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Magnetars’ bursts and flares

- Magnetars: special class of NS:

- Produce X-ray bursts, flares and
persistent emission

- Powered by B-field, B~ 10 G
outside, > 10" G inside

- How?
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Location and discovery date of the 5 SGRs

SGR 1900+14 :SGR 1806-20  SGR 1627-41

SGR 0501+45

SGR 0526-66

Mostly young, ~ 1042 yrs, high(ish) B-fields, > 10'3 G
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Magnetars are powered by
dissipation of super-strong
B-field, B~10"""" G

L, = 1034- 1O3f erg s’ > 100 Ly gown - Thompson & Dunkan
Lspindown = | 282 (nof rotationally powered)

Spin periods P=5-12s - slow

Characteristic ages 3 103 --4 10% yr

C

QRNS>4

- From spindown 1IN0 ~ B2R%\750 (

B~ 10" — 10'°@
- From flare energetics: Eﬂare ~ Etail ~ BZR?VS
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Amplification of magnetic field:

Dynamo in neutron stars: first 10 secs

crgc
“‘Cut” & “glue”

twmti

@ <D

Gz
o Stars burn lighter elements, up to Fe.
e No fuel left: collapse of the core e Turbulent dynamo
* Neutrino-driven convection } * alpha-omega dynamo
dynamo
e Rotation
2
e B~ 10'°Ginspecial types of NSs, . Saturation at B~ pv2
“magnetars” 8
B? B2
e — ~D |n5|de — >> pc? right outside e But Rossby #> 1: need ~ 1 for
8 efficient dynamo
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Second: 10-100 secs

e Turbulence dies out, NS relaxes to an MHD equilibrium.
e Big Q.: What is the stable B-field structure of fluid stars?

e B-field must be a combination of toroidal and poloidal field,
otherwise unstable

e Pure toroidal is unstable to sausage instability:

 Pure poloidalis also unstable:
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N

L B | \\/
/ rendergast, Fawley & Ruderman,
| Braithwaite, Lander and Jones) |
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Stability! (?)

e Braithwaite & Spruit:

o

.
.

Large initial toroidal flux Small initial toroidal flux

e Similar toroidal and poloidal fluxes needed for stability
* Lander and Jones: any barotropic ( p( ,0)) B-field equilibrium is
unstable - need p( P, 6) @)

- —
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For stablility B-field must be linked

Lander & Jones

Lyutik
yutikov - Similar toroidal and poloidal fluxes needed

- Smaller volume for toroidal: toroidal field can be
locally >> poloidal (e.g. 10'® in magnetars)
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@ 100 secs crust freezes. - ..

TN =
Pedp A
 no shear stresses at freezing (was fluid) ﬁ-‘--»"";:f‘ ,_f —
w - - 4
* Electron MHD:
e After freezing ions form a fixed lattice
e electrons flow as fluid, J=-nev
e B-field frozen in’roJeIec’rrons:
C
E=-vxB=—xB, J=—VxB
ne 47
oB C V xB
— =——VXxX|—xB
ot dre n
o Electrons flow as an inertialess fluid
1 — — |
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MHD equilibrium is, generally,
not EMHD equilibrium

« MHD: J X B =Vp+ pVo v><J><B:_Vp><Vp

. EMHDZE:—VXB:iXB
ne

- -
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MHD equilibrium is, generally,
not EMHD equilibrium

« MHD: J X B =Vp+ pVo v><J><B:_Vp><Vp

'EMHDZE:—VXB:iXB T
ne

|

Non-barotropic EoS

= —————
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MHD equilibrium is, generally,
not EMHD equilibrium
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|
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MHD equilibrium is, generally,

not EMHD equilibrium

« MHD: J X B =Vp+ pVo v><J><B:_Vp><Vp
5 p p?
e EMHD: E=-vxB=—xB 1
ne I« B
X
: — V/ X =0
Freezing of MHD equilibrium n
[ results in non-equilibrium ] |
EMHD state mu-graéiént Non-barotropic EoS

-
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MHD equilibrium is, generally,
not EMHD equilibrium

« MHD: J X B =Vp+ pVo v><J><B:_Vp><Vp

p p?
J t
e EMHD: E=-vxB=—XxB
ne I« B
X
; — V/ X =0

Freezing of MHD equilibrium n
results in non-equilibrium |
EMHD state mu-gragtént Non-barotropic EoS

After freezing B-field starts evolving in the crust under EMHD conditions

= —————
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Eleciron MHD: Very heavy ions, very light
electrons WBe > W > Wp;

NS crusts

Turbulent cascade in collisionless plasmas (Solar wind, BH
magnetospheres, clusters of galaxies)
EkA Alfven

< » EMHD

—>

1/TL¢
sub-ion skin depth dynamics in reconnection layers
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Electron MHD

e Normal modes: whistlers (Fully non-linear!)
w = c*k?*| cos 9|w3/wg

Energy and helicity conserved
8;B2/2+ V- (ExB)=0 0;(A -B)=-V -(AxA)
E=VxBxB

e Time scales
2. 2 2
T = L7, ~ 100 yrs L ,01061_51 yT
c2wp 1 km

can vary from ~ 1yr for small patches near the surface, to
1Mys at the base of the crust for magnetars

E————— I ——
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Quo Vadis: are there stable/attractors
configurations in EMHD?

Stability of EMHD configurations

* RT-type instability: the system can decrease it energy
internally

e the energy principle - reaching a special state with
min E.

* MHD

e KH-type instability: energy of the system does not
change, re-distributed to “other” modes

e incompressible fluid - no special state

e furbulence - transferring energy to small scales and
dissipating

T — DE—
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EMHD: no energy principle

e Whistlers do no work (infinitely stiff lattice, no dynamo in
EMHD)

v-jxBxj-jxB=0.
« (inmupY "J X B #0

 There is no energy principle in EMHD: cannot change

energy internally
(cu — w*) /ldV B - (f X f*) =0 (even with varying density)

w = w” - neutrally stable

unless B - (f X f*) =0

— —
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Wood, Hollerbach, Lyutikov, 2014

KH-like instability in EMHD

density gradient
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Wood, Hollerbach, Lyutikov, 2014

KH-like instability in EMHD

\\“—/_Whistle{ mode

density gradient
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Wood, Hollerbach, Lyutikov, 2014

KH-like instability in EMHD

 \Whistler mode

density gradient
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Density-shear instability in electron MHD

* Driven both by B-field and density gradients
B’ n’

e driven by —_— > O

B n
* need Ln S LB

. ]-CHLB <1

e growth rate ~ Hall fime scale
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external
shear

1
Rotation within

the whistler mode

displacement
vector
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stretching by
external shear
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B (¢x¢) =0

rotation by
whistler

Shearing instability of EMHD
 Shear against rotation in whistler mode, v'<0

kalongB < 1/LJ_B

e circular - ellipfic - linear - instability
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Density-shear instability in NSs

Large B-field (fast evolution)
Right conditions for instability
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Density-shear instability in NSs

Large B-field (fast evolution)
Right conditions for instability

Monday, October 27, 14



Lyutikov 2014

Sidetrack: EMHD turbulence

e Unstable whistlers [launched in the crust: non-linear
Inferaction?¢

e Whistler inferaction is very different from Alfven waves
e Whistlers do not interact for

e co-linear propagation (including counter-
propagating case)
e k1 =k, (but propagating in different directions)

=
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MHD & EMHD turbulence

e MHD: counter-propagating Alfven wave packets interact
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MHD & EMHD turbulence

e MHD: counter-propagating Alfven wave packets interact

e EMHD: aligned-propagating wave packets do not interact, but spread

—————————
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MHD & EMHD turbulence

e MHD: counter-propagating Alfven wave packets interact

—————

e EMHD: aligned-propagating wave packets do not interact, but spread

EE—

e non-aligned wave packets do interact
via 3-wave, including with zero-mode

T — T ——
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(Weak) EMHD turbulence: different from

Lyutikov 2014

10F
on = 1r/ [IVm >1,2|2fk<—>1.25(k — k1 — k2)d(w — w1 — we)+ f E
0.8 ¥
2|Viok 2| fieo20(ky —k — ko)d(w) — w — we)] dkydks | !
fow1,2 = mngz — n(ny + nz) <§ 06; |
S 0.4+
e 3-way processes are important! 0l !
« simple decay favors highly oblique modes  ~— |
. Very stiff- atn X k6 02 04 kifk 08 10

 daughter modes have very different k, theta

 Non-universal - depends on the injection (coupled to MHD:
perp. driving, freezing of MHD - quasi-isofropic driving)

 Quasi-isotropic (given enough time) - resonance condition
couples very different angles and scales

e fransiently show anisotropy
e Remains weak
e -2spectrum
e May not reach steady state at all
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Quo Vadis: are there stable/attractors
configurations in EMHD?

Stability of EMHD configurations

e RT-type instabllity: the system can decrease it energy
intfernally

e the energy principle - reaching a state with min E.
e MHD

e KH-type instability: energy of the system does not
change, re-distributed to “other” modes

e incompressible fluid

e furbulence - transferring energy to small scales and
dissipating

e — R
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T — R
| |dealized plasma physics problem: NS crusts are different! |
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EMHD waves are dissipated by
plastic deformations of the crust
and production of bursts and flares
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How magnetars work:
Star-quakes vs Solar flares

e Thompson & Duncan: 100
msec ~ shear time scale

* magnetic field strong
enough can break the crust

e sudden unwinding

e dissipation in the
magnetosphere

e Needs crust to crack

e Lyutikov: 100 mu-sec ~
Alfven time over the
magnetosphere

e slow evolution of crustal fields
twists outside field

e kink instability
e dissipation in the magnetosphere

e Crust can respond plastically (or
can be infinitely rigid)
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. Star'quake (Thompson & Dunkan)

e Lorentz force J X B induced shear/strain in the NS crust.

e |f that strain is larger than crifical, the crust cracks

e Due to stratification - only rotation allowed.

e A plate rotates, twists the outside B-field - flarel

e Shear time scale, 100 msec (flare duration)

e Noft clear if crust allows cracking
(usually need shear velocity > sound
not satisfied in NS crusts).

\.“ '\ \‘,. ‘ l, ‘l ! y
Ny )

f,zl\—\-":". N\
Qv‘, :
W
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Assume the crust can crack

Levin & Lyutikov 2012: Even if plastic properties of the crust
allow cracking, the release of the elastic energy in
magnetic-induced crack is small
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Seismic energy releas.,L
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Seismic energy releas.,L
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Seismic energy releas.,L
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Seismic energy releas...L
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Seismic energy releas...L
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Seismic energy releas

- Rarefaction wave propagates
cr =4/c2 + v}

- finite velocity @ t=+0
-Seismic energy is released in
waves
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Seismic energy releas

- Rarefaction wave propagates
cr =4/c2 + v}

- finite velocity @ t=+0
-Seismic energy is released in
waves

¢ = Co(x) — (x — vt)¢ (0)
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Magnetic cracking
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Magnetic cracking

Monday, October 27, 14



Magnetic cracking
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Magnetic cracking
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Magnetic cracking

Monday, October 27, 14



Magnetic cracking

Additional condition: continuity of B-field.
~ Resistivity!

(0r —102) (0F — €202) ¢ = v30:0%¢

resistive wave shear wave
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Magnetic cracking

—_ (=]
=} N

Amplitude of shear wave is
negligibly small o \/ﬁ

_f)ispTécerﬁwent b2

Even if crust allows cracking, the post-crack evolution
proceeds on slow, resistive time-scale. Only B-field energy
within the crack is released (not within the shear wave-
affected volume).

2
Crack will evolve on resistive time scale A& oc e~ /(nt)
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Il. Solar-flare-like events (Lyutikov 2004-2004)

e Lyutikov 2006: 100 mu-sec ~ Alfven time over the
magnetosphere
* slow EMHD evolution of crustal fields twists outside field
e kink instability
o dissipation in the magnetosphere
e Crust can respond plastically (or can be infinitely rigid)

Bin time: 2.500 s

1.05x10°

B i v
(=]

0.1 selc

108

Tail with oscillations |

MMTWM

200usec
0 200 400
Time (s)

Count /sec

8px10* ox10* @9.5x10*

| ——
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Plastic deformations of the crust

o Atlow strain rates most materials respond plastically (pure Al)
e plasticity controlled by lattice defects

e Aflow temperatures both the density of defects and their
mobility is controlled by strain (Gillman)

2
pa = (g) and ) = cse_ecm/e

e ferminal strain in the lattice
Cerit -~ 10_4

n (42

e Reached within Maxwell time

-}
—
W

Gt%

o
—_
o

o
o
G

€, arbitrary units

tav =~ €ty =~ months — years va

T —— s,
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B-field in the magentosphere: twisting by
EMHD drift, resistive untwisting

e B-field in the crust evolves due to Hall drift
e Strain in the crust is plastically relieved - no cracking
o B-field outside is still twisted by the Hall drift

L2w2 L 2
_ P —1
TH — C2wB ~ 100 yrs (ﬁ) ,010[?15 yr

e Twist = current -> dissipation .
e |f resistive fime < Hall time: persistent emission
Lx ~ B3- observable only in magnetars £~ "Fleosd), 0<p<l
e |f resistive time > Hall: flares
o Small flares - medium B-fields
e Giant flares - only in magnetars

Lyutikov 2014
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Flares are magnetospheric instabilitiesSome
internal dissipation need

e Post-flare increase of surface emission (~ week): internal
dissipation (Shultz et al.)

e “Cut” the flux tube: Alfven pulse reflects, launches whistler

ulse 2
P WBC™

Ore = i— & Schrodinger eq.

1.0\ ﬂAMH
:1:0 | \]UUUNH 11

0 2 4 6 8§ 10

whistler’'s Green’s function

T —
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Whistler dissipation in the crust

e Strain created by whistler pulse increase with distance
20— :

10/

~10}

20 ]

e more coherent o’rxlcrger distances
e |n addition: amplitude grows (smaller speed: larger B)

0B o nt/?
3

e Deep dissipation due to plasticity, at p ~ 101()ng_ ,
heat diffuses up to the surface in ~ week

Monday, October 27, 14



CME model of giant flares

Lyutikov 2003, 2006

-

0~ lrad \\

\
\
|
1
Neutron star Reconnectlon at the
leadmg edge ,’
Ve1001ty of
expansion
Electric current

Reconnectlon at the

nt sheet

Relative RA (mas

Magnetic bubble/flux rope expands, CME is ejected
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Magnetically-trapped fireball

1.5j 15* ““““““““““““““““““ 3
10 10 |
05 05
m | i Q‘ |
% 00 & o0
—05 ~05
~10 ~10
_15: _15: ““““““““““““““““ 7
T15-10-0500 05 10 15 T15-10-05 00 05 10 15
z/R z/R

Trick: pressure, pressure derivative =0 on the surface

Lyutikov, submitted

— D
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Scattering and free-free emission of pair
plasma in super-strong B-field

* kpT < hwpg all particles on lowest Landau levels
B > aBg, a = hc/e’

e Pair plasma

Lyutikov, submitted

— —
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Scattering and free-free emission of pair
plasma in super-strong B-field

* kpT < hwpg all particles on lowest Landau levels
B > aBg, a = hc/e’

e Pair plasma

repulsive

Lyutikov, submitted

I —— T ——
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Scattering and free-free emission of pair
plasma in super-strong B-field

* kpT < hwpg all particles on lowest Landau levels
B > aBg, a = hc/e’

e Pair plasma

P —
—_—
>
repulsive
Lyutikov, submitted
— —
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Scattering and free-free emission of pair
plasma in super-strong B-field

* kpT < hwpg all particles on lowest Landau levels
B > aBg, a = hc/e’

e Pair plasma

P —

—
(—
—_—

>

repulsive
Lyutikov, submitted
— —
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Scattering and free-free emission of pair
plasma in super-strong B-field

* kpT < hwpg all particles on lowest Landau levels
B > aBg, a = hc/e’

e Pair plasma

P —
—
I
—_—
>
repulsive
Lyutikov, submitted
— —
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Scattering and free-free emission of pair
plasma in super-strong B-field

* kpT < hwpg all particles on lowest Landau levels
B > aBg, a = hc/e’

e Pair plasma

P E—
_—
2 2
p— I r~ e /(mev”)
»
repulsive
Lyutikov, submitted
— —
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Scattering and free-free emission of pair
plasma in super-strong B-field

* kpT < hwpg all particles on lowest Landau levels
B > aBg, a = hc/e’

e Pair plasma

—
—
pE— IrrveQ/(me’UQ) — rp ~vrfw, > e? /T
>
repulsive
Lyutikov, submitted
— —
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Scattering and free-free emission of pair
plasma in super-strong B-field

e kpT < hwp all particles on lowest Landau levels
B > aBg, a = hc/e’

e Pair plasma

‘::
pE— r~e?/(mev®) = rp ~vr/w, > e? /T
-
repulsive

In super-strong B-field collisions are more efficient

Collision of particles with the same e/m do not lead to dipolar emission

Lyutikov, submitted

— -
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Scattering and free-free emission of pair
plasma in super-strong B-field

e Attractive

- Only parallel acceleration (usually aperp dominates emission)
. 2 0

- Low frequency limit ~ w™ (usuallyw )

- Normalization ~ 3 orders lower

- Only O-mode emitted
Lyutikov, submitted

- —
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Scattering and free-free emission of pair
plasma in super-strong B-field

e Attractive

— —
R I R
>

- Only parallel acceleration (usually aperp dominates emission)
. 2 0

- Low frequency limit ~ w™ (usuallyw )

- Normalization ~ 3 orders lower

- Only O-mode emitted
Lyutikov, submitted

—— T ———
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Scattering and free-free emission of pair
plasma in super-strong B-field

e Attractive

> 1
< R
I 001"
3
e —)> = 1074
10—6,
_8‘ ‘ ‘ ‘ ‘
100.001 001 0.1 1 10

hw/T
- Only parallel acceleration (usually aperp dominates emission)

- Low frequency limit ~ w? (usuallywo)
- Normalization ~ 3 orders lower

- Only O-mode emitted
Lyutikov, submitted

1 — B |

Monday, October 27, 14



Scattering in B-field

Eo k Ex hardly move the electron

vg/c ~ (E/Bp)

’ oo R OT

2
Ex W
O ~ — oT
wpB

e E-mode can escape from deeper-in:

e smaller radius

e higher temperature

 Importance: topologically confined fireball, not a flux tube
connected to the surface. Consistent with the idea that
topologically-changing instabilities are responsible for flares.

Lyutikov, submitted
R ——— ————————
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Conclusion

Magnetar flares

e Magnetars’ bursts and flares are magnetospheric, not
crustal events

e magnetically stressed crust cannot crack efficiently
e crust responds plastically

e Flares: externally triggered events

e Some energy is dissipated inside the NS
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