

Background Sources in DarkSide-20k

KRZYSZTOF PELCZAR Laboratori Nazionali del Gran Sasso

Astroparticle Physics in Poland Kraków, 20 – 22 September 2017 Astronomical Observatory, Jagiellonian University

OUTLINE

Motivation – background vs. sensitivity

Background sources in DarkSide-20k detector

Background mitigation techniques

- Application of passive and active shields
- Identification and rejection of background events PSD
- Application of radiopure materials screening

Summary

Motivation – background vs. sensitivity

Example: Argon target, 100 t × yr exposure

Xenon-1t result: $1.93 \pm 0.25 \times 10^{-4}$ events/(kg × day × keV_{ee}) \rightarrow O(?00) events/(100 t × yr)

Xenon-1t: arXiv:1705.06655v2

Expected background

Background sources in DarkSide-20k detector

- Alphas Uranium and Thorium chains, ²¹⁰Po surface contamination (α, n) reactions
- Neutrons fission products, external (cosmic radiation)
- Betas ³⁹Ar and ⁸⁵Kr decays
- Gammas (gamma/electron scattering)
- Cosmic rays

Application of passive and active shields

Liquid Scintillator Veto (B-loaded, pioneered by DS) – a unique feature of DarkSide detectors

Identification and rejection of background events – PSD

Pulse Shape Discrimination (PSD) – unique feature of DarkSide detectors

- ³⁹Ar natural abundance in argon is a potential source of background (gamma/beta electron recoils)
- Liquid argon scintillation allows for efficient PSD
- f_{90} ratio of light registered in the first 90 ns,

Background mitigation techniques

Low-radioactivity argon – a unique feature of DarkSide detectors

- Combination of PSD and low-radioactivity Ar → ton-scale experiment
- Extraction of UAr at Colorado (CO₂ well) Urania project
- 1:1400 reduction factor demonstrated (DS-50)
- Additional purification and depletion of UAr – Aria project

Background mitigation techniques

TPC assembly in Rn-suppressed clean rooms – a unique feature of DarkSide detectors

TPC is assembled in the first practically Rn-free clean rooms (5 – 50 mBq/m³) (World-first Rn suppressed clean room in Princeton for Borexino inner vessel assembly: Rn < 1 Bq/m³)

- Dedicated abatemenet system reduces ²²²Rn concentration in the air down to 1 mBq/m³
- ²²²Rn content in the clean rooms is monitored online by a high sensitivity detector

Background mitigation techniques Material Screening Working Group

The cryostat and the TPC must be built from radiopure materials

238 92 4.468E9

Mass Spectroscopy (ICP-MS and related) Institutions: PNNL, BHSU, LNGS, MSU, CIEMAT

Gamma ray screening, Radon emanation

Institutions: Black Hills State Univ., CIEMAT, LNGS, Jagiellonian Univ., Petersburg NPI, PNNL, Temple Univ. *Unique:* 50 L & 250 L cryogenic ²²⁰Rn and ²²²Rn detector (detection limit of 20 µBq, Jagiellonian Univ.) 30 L emanation chamber + counting with proportional counters (PNNL)

Monte Carlo

simulations used to evaluate acceptable radiopurity limits for each material in use, e.g. due to (α,n) reactions

²¹⁰Po detectors

- XiA UltraLo 1800 (α–activity) 43 cm × 43 cm (Jagiellonian Univ.)
- BiPo-3 (α/β -activity) 3.6 m² (CIEMAT)

Background mitigation techniques

Radio-pure liquid argon

Xenon/LUX experiment: estimated ^{222}Rn contamination at $^{20}\,\mu\text{Bq/kg}$ (Eur. Phys. J. C (2017) 77:358)

DarkSide–50: estimated ²²²Rn contamination < 2 μ Bq/kg

DarkSide–20k (for solar neutrino detection): ²²²Rn < 0.5 μBq/t (arXiv:1510.04196v4)

²²²Rn removal from LAr is mandatory (and possible), as it depends on ²²²Rn emanation from detector's components.

Borexino High Purity Nitrogen (HPN₂): ²²²Rn < 0.4 μBq/kg Gerda argon purification studies:

(JU involved)

- ²²²Rn reduction factor in gas phase 1:2700: < 0.3 µBq/kg
- ²²²Rn reduction factor in liquid phase 1:305: 3.6 μ Bq/kg

Summary

DarkSide-20k:

- Background free detector
 - Feasibility proven by DS-50 with UAr
- Unique techniques for background mitigation
 - Use of radiopure argon
 - Efficient pulse shape discrimination (f₉₀ parameter)
 - Boron-loaded Liquid scintillator veto against neutrons (the use pioneered by DS)
 - Detector assembly in radon-free clean rooms
 - Application of radiopure Si-PMs (for light detection not discussed here)

Bacgkround assesment

- Material Screening Working Group (world-wide effort), close cooperation with MonteCarlo Working Group (evaluation of background rate)
- All parts of the U/Th covered (ICP–MS, γ-ray spectrometry, Rn-emanation studies, alpha spectroscopy, Rn-free clean rooms)
- Expertise in gas purification
- INFN-LNGS: hosts the experiment, substantial financial support, expertise in low background techniques (γ-ray screening, ICP-MS, ...)

Motivation – background vs. sensitivity

Xenon-1t result: $1.93 \pm 0.25 \times 10^{-4}$ events/(kg × day × keV_{ee}) \rightarrow O(?00) events/(100 t × yr)

Xenon-1t: arXiv:1705.06655v2