutikov 2014
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Quo Vadis: are there stable/attractors 
configurations in EMHD?

Stability of EMHD configurations 
• RT-type instability: the system can decrease it energy 

internally 
• the energy principle - reaching a state with min E.
• MHD

• KH-type instability: energy of the system does not 
change, re-distributed to “other” modes 
• incompressible fluid
• turbulence - transferring energy to small scales and 

dissipating

24
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Idealized plasma physics problem: NS crusts are different!
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EMHD waves are dissipated by 
plastic deformations of the crust 

and production of bursts and flares

25
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How magnetars work:
 Star-quakes vs Solar flares

• Thompson & Duncan: 100 
msec ~ shear time scale
• magnetic field strong 

enough can break the crust
• sudden unwinding
• dissipation in the 

magnetosphere

• Needs crust to crack

26

• Lyutikov: 100 mu-sec ~ 
Alfven time over the 
magnetosphere

• slow evolution of crustal fields 
twists outside field

• kink instability
• dissipation in the magnetosphere

• Crust can respond plastically (or 
can be infinitely rigid)
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I. Star-quake (Thompson & Dunkan)

• Lorentz force                  induced shear/strain in the NS crust. 
• If that strain is larger than critical, the crust cracks
• Due to stratification - only rotation allowed.
• A plate rotates, twists the outside B-field - flare!
• Shear time scale, 100 msec (flare duration)
• Not clear if crust allows cracking 

(usually need shear velocity > sound
not satisfied in NS crusts).
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Assume the crust can crack

28

Levin & Lyutikov 2012: Even if plastic properties of the crust 
allow cracking, the release of the elastic energy in 
magnetic-induced crack is small
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Seismic energy release

29

FL
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Seismic energy release
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Seismic energy release

29

maximal stress � ! max

Crack!
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Seismic energy release

29

Crack!
� = 0

Large     gradients�
� 6= 0

- Rarefaction wave propagates

- finite velocity @ t=+0
-Seismic energy is released in 
waves

cr =
q

c2s + v2A
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Seismic energy release

29

Crack!
� = 0

Large     gradients�
� 6= 0

- Rarefaction wave propagates

- finite velocity @ t=+0
-Seismic energy is released in 
waves
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Magnetic cracking
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Magnetic cracking
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Magnetic cracking

30

B-field cannot do that!

Current sheet: jxB that stops the plates!
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Magnetic cracking

30

B-field cannot do that!

Current sheet: jxB that stops the plates!
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Magnetic cracking

31�⇠ / e�x
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Even if crust allows cracking, the post-crack evolution 
proceeds on slow, resistive time-scale. Only B-field energy 
within the crack is released (not within the shear wave-
affected volume).
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II. Solar-flare-like events (Lyutikov 2004-2006)

• Lyutikov 2006: 100 mu-sec ~ Alfven time over the 
magnetosphere
• slow EMHD evolution of crustal fields twists outside field
• kink instability
• dissipation in the magnetosphere

• Crust can respond plastically (or can be infinitely rigid)

32
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Plastic deformations of the crust

• At low strain rates most materials respond plastically (pure Al)
• plasticity controlled by lattice defects 
• At low temperatures both the density of defects and their 

mobility is controlled by strain (Gillman)

• terminal strain in the lattice

• Reached within Maxwell time 
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B-field in the magentosphere: twisting by 
EMHD drift, resistive untwisting

• B-field in the crust evolves due to Hall drift
• Strain in the crust  is plastically relieved - no cracking
• B-field outside is still twisted by the Hall drift 

• Twist = current -> dissipation
• If resistive time < Hall time: persistent emission

LX ~ B3 - observable only in magnetars
• If resistive time > Hall: flares

• Small flares - medium B-fields
• Giant flares - only in magnetars 

34
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Flares are magnetospheric instabilitiesSome 
internal dissipation need

• Post-flare increase of surface emission (~ week): internal 
dissipation (Shultz et al.)

• “Cut” the flux tube: Alfven pulse reflects, launches whistler 
pulse
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Whistler dissipation in the crust

• Strain created by whistler pulse increase with distance

• more coherent at larger distances
• In addition: amplitude grows (smaller speed:  larger B)

• Deep dissipation due to plasticity, at                                , 
heat diffuses up to the surface in ~ week 
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CME model of giant flares

37
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Lyutikov 2003, 2006
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Flares: Double-T, effective R>>RNS
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Magnetically-trapped fireball
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Scattering and free-free emission of pair 
plasma in super-strong B-field

•  

• Pair plasma

40

kBT ⌧ ~!B

B > ↵BQ, ↵ = ~c/e2
all particles on lowest Landau levels

Lyutikov, submitted
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Scattering and free-free emission of pair 
plasma in super-strong B-field

•  

• Pair plasma
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repulsive

r ⇠ e2/(mev
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all particles on lowest Landau levels
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Scattering and free-free emission of pair 
plasma in super-strong B-field

•  

• Pair plasma

40

kBT ⌧ ~!B

B > ↵BQ, ↵ = ~c/e2

repulsive
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all particles on lowest Landau levels
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Scattering and free-free emission of pair 
plasma in super-strong B-field

•  

• Pair plasma

40

kBT ⌧ ~!B

B > ↵BQ, ↵ = ~c/e2

repulsive

r ⇠ e2/(mev
2) ! rD ⇠ vT /!p � e2/T

In super-strong B-field collisions are more efficient

Collision of particles with the same e/m do not lead to dipolar emission

all particles on lowest Landau levels
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Scattering and free-free emission of pair 
plasma in super-strong B-field

• Attractive
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- Only parallel acceleration (usually aperp dominates emission)

- Low frequency limit ~        (usually      )

- Normalization ~ 3 orders lower 

- Only O-mode emitted
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Scattering in B-field

• E-mode can escape from deeper-in:

• smaller radius 

• higher temperature 

• Importance: topologically confined fireball, not a flux tube 
connected to the surface. Consistent with the idea that 
topologically-changing instabilities are responsible for flares.
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B

kEO

EX

EX hardly move the electron

vd/c ⇠ (E/B0)
�O ⇡ �T

�E ⇡
✓

!

!B

◆2

�T
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Conclusion

43

Magnetar flares

• Magnetars’ bursts and flares are magnetospheric, not 
crustal events 

• magnetically stressed crust cannot crack efficiently
• crust responds plastically
• Flares: externally triggered events 
• Some energy is dissipated inside the NS
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