(What do we really know about the) magnetic fields of disc galaxies?

> Andrew Fletcher Newcastle University

Lots of observations:

Fletcher et al. 2011

6 Chyzy & Buta 2007 32 38 \bigcap 36 Krause 2009 **INATION (J2000)** 34 32 28 26 12 42 30 30 15 00 RIGHT ASCENSION (J2000) 41 45

Beck et al. 2005

Lots of observations:

Taylor et al. 2009

Landecker et al. 2010

What are the magnetic properties of a typical disc galaxy?

An overview with **numbers and tables**

(Magnetism of diffuse ISM i.e. not molecular clouds)

Synchrotron radiation

Total intensity Degree of polarization Polarization angle Faraday

rotation

$$egin{aligned} &I_{
m syn} \propto B_{\perp}^{(1+\gamma)/2} & \mbox{observed} \ &ar{B}^2 & \ &p = p_0 rac{ar{B}^2}{(ar{B}^2+b^2)} & \mbox{observed} \ &\psi \cdot ar{B} = 0 & \ & \mbox{observed} \end{aligned}$$

$$RM = \frac{\Delta \psi}{\Delta(\lambda^2)} \qquad \text{observed}$$

theoretical

$$R = 0.81 \int_{\log} \frac{n_e}{\mathrm{cm}^{-3}} \frac{B_{\parallel}}{\mu \mathrm{G}} \frac{\mathrm{d}l}{\mathrm{pc}} \, \mathrm{rad} \, \mathrm{m}^{-2}$$

Magnetic field strength

Hummel's (1986) sample of 88 Sbc galaxies has a mean minimum-energy field of $\approx 8 \ \mu\text{G}$, using K = 100. Using the same value of K for the sample of 146 late-type galaxies by Fitt & Alexander (1993), one obtains a mean total minimum-energy field strength of $10 \pm 4 \ \mu\text{G}$.

Magnetic field strength

Compilation: Fletcher 2010

Average: $16 \pm 15 \mu$ G Excl. starburst: $12 \pm 6 \mu$ G

Average: $4 \pm 3 \mu G$ B_{ord}/B_{ran} 0.4 ±0.2

Field strength summary

Source	Total <i>B</i> [µG]	N	Notes
Hummel 1986	8	88	Sbc galaxies
Fitt & Alexander 1993	10 ± 4	146	Late type galaxies
Niklas 1995	9	74	
Fletcher 2010	12 ± 6	28	Resolved, 1990+

Total field $\approx 10 \,\mu\text{G}$ Ordered field $\approx 4 \,\mu\text{G}$ Random field $\approx 10 \,\mu\text{G}$

- I. Total magnetic field: 8-12 $\pm 6 \ \mu G$
- 2. Regular magnetic field: $4 \pm 3 \mu G$

Global distribution

Exponential scale length of $B \approx 1.2$ stellar radius

Exponential scale height of $B \approx 0.6$ & 3.6 kpc

Magnetic field everywhere

Vertical fields in disc are weak

Observed pitch angles

Mao et al. 2010

 $B_r \sim (0.2 - 0.4) B_{\phi}$

Modelling of mean field in ~10 galaxies requires no B_Z

 $\begin{array}{ll} \mbox{Observed RM} & B_z \sim 0.1 B_r \\ \mbox{in Milky Way} \end{array}$

Only consider B_r and B_{φ} initially.

- I. Total magnetic field: 8-16 $\pm 6 \ \mu G$
- 2. Regular magnetic field: $4 \pm 3 \mu G$
- 3. I_{syn} scale length $\approx 1/2$ optical radius
- 4. I_{syn} scale height ≈ 2 kpc
- 5. No holes: field everywhere

Large-scale B lines spirals $\tan p = \frac{B_r}{B_\theta} \neq 0$ pitch angle 41 08 30 00 **DECLINATION (J2000)** 07 30 00 06 30 00 05 30 12 51 02 00 50 58 56 54 52 50 48 46 44 **RIGHT ASCENSION (J2000)**

n

Fletcher et al. 201

Pitch angles: B & spiral arms

	pitch angle			
Galaxy	B inner	B outer	spiral arm	B field Ref.
IC 342	-20°±2	-16°±2	-19°±5	Krause et al. 1989
M31	-17°±4	-8°±3	-7°	Fletcher et al. 2004
M33	-48°±12	-42°±5	-26°±5	Tabatabaei et al. 2009
M5 I	-20°±1	-18°±1	-15°±8 → -10°±8	Fletcher et al. 2011
M81	-14°±7	-22°±5	- °→ - 7°	Krause et al. 1989
NGC 6946	-38°	'±12	-36°±7	Frick et al. 2000
Milky Way	-11.5°	0 °	-11.5° (n _e)	Van Eck et al. 2011

Pitch angles: not constant

Galaxy	amplitude of pitch angle variation	Ref.
IC 342	30°	Graeve & Beck 1988
M3 I	0 °	Fletcher et al. 2004
M33	30°	Tabatabaei et al. 2008
M51	30°	Patrikeev, Fletcher et al. 2006
M81	50°	Beck et al. 1985
NGC 1566	0 °	Ehle et al. 1996
NGC 6946	10°	Ehle & Beck 1993

Mean B-field structure

Galaxy	m=0	m=1	m=2	Ref.
IC 342	1	-	-	Krause et al. 1989
LMC	1	_	_	Gaensler et al. 2005
M31	1	0	0	Fletcher et al. 2004
M33	1	1	0.5	Tabatabaei et al. 2008
M51	1	0	0.5	Fletcher et al. 2011
M81	-	1	-	Krause et al. 1989
M81	0.5	1	-	Sokoloff et al. 1992
NGC 253	1	_	_	Heesen et al. 2009
NGC 1097	1	1	1	Beck et al. 2005
NGC 1365	1	1	1	Beck et al. 2005
NGC 4254	1	0.5	-	Chyży 2005
NGC 4414	1	0.5	0.5	Soida et al. 2002
NGC 6946	1	–	-	Ehle & Beck 1993

°C Λ 0 all spiral

Mean B-field structure

no dominant mode: 3

Simple mean-field dynamo I

Mean-field dynamo II

m=0 mode by far easiest to produce

- I. Total magnetic field: 8-16 \pm 6 μ G
- 2. Regular magnetic field: $4 \pm 3 \mu G$
- 3. I_{syn} scale length $\approx 1/2$ optical radius
- 4. I_{syn} scale height ≈ 2 kpc
- 5. No holes: field everywhere
- 6. Regular field lines are spiral $p \ge 10^{\circ}$
- 7. Axisymmetry (m=0) in disc fields
- 8. B pitch angles decrease with radius
- 9. B pitch angles can vary strongly in azimuth

The small-scale, random magnetic field

Ordered field $\approx 4 \ \mu G$ Random field $\approx 10 \ \mu G$

Reich et al. 2004

Wolleben et al. 2006, Testori et al. 2008, Sun et al. 2008

Correlation scale of b

Galaxy	Analysis	scale [pc]	Ref.
Milky Way	autocorrelation $I_{ m syn}$	90	Lazaryan & Shutenkov 1990
LMC	RM structure function	90	Gaensler et al. 2005
Milky Way	RM structure function	arm < 10 interarm 100	Haverkorn et al. 2006
M51	depolarization by $\sigma_{ extrm{RM}}$	50	Fletcher et al. 2011
M51	dispersion of pol. angles	65	Houde, Fletcher et al. 2013
Milky Way	power spectrum $I_{ m syn}$	< 20	lacobelli et al. 2013

"Observed" anisotropy of small-scale magnetic field

Galaxy	Source	Ref.
Milky Way	$\sigma_{ m RM} \propto { m RM}$	Brown & Taylor 2001
NGCs 1097 & 1365	I and PI pre- & post-shock	Beck et al. 2005
Milky Way	I, PI & RM in Galactic plane	Jaffe et al. 2008
M51	$B_{\rm ord} \ [PI] >> \overline{B} \ [RM]$	Fletcher et al. 2011
Milky Way	I, PI & RM whole sky	Jansson & Farrar 2012
M51	Dispersion of pol. angles	Houde et al. 2013
M33	$B_{\rm ord} \ [PI] >> \overline{B} \ [RM]$	Stepanov et al. 2013
M51	Depolarization modelling	Shneider et al. 2014

I : total intensity PI : polarized intensity $\sigma_{\rm RM}$: RM standard dviation

 \overline{RM} : mean rotation measure

Origin of anisotropy?

Compression (shocks, large & small)

Shear (differential rotation, streaming)

MHD turbulence $(k_{\perp} > k_{\parallel})$

- I. Total magnetic field: 8-16 $\pm 6 \ \mu G$
- 2. Regular magnetic field: $4 \pm 3 \mu G$
- 3. I_{syn} scale length $\approx 1/2$ optical radius
- 4. I_{syn} scale height ≈ 2 kpc
- 5. No holes: field everywhere
- 6. Regular field lines are spiral $p \ge 10^{\circ}$
- 7. Axisymmetry (m=0) in disc fields
- 8. B pitch angles decrease with radius
- 9. B pitch angles can vary strongly in azimuth
- 10. Correlation scale b: 10pc to 100pc
- II. Anisotropic b can be important

- I. Total magnetic field: 8-16 \pm 6 μ G
- 2. Regular magnetic field: $4 \pm 3 \mu G$
- 3. I_{syn} scale length $\approx 1/2$ optical radius
- 4. I_{syn} scale height ≈ 2 kpc
- 5. No holes: field everywhere
- 6. Regular field lines are spiral $p \ge 10^{\circ}$
- 7. Axisymmetry (m=0) in disc fields
- 8. B pitch angles decrease with radius
- 9. B pitch angles can vary strongly in azimuth
- 10. Correlation scale b: 10pc to 100pc
- II. Anisotropic b can be important

arm-interarm contrast in *I*, *PI*, *B*, *b*, etc. ? (known for M51, NGC1097, NGC1365, NGC6946)

magnetic arms and spiral arms; streaming, corotation, alignment, ... ? ("magnetic arms" in NGCs6946, 4254, 2997, M51, ...)

Galaxies evolve [rotation(t), SFR(t), spiral pattern(t), scale-height(t), ...]: how does B evolve?

What happens at large radius and height?

What is the relation (if any) between magnetic fields and star formation?

Most properties of small-scale magnetic field:
power spectrum?
turbulence and/or 'structure' (SNR, winds, ...)?
volume filling or intermittent?
origin: tangling or fluctuation dynamo?
helicity?

What is the relation (if any) between magnetic fields and star formation?

Connection of magnetic field to ISM:
which phase (cold, warm, hot)?
spiral arms and spiral field lines?
relative distributions of B, gas, cosmic rays?
connection to velocity field?

- I. Total magnetic field: 8-16 \pm 6 μ G
- 2. Regular magnetic field: $4 \pm 3 \mu G$
- 3. I_{syn} scale length $\approx 1/2$ optical radius
- 4. I_{syn} scale height ≈ 2 kpc
- 5. No holes: field everywhere
- 6. Regular field lines are spiral $p \ge 10^{\circ}$
- 7. Axisymmetry (m=0) in disc fields
- 8. B pitch angles decrease with radius
- 9. B pitch angles can vary strongly in azimuth
- 10. Correlation scale b: 10pc to 100pc
- II. Anisotropic b can be important