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PRELIMINARIES
MAIN ASSUMPTION

We approximate the cosmic plasma as a continuous medium, treating it as a fluid that is electrically
neutral. The first assumption, considering the collisionless nature of the plasma, necessitates the
presence of a magnetic field to confine particles within the system. The second assumption entails
averaging over time scales and spatial scales larger than the inverse of the plasma frequency and the
Debye length, respectively.

General references for MHD tutorials and textbooks
▶ Kulsrud, R. M. (2005). Plasma Physics for Astrophysics.
▶ Ogilvie, G. I. (2016).Lecture notes: Astrophysical fluid dynamics. arXiv e-prints,

Article arXiv:1604.03835, arXiv:1604.03835. https://doi.org/10.48550/arXiv.1604.03835

▶ Spruit, H. C. (2013).Essential Magnetohydrodynamics for Astrophysics. arXiv e-prints,
Article arXiv:1301.5572, arXiv:1301.5572. https://doi.org/10.48550/arXiv.1301.5572
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PRELIMINARIES
BASIC DEFINITIONS

Let us define macroscopic scalar parameters of the jet fluid:

▶ number density n,
▶ pressure p,
▶ internal energy density (including the rest-mass energy density) ϵ,
▶ enthalpy w = ϵ+ p.

All of these quantities are measured in the rest frame of the fluid, i.e. per proper unite volume, and
therefore should be called “the proper number density”, “the proper pressure”, etc. (“primitive variables”).
Note that the proper specific internal energy ε is defined as

ϵ = mnc2 + ε so that w = mnc2 + ε+ p (1)

where the proper (rest) mass density is mn for a mass of a fluid particle m.

The four-velocity of the fluid is uµ = (Γ, Γβk), where v⃗ ≡ (βk c) is the bulk 3-velocity, Γ ≡ (1 − β2)−1/2 is
the bulk Lorentz factor, and the indices µ = 0, 1, 2, 3 and k = 1, 2, 3. In the fluid rest frame one has
u′µ = (1, 0, 0, 0).
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PRELIMINARIES
STRESS-ENERGY TENSOR

For an ideal fluid (no energy dissipation, etc.), and in the absence of external forces, the fluid
stress-energy tensor is diagonal in the fluid rest frame, namely

T µν = w uµuν − p gµν , (2)

where gµν is the metric tensor of the Minkowski spacetime, with the (+−−−) signature adopted here.

The particle flux four-vector is simply
Dµ = n uµ . (3)

The following individual components of the stress-energy tensor and particle flux vector can be identified
with, respectively,
▶ the total energy density T 00 = w Γ2 − p =

(
ϵ+ pβ2

)
Γ2

▶ the energy flux density T 0k = w Γ2 βk

▶ the momentum flux density T ik = w Γ2 β iβk + p δik

▶ the particle number density D0 = n u0 = n Γ

▶ the particle flux density Dk = n uk = n Γβk
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IDEAL FLUID
CONSERVATION LAWS

The local conservation laws in relativistic ideal hydrodynamics are obtained from vanishing
divergence of the stress-energy tensor of the fluid,

∇µ T µν = 0 (4)

(energy-momentum conservation), and of the particle flux,

∇µDµ = 0 (5)

(particle conservation), where ∇µ ≡ ∂
∂xµ = (1

c∂t ,∇k) is the covariant differential operator.
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IDEAL FLUID
IN CARTESIAN COORDINATES

The conservation laws ∇µDµ and ∇µT µν = 0, in Cartesian coordinates, become

∂t(nΓ) + ∂i(nΓβ ic) = 0 (6)

∂t(wΓ2 − p) + ∂i(wΓ2β ic) = 0 (7)

∂t(wΓ2βk) + ∂i(wΓ2β iβk c + pcδik) = 0 (8)

Let us now define the following quantities measured in the laboratory frame:
▶ the rest mass density ρ ≡ mD0 = mnΓ
▶ the total energy density U ≡ T 00 = wΓ2 − p
▶ the momentum density vector P⃗ ≡ T 0k/c = wΓ2β⃗/c

(note that ρ ̸= mn). With such, the conservations laws become

∂tρ+ ∂i(ρv i) = 0 (9)

∂tU + ∂i(Uv i + pv i) = 0 (10)

∂tPk + ∂i(Pk v i + pδik) = 0 (11)
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IDEAL FLUID
NEWTONIAN QUANTITIES

In the non-relativistic limit, it is convinient to subtract the rest-mass density from the total energy density,
Ũ ≡ U − ρc2, noting that this will not affect the energy conservation law, namely ∂t Ũ + ∂i(Ũv i + pv i) = 0.
With such, Newtonian counterparts for the quantities ρ, Ũ, and P⃗, can be found by series expansions
for non-relativistic bulk velocity β → 0 (and so Γ ≃ 1 + 1

2β
2 and Γ2 ≃ 1 + β2), assuming moreover “cold

plasma” mnc2 ≫ ε+ p in the momentum equation, namely

ρ = mn Γ → mn (1 +
1
2
β2) +O(β4) ≃ mn (12)

Ũ = ρc2(Γ− 1) + εΓ2 + p(Γ2 − 1) → 1
2
ρc2β2 + ε(1 + β2) + pβ2 +O(β4)

≃ 1
2
ρv2 + ε (13)

P⃗ = (mnc2 + ε+ p)Γ2β⃗/c ≃ mnc2Γ2β⃗/c = ρc2Γβ⃗/c → ρc2β⃗/c +O(β3)

≃ ρv⃗ (in the momentum equation only!) (14)
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IDEAL FLUID
EULER CONSERVATION LAWS

All in all, the set of equations describing non-relativistic ideal hydrodynamics, can therefore be written
in the form of the Euler conservation laws:

mass ∂tρ+ ∂i(ρv i) = 0 (15)

energy ∂t(
1
2
ρv2 + ε) + ∂i(

1
2
ρv2 + ε+ p)v i = 0 (16)

momentum ∂t(ρvk) + ∂i(ρvk v i + pδik) = 0 (17)

Note the general form of these equation “∂t stuff + ∇⃗ · flux of stuff = 0”, which may be therefore
expressed in the integral forms, by integrating over volume V and using the Gauss theorem∫ (

∇⃗ · F⃗
)

dV =

∫
∂V

F⃗ · d S⃗ (18)

where the volume’s surface ∂V ≡ S with the outward-pointing normal unit vector n̂ for each differential
surface, d S⃗ = n̂ dS.
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IDEAL FLUID
CONVECTIVE DERIVATIVE

Now, let us re-write the mass conservation law, ∂tρ+ ∂i(ρv i) = 0, as

(∂t + v i∂i)ρ = −ρ ∂iv i (19)

and denote the convective derivative (‘comoving derivative’, ‘material derivative’, ‘substantial
derivative’,...) as

Dt ≡ ∂t + v i∂i (20)

which is measuring the changes of a quantity as it follows a fluid flow:

∆f = f (t +∆t , x⃗ + v⃗∆t)− f (t , x⃗)

≃
[
f (t , x⃗) + ∆t ∂t f (t , x⃗) + ∆t v⃗ · ∇⃗f (t , x⃗)

]
− f (t , x⃗)

= ∆t
(
∂t + v⃗ · ∇⃗

)
f (t , x⃗) (21)

→ dt f ≡ lim
∆t→0

∆f
∆t

=
(
∂t + v⃗ · ∇⃗

)
f (t , x⃗) (22)
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IDEAL FLUID
LAGRANGIAN FORM

Accordingly, all the combining and re-arranged Euler conservation laws may be written in the compact
Lagrangian form

mass Dt ρ = −ρ ∇⃗ · v⃗ (23)

energy Dt

(
ε

ρ

)
= −p

ρ
∇⃗ · v⃗ (24)

momentum Dt v⃗ = −1
ρ
∇⃗p (25)
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CONTINUITY EQUATION
VARIOUS FORMULATIONS

Let’s look at various form form of the law for the conservation of fluid mass, aka the continuity equation:

Euler ∂tρ+ ∇⃗ · (ρv⃗) = 0 (26)

Gauss ∂t

∫
dV ρ =

∫
∂V

d S⃗ · (ρv⃗) (27)

Lagrange
1
ρ

Dtρ = −∇⃗ · v⃗ (28)

▶ the first one says that the time derivative of a mass density at a given place is balanced by the
divergence of the mass density flux

▶ the second one is telling us that the variation of mass in the volume V must be entirely due to the -in
or -outflow of mass through the volume’s surface ∂V ≡ S

▶ the third one is telling us that the relative change in the element of a fluid along the flow, Dtρ
ρ , is equal

to the fluid compression −∇⃗ · v⃗ (“converging/diverging flow”).
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ENERGY EQUATION
FUNDAMENTAL THERMODYNAMIC RELATION

Let us recall the fundamental thermodynamic relation (i.e., mathematical summation of the first and
second law of thermodynamics):

dU = T dS − p dV (29)

where T is the temperature, U = εV is the internal energy of a fluid, and S is the fluid entropy. Noting
that ρ = M/V , where M is the total mass within the volume V , one therefore has U = εM/ρ, and hence,
assuming M is constant,

d
(
ε

ρ

)
= T ds − p d

(
1
ρ

)
(30)

where s ≡ S/M is the specific entropy, i.e. fluid entropy per unit mass.
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ENERGY EQUATION
ENTROPY CONSERVATION

Now, let us note that d(1/ρ) = −ρ−2dρ, replace the total derivative with the convective derivative,
d → Dt , and recall the continuity equation in the Lagrangian form Dtρ = −ρ ∇⃗ · v⃗ ; with all of such we
arrive at

Dt

(
ε

ρ

)
= T Dts − p

ρ
∇⃗ · v⃗ (31)

This, when compared with the energy equation in the Lagrangian form, implies that

Dt s = 0 (32)

i.e., that the specific entropy is conserved along the flow (that is, following a volume element along
the flow) or, in other words, that the ideal fluid is adiabatic.
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ENERGY EQUATION
EQUATION OF STATE

Let us introduce the equation of state as the relation

p = (γ̂ − 1)ε (33)

where γ̂ is the adiabatic index, and recall again the energy equation in the Lagrangian form
Dt

(
ε
ρ

)
= −p

ρ ∇⃗ · v⃗ . From there it follows that

Dt

(
p
ρ

)
= −(γ̂ − 1)

p
ρ
∇⃗ · v⃗ = (γ̂ − 1)

p
ρ2 Dtρ (34)

(assuming that γ̂ is constant along the flow!), where we used again the continuity equation. This is
equivalent to

Dt ln p = γ̂ Dt ln ρ (35)

meaning that

Dt

(
p
ργ̂

)
= 0 (36)
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ENERGY EQUATION
VARIOUS FORMULATION

We have therefore equivalent equations

energy conservation Dt

(
ε

ρ

)
= −p

ρ
∇⃗ · v⃗ (37)

+ thermodynamic relation Dt s = 0 (38)

+ equation of state Dt

(
p
ργ̂

)
= 0 (39)
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ENERGY EQUATION
POLYTROPIC FLUID

Note that the fundamental thermodynamic relation with the specific entropy conserved, ds = 0, reads as

d
(
ε

ρ

)
= −p d

(
1
ρ

)
(40)

which, for the equation of state p = (γ̂ − 1)ε, may be re-arranged as

d ln p = γ̂ d ln ρ (41)

meaning
p = K ργ̂ (42)

where K is the integration constant (for an adiabatic process). The above is called the polytropic
equation of state. What is therefore a meaning of the statement Dt(p/ργ̂) ≡ DtK = 0? And how does it
relate to the specific entropy conservation Dts = 0?
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ENERGY EQUATION
FORMS OF ENTROPY

Recall that ε = p/(γ̂ − 1) = Kργ̂/(γ̂ − 1), so that, assuming K is a variable,

d ln ε = γ̂ d ln ρ+ d lnK (43)

Moreover, since p = (ρ/m)kT , the fluid temperature is

T =
m
k

p
ρ

(44)

Using these, the fundamental thermodynamic relation d(ε/ρ) = T ds − p d(1/ρ) can be re-written as

m
k

ds =
1

γ̂ − 1
d lnK (45)

meaning that K is, in fact, a form of entropy,

s = s0 +
k

m (γ̂ − 1)
lnK (46)

and hence the conditions Dt s = 0 and Dt (p/ργ̂) = 0 are indeed equivalent.
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EQUATION OF MOTION
INVISCID FLUID

Finally, let us look again at the momentum conservation equation in the Lagrangian form,

ρDt v⃗ = −∇⃗p (47)

which is clearly the equation of motion (recall the Newton’s m dt v⃗ = F⃗ ), or the Navier-Stokes equation
for an ideal inviscid fluid. It says that the element of a fluid will experience acceleration along the flow
due to a force being the pressure gradient, F⃗ = −∇⃗p. Note that any other force, such as gravity, or a
Lorenz force, can therefore be incorporated as an additional term on the right-hand side of this equation.
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Part II

MAGNETOHYDRODYNAMICS
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BASICS
ELECTROMAGNETIC POTENTIAL, TENSOR, AND CURRENT

Let us define the electromagnetic potential

Aµ = (φ, A⃗) (48)

such that the magnetic field intensity B⃗ = ∇⃗ × A⃗ and the electric field E⃗ = −∇⃗φ− 1
c∂t A⃗. The

electromagnetic field tensor is
Fµν = ∇µAν −∇νAµ (49)

so that F0k = −Ek and F ik = −εikmBm. Note that Fµν = −Fνµ, and also the invariants
FµνFµν = 2 (B2 − E2) = inv , along with εαβγδFαβFγδ = −8 (E⃗ · B⃗) = inv .

We moreover introduce the relativistic four-vector electromagnetic current as

J µ = (c Q, j⃗) (50)

where Q is the electric charge density, and j⃗ is the electric current density vector.
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BASICS
MAXWELL’S EQUATIONS

Maxwell’s equations can now be formulated as

∇νFµν = −4π
c
J µ (51)

ϵαβµν∇βFµν = 0 (52)

In the Cartesian coordinates they obtain the familiar forms:

Amper ∇⃗ × B⃗ =
4π
c

j⃗ +
1
c
∂t E⃗ (53)

Faraday ∇⃗ × E⃗ = −1
c
∂t B⃗ (54)

Gauss ∇⃗ · B⃗ = 0 (55)

Poisson ∇⃗ · E⃗ = 4π Q (56)

(here we use strictly Gauss units!!!).
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BASICS
STRESS-ENERGY TENSOR OF THE EM FIELD

The stress-energy tensor of the EM field is defined as

T µν
EM = − 1

4π
FµαFν

α +
1

16π
gµν FαβFαβ , (57)

The following individual components of this stress-energy tensor can be identified with

▶ the EM field energy density T 00
EM ≡ UEM = 1

8π (E2 + B2)

▶ the EM field energy density (Poynting) flux cT i0
EM ≡ P i

EM = c
4π (E⃗ × B⃗)i

▶ the EM field momentum flux density T ik
EM ≡ Πik

EM = − 1
4π

(
E iEk + BiBk

)
+ 1

8π

(
E2 + B2

)
δik

Note the two components in the momentum flux density (“Maxwell stress”) tensor, corresponding to the
tension and pressure of the field lines, respectively. Also, T µν

EM = T νµ
EM.
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INTERLUDE
EM FIELD LORENTZ TRANSFORMATIONS I

Recall the Lorentz transformations of four-vectors and tensors:

J ′µ = Λµ
α J α , F ′µν = Λµ

αΛ
ν
β Fαβ (58)

where the Lorentz transformation matrix

Λµ
α =


Γ −Γβx −Γβy −Γβz

−Γβx 1 + Γ−1
β2 β2

x
Γ−1
β2 βxβy

Γ−1
β2 βxβz

−Γβy
Γ−1
β2 βxβy 1 + Γ−1

β2 β2
y

Γ−1
β2 βyβz

−Γβz
Γ−1
β2 βxβz

Γ−1
β2 βyβz 1 + Γ−1

β2 β2
z

 (59)

Keep in mind that

Fαβ =


0 −Ex −Ey −Ez

Ex 0 −Bz By

Ey Bz 0 −Bx

Ez −By Bx 0

 (60)
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INTERLUDE
EM FIELD LORENTZ TRANSFORMATIONS II

It therefore follows that the relativistic transformation of the electric and magnetic field components are

E⃗ ′ = Γ
(

E⃗ + β⃗ × B⃗
)
− Γ− 1

β2 β⃗
(
β⃗ · E⃗

)
(61)

B⃗′ = Γ
(

B⃗ − β⃗ × E⃗
)
− Γ− 1

β2 β⃗
(
β⃗ · B⃗

)
(62)

Note that Lorentz transformations effectively “mix” the electric and magnetic field components.

As for the electric charge density and currents, we have

cQ′ = Γ cQ − Γ
(
β⃗ · j⃗

)
(63)

j⃗ ′ = j⃗ − Γ cQ β⃗ +
Γ− 1
β2 β⃗

(
β⃗ · j⃗

)
(64)
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INTERLUDE
CLASSICAL OHM’S LAW

According to the classical Ohm’s law, in the rest frame of a fluid the electric current is parallel to the
electric field,

j⃗ ′ = σ E⃗ ′ (65)

where σ is the fluid conductivity. Taking now the transformation of the EM field and currents in the
non-relativistic regime, i.e., ignoring terms O(β2) or higher, namely

E⃗ ′ ≃ E⃗ + β⃗ × B⃗ , B⃗′ ≃ B⃗ − β⃗ × E⃗ , j⃗ ′ ≃ j⃗ − v⃗Q (66)

one therefore obtains
1
σ

(⃗
j − v⃗Q

)
≃ E⃗ + β⃗ × B⃗ (67)

meaning E⃗ ≃ −β⃗ × B⃗ in the perfect conductivity limit, σ−1 → 0.

The essential statement here is, in fact, that the electric field must vanish in the fluid rest frame, if
only the conductivity is infinite,

E⃗ ′ = 0 if σ−1 → 0 (68)

because in this limit charge carriers immediately rearrange to cancel all the rest-frame electric fields.
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INTERLUDE
COVARIANT FORM OF THE IDEAL OHM’S LAW

Assuming therefore the perfect conductivity limit, σ−1 → 0, the covariant form of the ideal Ohm’s law is

Fµνuν = 0 (69)

This is not a full relativistic generalization of the Ohm’s law, but only the covariant form assuring that, in
the perfect conductivity limit, electric field is vanishing in the fluid rest frame. Indeed, note that in the fluid
rest frame F ′µνu′

ν = (0, E⃗ ′), while in general (uµ) = (Γ, Γβk), so that for the space components

F iνuν = 0 → Γ
(

E⃗ + β⃗ × B⃗
)
= 0 (70)

while the time component gives the consistency condition which is then automatically satisfied, namely

F0νuν = 0 → Γ
(

E⃗ · β⃗
)
= 0 (71)

Note that for an ideal electric field E⃗ = −β⃗ × B⃗, the Poynting flux becomes

P⃗EM =
c

4π

(
E⃗ × B⃗

)
=

c
4π

[(
β⃗ B2 − B⃗ (β⃗ · B⃗

)]
(72)
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INTERLUDE
POYNTING THEOREM

Recall the identity which follows from the Maxwell’s equations for given definitions of T µν
EM and Fµν ,

∇µT µν
EM = −1

c
Fνα Jα (73)

This relation describes the exchange of energy and momentum between the EM field and a matter, with
the matter entering only through the 4-current Jα.

Let’s consider first the time component of this identity, and in particular its both sides

∇µT µ0
EM =

1
c
∂t UEM + ∇⃗ · 1

c
P⃗EM and −1

c
F0α Jα = −1

c
j⃗ · E⃗ (74)

respectively. We have therefore
−∂t UEM = ∇⃗ · P⃗EM + j⃗ · E⃗ (75)

i.e. the Poynting theorem, which can be also expressed in the integral form

−dt

∫
UEM dV =

∫
∂V

P⃗EM · d S⃗ +

∫
j⃗ · E⃗ dV (76)

The rate of changes of the EM field energy in a given volume is equal to the EM energy flowing
in/out of the volume, minus the EM energy dissipated within this volume at the rate j⃗ · E⃗ .
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INTERLUDE
LORENTZ FORCE

Now let’s consider the space component of the ∇µT µν
EM = −1

c F
να Jα identity, for which the both sides are

∇µT µk
EM =

1
c2 ∂tPk

EM +∇i Π
ki
EM and −1

c
F iα Jα = −Q E⃗ − 1

c
j⃗ × B⃗ (77)

respectively. From this we obtain the equivalent of the momentum equation for the EM field, namely

1
c2 ∂t P⃗EM + ∇⃗ · Π̂EM = −F⃗L (78)

where the Lorentz force density is

F⃗L = Q E⃗ +
1
c

j⃗ × B⃗ (79)

This is the force exerted by the EM field on the fluid!

32 / 45



IDEAL MHD
RELATIVISTIC IDEAL MHD

The standard covariant formulation of relativistic ideal magnetohydrodynamics (MHD), consists of

total energy-momentum conservation ∇µ

(
T µν + T µν

EM
)
= 0 (80)

particle number conservation ∇µDµ = 0 (81)

Maxwell’s equations (inhomogeneous) ∇νFµν = −4π
c
J µ (82)

Maxwell’s equations (homogeneous) ϵαβµν∇βFµν = 0 (83)

ideal Ohm’s law Fµνuν = 0 (84)

Note that the charge conservation, ∇µ J µ = 0, is not an independent equation in this framework, but it
follows automatically from Maxwell’s equations, since ∇µ∇νFµν ≡ 0 for Fµν = −Fνµ.

MHD equations describe dynamics of a conducting fluid interacting with electromagnetic field.
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IDEAL MHD
DISPLACEMENT CURRENT

Orders-of-magnitude analysis of the Faraday law implies

∇⃗ × E⃗ = −1
c
∂t B⃗ → E

ℓ
∼ B v

c ℓ
→ E ∼ v

c
B (85)

where ℓ is the characteristic spatial scale, and the dynamical timescale τ ∼ ℓ/v for the fluid velocity v .
Hence, the “displacement current”

1
c
∂t E⃗ → E v

c ℓ
∼
(v

c

)2 B
ℓ

(86)

This implies in particular that, in the non-relativistic regime v/c ≪ 1, currents dominate the
dynamics of the EM field, since through the Amper’s law

∇⃗ × B⃗ =
4π
c

j⃗ +
1
c
∂t E⃗ → B

ℓ
∼ j

c
≫

(v
c

)2 B
ℓ

(87)

In the non-relativistic regime one can therefore neglect the O(β2)-order displacement current c−1∂t E⃗ .
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IDEAL MHD
ELECTRIC CHARGE DENSITY

Similarly, orders-of-magnitude analysis of the Poisson law implies

∇⃗ · E⃗ = 4πQ → E
ℓ
∼ Q (88)

and therefore

QE⃗ → E2

ℓ
∼
(v

c

)2 B2

ℓ
(89)

This implies in particular that, in the non-relativistic regime v/c ≪ 1, currents also dominate the
force exerted by the EM field on the fluid, since

1
c

j⃗ × B⃗ → j B
c

∼ B2

ℓ
≫

(v
c

)2 B2

ℓ
(90)

In the non-relativistic regime one can therefore neglect the O(β2)-order term QE⃗ in the Lorentz force.
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IDEAL MHD
MAGNETIC INDUCTION EQUATION

Let us therefore simplify Maxwell’s equations by ignoring the displacement current, c−1∂t E⃗ = 0, as well
as by setting charge density to zero, Q = 0, both of which assumptions are justified in the non-relativistic
regime, as elaborated above. One then has in particular

∇⃗ × B⃗ =
4π
c

j⃗ , ∇⃗ × E⃗ = −1
c
∂t B⃗ , ∇⃗ · B⃗ = ∇⃗ · E⃗ = 0 (91)

We also recall the non-relativistic Ohm’s law σ−1⃗j = E⃗ + β⃗ × B⃗. By combining the above relations, and
noting that ∇⃗ × (∇⃗ × B⃗) = −∇⃗2B⃗, one obtains the equation governing an evolution of the magnetic field,
aka the magnetic induction equation,

∂t B⃗ = ∇⃗ ×
(

v⃗ × B⃗
)
+ η ∇⃗2B⃗ (92)

where the magnetic diffusivity is

η ≡ c2

4πσ
(93)

The first term on the right-hand side of this equation described advection of the magnetic field with the
fluid, while the second term corresponds to the diffusion of the magnetic field out of the system.
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IDEAL MHD
MAGNETIC REYNOLDS NUMBER

Order-of-magnitude analysis of the two terms on the right-hand side of the magnetic induction equation:

∇⃗ ×
(

v⃗ × B⃗
)

→ B v
ℓ

≡ B
τadv

→ τadv =
ℓ

v
(94)

η ∇⃗2B⃗ → B η

ℓ2 ≡ B
τdiff

→ τdiff =
ℓ2

η
(95)

where ℓ is the characteristic spatial scale of the system. The magnetic Reynolds number is a ratio of
the two corresponding timescales for the field advection and diffusion,

RM ≡ τdiff

τadv
=

ℓ v
η

(96)

See that the regime of a high conductivity, σ−1 → 0, implies η → 0, meaning RM → ∞, or in other words
τdiff ≫ τadv. That is, in the perfect conductivity limit, diffusion of the magnetic field out of the
system, is negligible with respect to the advection of the magnetic field with the fluid.

In the case of the static system v = 0, the typical velocity that occurs in a magnetized fluid should be
Alfvén velocity. With such, the magnetic Reynolds number is referred to as the Lundquist number .
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IDEAL MHD
ALFVEN’S THEOREM

Assuming therefore perfect conductivity and non-relativistic bulk velocities, we have

∂t B⃗ = ∇⃗ ×
(

v⃗ × B⃗
)

(97)

which, keeping in mind the Gauss’s law for magnetism ∇⃗ · B⃗ = 0, implies the magnetic flux
conservation, namely that the magnetic flux ϕM =

∫
B⃗ · d S⃗ through a surface S moving with the bulk

fluid velocity, is constant, Dt ϕM = 0 (Alfven’s theorem, or the “frozen-in flux” theorem).

An another way of looking at it, is to use this simplified induction equation (with no diffusion term)
combined with the continuity (mass conservation) equation ∂tρ+ ∇⃗ · (ρv⃗) = 0, yielding

Dt
B⃗
ρ
=

(
B⃗
ρ
· ∇⃗

)
v⃗ (98)

which implies the field line conservation, namely that changes of magnetic field per unit mass, B/ρ,
along a fluid trajectory, are due only to the stretching or orientation of field lines caused by fluid motion.
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IDEAL MHD
TOTAL ENERGY CONSERVATION

Let us now consider the time component of the total energy-momentum conservation, i.e., the energy
equation ∇µ (T µ0 + T µ0

EM) = 0. In Cartesian coordinates it can be written in the conservation form as

∂t (U + UEM) + ∇⃗ ·
[
(U + p)v⃗ + P⃗EM

]
= 0 (99)

where, as defined previously, the fluid total energy density U = wΓ2 − p, the EM field energy density
UEM = (E2 + B2)/8π, and the Poynting flux P⃗EM = c (E⃗ × B⃗)/4π.

Using the Poynting theorem ∂t UEM + ∇⃗ · P⃗EM = −⃗j · E⃗ , the above is equivalent to

∂t U + ∇⃗ · (U + p)v⃗ = j⃗ · E⃗ (100)

However, for an ideal fluid, there can be no energy dissipation, including any conversion of EM
energy into the internal energy of the fluid, so j⃗ · E⃗ must vanish! In other words, in the ideal MHD
regime, the conservation law for the total energy density reduces to that of the fluid alone.

39 / 45



IDEAL MHD
OHMIC DISSIPATION

Recall first that for ideal (non-dissipative) and non-relativistic fluid itself, the energy conservation
∂t Ũ + ∇⃗ · (Ũ + p)v⃗ = 0 is equivalent to the specific entropy conservation, Dts = 0.

So we see that j⃗ · E⃗ ̸= 0 would imply Dts ̸= 0...

Now, as an example, consider the non-relativistic regime, where E⃗ ≃ σ−1 j⃗ − β⃗ × B⃗, and therefore

j⃗ · E⃗ ≃ 1
σ

j2 − j⃗ ·
(
β⃗ × B⃗

)
σ−1→0−−−−→ β⃗ · F⃗L = 0 (101)

That is, in the regime of perfect conductivity (σ−1 → 0), vanishing of the product j⃗ · E⃗ — meaning that
E⃗ ⊥ j⃗ — is guaranteed self-consistently. This is because, in ideal MHD, the electric field in the fluid rest
frame vanishes. As a result, the EM field does no irreversible work on the fluid; the Lorentz force, which in
this regime has only a magnetic component, F⃗L = c−1⃗j × B⃗, can alter the fluid’s bulk motion or
redistribute internal energy, but it does not contribute to heating or entropy production.

Only when resistivity is finite, σ ̸= 0, allowing for an electric field component parallel to the current E⃗ ∥ j⃗ ,
can Ohmic dissipation occur, with j⃗ · E⃗ > 0. That is, non-zero plasma resistivity provides a dissipative sink
for magnetic field energy: as magnetic energy diffuses out of the system, it decreases over time,
and the entire loss is converted into Ohmic heating of the fluid, with ρT Dts = σ−1 j2.
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IDEAL MHD
TOTAL MOMENTUM CONSERVATION

In an analogous way, when considering space components of the total energy-momentum conservation,
i.e., the momentum equation ∇µ (T µk + T µk

EM) = 0, we obtain the conservation form

∂t

(
Pk +

1
c2 Pk

EM

)
+ ∂i

(
Pk v i + pδik +Πki

EM
)
= 0 (102)

where the Maxwell stress tensor Πik
EM = − 1

4π

(
E iEk + BiBk

)
+ 1

8π

(
E2 + B2

)
δik . Using the momentum

equation for EM field, the above is equivalent to

∂tPk + ∂i
(
Pk v i + pδik) = F k

L (103)

From here it follows that the EM field is acting dynamically on the fluid through the Lorentz force F⃗L.
This leads to changes in the fluid’s bulk kinetic energy and/or pressure, but does not increase its
entropy.
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IDEAL MHD
MAGNETIC TENSION AND PRESSURE

Neglecting the displacement current (c−1∂t E⃗ = 0) and assuming electric neutrality of a fluid (Q = 0) —
both of which are justified in the non-relativistic regime, as elaborated above — the Lorentz force
becomes

F⃗L =
1
c

j⃗ × B⃗ =
1

4π

(
∇⃗ × B⃗

)
× B⃗ =

=
1

4π
(B⃗ · ∇⃗)B⃗ − ∇⃗

(
B2

8π

)
. (104)

The first term on the right-hand side represents the magnetic tension force, which acts along
curved field lines ("tension pulls"), while the second term corresponds to the magnetic pressure
gradient, which acts perpendicular to field lines where magnetic pressure varies ("pressure
pushes").
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IDEAL MHD
IDEAL NON-RELATIVISTIC MHD: MAIN ASSUMPTIONS

Let’s clarify the main assumptions behind “non-relativistic ideal MHD approximation”:

▶ non-relativistic bulk velocities β ≪ 1

→ ∂t E⃗ ≪ 4π⃗j and QE⃗ ≪ c−1 j⃗ × B⃗

→ j⃗ ≃ (c/4π) (∇⃗ × B⃗) and F⃗L ≃ c−1 j⃗ × B⃗

▶ perfect conductivity regime σ−1 → 0

→ E⃗ ′ = 0

→ E⃗ ≃ −β⃗ × B⃗ and j⃗ · E⃗ = 0

▶ both β ≪ 1 and σ−1 → 0

→ RM ≫ 1

→ ∂t B⃗ ≃ ∇⃗ ×
(

v⃗ × B⃗
)
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IDEAL MHD
IDEAL NON-RELATIVISTIC MHD: EQUATIONS

All in all, the set of non-relativistic ideal (perfect conductivity) MHD equations for a polytropic fluid
reads as

∂t ρ = −∇⃗(ρv⃗) (105)

Dt

(
p
ργ̂

)
= 0 (106)

ρDt v⃗ = −∇⃗p +
1

4π

(
∇⃗ × B⃗

)
× B⃗ (107)

∂t B⃗ = ∇⃗ ×
(

v⃗ × B⃗
)

(108)

with the boundary/initial condition ∇⃗ · B⃗ = 0.

In the ideal non-relativistic MHD, electric field becomes a secondary quantity!
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IDEAL MHD
IDEAL NON-RELATIVISTIC MHD: CONSERVATION FORM

The above system of ideal non-relativistic MHD equations, can be cast in the conservation form, where
we typically ignore the electric terms in the Maxwell stress tensor Π̂EM and in the field energy density
UEM, as well as the time variation of the Poynting flux ∂t P⃗EM. As a result, we obtain:

∂t ρ + ∂i
[
ρv i] = 0 (109)

∂t

(
1
2
ρv2 + ε+

1
8π

B2
)

+ ∂i

[(
1
2
ρv2 + ε+ p +

1
8π

B2
)

v i − 1
4π

vjBiBj
]
= 0 (110)

∂t
(
ρvk) + ∂i

[
ρv ivk +

(
p +

1
8π

B2
)
δik − 1

4π
BiBk

]
= 0 (111)

∂t Bk + ∂i
[
v iBk − vk Bi] = 0 (112)
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