Gamma-ray emission from pulsars and pulsar wind nebulae

Bronisław Rudak CAMK PAN

KRAC, 20-22 Oct 2017

Pulsars and PWNe are powerful tools to study/test

- EOS of ultradense matter
- QED in strong magnetic fields
- theories of gravitation in strong-field limits
- supernova outburst mechanisms
- interstellar medium
- low-frequency gravitational waves
- relativistic MHD flows and shocks
- origin of primary e[±]-pairs in Cosmic Rays (justifies my talk at KRAC mtg.)

Kounine, ICRC 2017

Behavior of the positron fraction at high energies

Comparison with theoretical Models

The expected rate at which it falls beyond the turning point.

Pulsars

Rotating, strongly magnetized neutron stars acting as unipolar inductors.

Maximum potential drop (voltage):

 $V_{max} \approx 6 \times 10^{12} (B/10^{12} G) P^{-2} Volts.$

Realistic potential drops - much smaller, but high enough to accelerate particles to ultrarelativistic energies.

Pulsed radiation spectra

from radio to gamma-rays (across 16 decades!):

- curvature and synchrotron emission
- Inverse Compton scattering

Pulsar Wind Nebulae

- extended sources
- powered by relativistic magnetized wind from pulsar
- radiation spectra from radio to gamma-rays: synchrotron emission from shocked pulsar wind and Inverse Compton scattering

Radiation from a **Pulsar-wind-nebula** complex

Crab Nebula in X-rays

8

HESS, ICRC 2017

First measurement of the extension of the Crab Nebula at TeV energies

Gamma-ray pulsars

- dominant class

of Galactic GeV sources (due to Fermi LAT)

Pulsar Wind Nebulae

dominant class of Galactic TeV sources (H.E.S.S., VERITAS)

2nd Pulsar Fermi LAT Catalog, 2013

2nd Fermi LAT Pulsar Catalog 2013

Phased-averaged spectral energy distributions

TeV pulsed emission from the Crab pulsar detected by MAGIC (Ansoldi et al. 2015)

Examples of pulse profile morphology

(2nd Fermi LAT Pulsar Catalog, 2013)

Ng+ 2016

PSR J2021+4026 Pulse profile above 100 MeV

Drop in photon flux above 100 MeV

Very High Energy gamma-ray Sky

In 1989 - 1 source, in 2017 – 220 sources Expectations for CTA ~ 1000 sources

PWNe in VHE

In 1989 - 1 source, in 2017 – 37 sources

Modelled SED of a generic PWN

Aleksic+ 2015 (MAGIC Coll.)

SED of the Crab Nebula

PWN N 157B in Large Magellanic Cloud

The Crab Nebula is not a standard candle at MeV-GeV

Flaring of the Crab Nebula

Is magnetic reconnection responsible for flares in Crab Nebula?

Where? Close to the termination shock ?

A brief history of pulsar models in three stages

Stage 1 The vacuum magnetic dipole model

passé, but some features still in use

Stage 2 The co-rotating magnetosphere models in low-density, charge-separation limit (next slide)

> still in use (many papers in 2016, 2017) but their days are numbered

3D magnetospheric accelerators (gaps) – local approach

To be solved simultaneously in a magnetosphere:

- non-vacuum Poisson equation,
- Boltzmann equation for pairs,
- radiative transfer

Boundary conditions (taken ad hoc => many flavours of the model)

The global current closure issue – ignored.

Results: model spectra and emission directionalities -> -> 'observed' characteristics depend on the inclination angle and the line of sight angle Stage 3 Electrodynamics with the plasma

in development:

1. Force-free (FF) magnetospheres:

- ideal MHD (no dissipation => no radiation).

2. Dissipative magnetospheres and winds:

- many versions of 'FF' with macroscopic conductivity,
- 2a. Particle-In-Cell (PIC) simulations
 - include particle inertia and acceleration,
 but only low-resolution calculations possible so far.

Oblique rotator => current sheet becomes corrugated; striped wind forms

Back-up slides

Outer Gap and TPC emission models for the Vela pulsar

Morphology of PWNe in X-rays

