

GERDA experiment: latest results of the neutrinoless double beta decay search

Krzysztof Panas

Jagiellonian University, Cracow (on behalf of the GERDA collaboration)

Astrofizyka Cząstek w Polsce 2017

Outline

- 1. Introduction to neutrinoless double beta decay $(0\nu\beta\beta)$
- 2. Design of the GERDA experiment
- 3. Recent results
- 4. Conclusions

Neutrinoless double beta decay

Source: S.Schönert's talk at TAUP 2017

Neutrinoless double beta decay

- If $0\nu\beta\beta$ observed:
 - Neutrino is a Majorana particle (its own antiparticle)
 - Lepton number is not conserved
 - Dealing with physics beyond the Standard Model
 - Possibility to fix the absolute neutrino mass scale
 - Possibility to determine the neutrino mass hierarchy

Significant contribution to Particle Physics, Astrophysics and Cosmology

Neutrino mass – inverted or normal hierarchy?

 Determining the limit on neutrino mass can reject inverted hierarchy hipothesis Effective neutrino mass calculation: $\frac{1}{T_{1/2}} = G(Q,Z) \cdot |Mnuc|^2 \cdot \langle m_{ee} \rangle^2$ $\langle m_{ee} \rangle - \text{effective neutrino mass}$ G(Q,Z) - space phase factor $M_{nuc} - \text{nuclear matrix element}$

Sensitivity of the $0\nu\beta\beta$ experiment

Half-life limit calculation:

• No background:

$$T_{1/2}(90\% CL) > \frac{\ln 2}{1.64} \frac{N_A}{A} \epsilon \cdot a \cdot M \cdot T$$

• With background:

$$T_{1/2}(90\% CL) > \frac{\ln 2}{1.64} \frac{N_A}{A} \epsilon \cdot a \sqrt{\frac{M \cdot T}{B \cdot \Delta E}}$$

Exposure = isotope mass × meas. time

Astrofizyka Cząstek w Polsce 2017

GERDA experiment

- GERDA (GERmanium Detector Array) has been designed to investigate neutrinoless double beta decay of ⁷⁶Ge ($Q_{\beta\beta} =$ 2039 keV)
 - Ge mono-crystals are very radiopure
 - Ge detectors have excellent energy resolution
 - Detector = source ($\epsilon \approx 1$)
 - Enrichment of ⁷⁶Ge required (7.4% \rightarrow 86%)

Source: GERDA collaboration

Design of GERDA

- Main design features:
 - bare HPGe diodes immersed in LAr (cooling, passive shield and veto)
 - Readout of LAr scintillation light via PMTs and SiPM
 - Currently ≈ 30 kg of enriched germanium

GERDA: the collaboration

Astrofizyka Cząstek w Polsce 2017

GERDA latest data release

 Most recent unblinding during GERDA meeting in Cracow (June 2017)

GERDA Phase II ROI

GERDA Phase II ROI

Astrofizyka Cząstek w Polsce 2017

GERDA Phase II results

ARTICLE

Background-free search for neutrinoless double- β decay of ⁷⁶Ge with GERDA

The GERDA Collaboration*

- Phase II published results:
 - T_{1/2} > 5.3·10²⁵ yr @ 90% CL
 - (Nature 544, 2017)

- Preliminary results from the newest data:
 - T_{1/2} > 8.0·10²⁵ yr @ 90% CL (TAUP 2017 conf.)
- Next steps:
 - If no signal observed, expected to reach 10²⁶ yr limit next year
- Final exposure: 100 kg yr:
 - final sensitivity 1.3·10²⁶ yr (for the limit) or ~ 8 10²⁵ yr (50% for 3σ discovery)

Beyond GERDA Phase II

GD + MJD + new groups = LEGeND (Large Enriched Germanium Experiment for Neutrinoless Double Beta Decay)

GERDA

- Physics goals: investigation of degenerate neutrino mass range
- **Technology:** study of background reduction techniques

GERDA: Cracow's contribution

- IF UJ: member of the GERDA collaboration since its formation
- Contribution to low background techniques, electronics and data analysis:
 - Removal of radon daughters from metals
 - Investigation of radon daughters in criogenic liquids
 - LArGe liquid argon veto test facility
 - Pulse Shape Discrimination in semicoaxial detectors using Projective Likelihood method
 - PMT scaler used for LAr veto in Phase II

 Cracow's group involvement in GERDA supported by National Science Centre and Foundation for Polish Science grants

• The most important papers:

- The GERDA experiment for the search of $0\nu\beta\beta$ decay in 76 Ge, *The European Physical Journal C*, 2013
- Results on Neutrinoless Double-β Decay of ⁷⁶Ge from Phase I of the GERDA Experiment, *Phys. Rev. Lett*. 111, 2013
- Background-free search for neutrinoless double-β decay of ⁷⁶Ge with GERDA, *Nature*, 2017

Conclusions

- 0νββ decay an important probe of the fundamental neutrino properties and its mass hierarchy
- GERDA data-taking in progress
- Very good **background level** at $Q_{\beta\beta}$ confirmed (BEGe: $1.0^{+0.6}_{-0.4} \times 10^{-3} \left[\frac{\text{cts}}{\text{keV kg yr}}\right]$)
 - Will allow to achieve **O(< 1 count) in the ROI** for the full design exposure
- Lowest background (~10x) in ROI w.r.t. other isotope experiments
- Next year: possible increase to **10²⁶ yr** in median sensitivity
- Next years:

Thank you for your attention!

Backup

Double beta decay

 In a number of even-even nuclei, β decay is energetically forbidden, while double beta decay from a nucleus of (A,Z) to (A, Z+2), is energetically allowed:

⁴⁸Ca, ⁷⁶Ge, ⁸²Se, ⁹⁶Zr ¹⁰⁰Mo, ¹¹⁶Cd ¹²⁸Te, ¹³⁰Te, ¹³⁶Xe, ¹⁵⁰Nd

Half-life to eff. neutrino mass

Half-life limit calculation: $T_{1/2}(90\% CL) > \frac{\ln 2}{1.64} \frac{N_A}{A} \epsilon \cdot a \cdot M \cdot T \quad \Leftarrow \text{ no background}$ $T_{1/2}(90\% CL) > \frac{\ln 2}{1.64} \frac{N_A}{A} \epsilon \cdot a \sqrt{\frac{M \cdot T}{B \cdot \Lambda E}} \quad \Leftarrow \text{ background B}$

Effective neutrino mass calculation: $\frac{1}{T_{1/2}} = G(Q, Z) \cdot |M_{nuc}|^2 \cdot \langle m_{ee} \rangle^2$ $< m_{ee} > \sim \frac{1}{\sqrt{T_{1/2}}} \sim \sqrt[4]{\frac{B \cdot \Delta E}{M \cdot T}}$

- ϵ detection efficiency
- A isotope molar mass
- a isotope mass fraction
- M active mass
- T measurement time
- B background rate
- ΔE energy resolution
- M·T exposure

 $< m_{ee} >$ - effective neutrino mass G(Q,Z) - space phase factor M_{nuc} – nuclear matrix element

Experimental challenge:

$$(M \cdot T)^{\uparrow} x \ 100 \rightarrow T_{1/2}^{\uparrow} 10 \rightarrow < m_{ee}^{} > \downarrow x \sim 3$$

GERDA Phases

- Data-taking divided into phases:
 - Phase I (Nov 2011 May 2013), rejection of the claim from Heidelberg-Moscow experiment, data unblided in Dubna
 - Phase II (Dec 2015 ongoing):
 - Phase IIa unblinding in June 2016
 - Phase IIb partial (BEGe only) unblinding in June 2017
- Blind analysis strategy:
 - Events at $Q_{\beta\beta} \pm 25$ keV blinded
 - Unblinding when all cuts
 finalized

Phase I results after unblinding

- 90% lower limit derived from profile likelihood (Frequentist limit, flat background)
- Best fit to data with **0 events** within the peak
- No excess of signal counts above the background
- Limit on half-life corresponds to $N^{0v} < 3.5$ cts

GERDA vs. KamLAND-Zen (L. Pandola TAUP 2017)

 Frequentist analysis according to same recipe → numbers comparable

	GERDA I+II	KamLAND-Zen	
Median sensitivity	5.8 10 ²⁵ yr	5.6 10 ²⁵ yr	PRL 117 (2016) 082503 arXiv: 1705.02996
90%CL Limit	8.0 10 ²⁵ yr (30%)	1.07 10 ²⁶ yr (12%)	
Exposure	470 mol∙yr	3700 mol⋅yr	
Background	5-20 cts/(ton _{iso} ROI yr)	60-100 cts/(ton _{iso} ROI yr)	