Preheating with backreaction effects in theories with light fields

Olga Czerwińska

University of Warsaw

in collaboration with S. Enomoto and Z. Lalak

based on: JHEP 1503 (2015) 113 PRD 96 (2017) 023510

This work has been supported by the Polish NCN grant DEC-2012/04/A/ST2/00099 and the doctoral scholarship number 2016/20/T/ST2/00175.

Post-inflationary particle production

Example of an inflaton potential,
D.Baumann "TASI Lectures on Inflation".

- accelerated expansion (**inflation**), when $V(\phi)\gg \frac{1}{2}\dot{\phi}^2$
- ullet the end of inflation, when $V(\phi)\sim rac{1}{2}\dot{\phi}^2$
- reheating, when the energy density of the inflaton is converted into radiation
 highly non-thermal and cold Universe

gets defrosted and thermalised

Preheating - non-adiabatic and non-perturbative stage of coherent oscillations right after the end of inflation

- non-adiabaticity: the occupation number of the homogeneous part of the inflaton is very large at the end of inflation - it behaves as a classical field, an external force acting on the quantum fields coupled to inflaton and their masses change very rapidly in time
- non-perturbativity: particles with masses larger than the inflaton mass can be produced

Models with light fields

Our goal

to investigate the particle production in the models with light fields indirectly coupled to inflaton including backreaction: L. R. W. Abramo, R. H. Brandenberger, V. F. Mukhanov: 9704037

L. Kofman, A. Linde, A. Starobinsky: 9704452

L. Kofman et al.: 0403001

R. Brandenberger, R. Costa, G. Franzmann: 1504.00867

D. Roest, M. Scalisi, P. Werkman: 1607.08231

I) two scalar system:

$$\mathcal{L} = \frac{1}{2}(\partial \phi)^2 + \frac{1}{2}(\partial \chi)^2 - \frac{1}{2} m_{\phi}^2 \phi^2 - \frac{1}{2} m_{\chi}^2 \chi^2 - \frac{1}{4} g^2 \phi^2 \chi^2$$

II) system with the additional light sector:

$$\begin{split} \mathcal{L} &= \frac{1}{2} (\partial \phi)^2 + \frac{1}{2} (\partial \chi)^2 - \frac{1}{2} m_{\phi}^2 \phi^2 - \frac{1}{2} m_{\chi}^2 \chi^2 - \frac{1}{4} g^2 \phi^2 \chi^2 \\ &+ \sum_{n} \frac{1}{2} (\partial \xi_n)^2 - \sum_{n} \frac{1}{2} m_{\xi}^2 \xi_n^2 - \sum_{n} \frac{1}{4} y^2 \chi^2 \xi_n^2 \end{split}$$

 ϕ - inflation, $\langle 0^{\text{in}} | \phi | 0^{\text{in}} \rangle = \langle \phi(t) \rangle$

 χ - another scalar field coupled directly to ϕ , $m_{\phi}\gg m_{\chi}$, $\langle\chi\rangle=0$

 ξ_n - N light or massless fields not coupled to ϕ , $m_\phi\gg m_\xi$, $\langle\xi_n\rangle=0$

 χ particles are produced resonantly and ξ_n through the interactions with χ .

Numerical results for multi-scalar systems

We are interested in time-evolution of particle number density for each species:

$$n(t) = \int \frac{d^3k}{(2\pi)^3} \frac{\langle N_{\mathbf{k}} \rangle}{V}$$

$$N_{k}(t) = \frac{1}{2\omega_{k}} \left(\dot{\hat{\phi}}_{\mathbf{k}}^{\dagger} \dot{\hat{\phi}}_{\mathbf{k}} + \omega_{k}^{2} \hat{\phi}_{\mathbf{k}}^{\dagger} \hat{\phi}_{\mathbf{k}} \right) + \frac{i}{2} \left(\hat{\phi}_{\mathbf{k}}^{\dagger} \dot{\hat{\phi}}_{\mathbf{k}} + \dot{\hat{\phi}}_{\mathbf{k}}^{\dagger} \hat{\phi}_{\mathbf{k}} \right)$$

- ullet solve eoms for all the species for $t_{ ext{ini}}$ and calculate their number density
- do the same for $t_{\rm ini}+\Delta t$ taking into account the backreaction of previously produced states on the evolution of the background (given by the induced potential coming from non-zero energy density)
- \bullet repeat it till you reach t_{fin}

Two scalar system

According to L Kofman et al.: 9403001 the first production of χ particles results in the number density

$$n_{\chi}^{(1)} \sim \frac{\left[gm_{\phi}\langle\phi(0)\rangle\right]^{3/2}}{(2\pi)^3} \sim 4 \cdot 10^{-9}$$

we are in agreement!

$$g=$$
 0.1, $m_{\phi}=$ 0.001 M ($M\sim 0.04M_{PL}$, $M_{PL}\sim 1.22\cdot 10^{19}$ GeV)

System with the additional light sector

- all the states are produced abundantly
- for $n_{\mathcal{E}} \sim n_{\mathcal{V}}$: quenching of the preheating (due to enhancement of the backreaction effects: $n_{\varepsilon} \uparrow$)
- expectation: most of the energy would be transferred to ξ_n fields as they are very light

but: $N \uparrow \Leftrightarrow |\langle \phi \rangle|^{final} \uparrow$, energy transfer to $\xi \downarrow$

The physical mass of χ

$$\begin{split} \textit{M}_{\chi}^{2} &= \textit{m}_{\chi}^{2} + \frac{1}{2}\textit{g}^{2}\langle\phi\rangle^{2} + \frac{1}{2}\textit{g}^{2}\int\frac{\textit{d}^{3}\textit{p}}{(2\pi)^{3}}\left(\frac{1}{\textit{V}}\langle\hat{\phi}_{\mathbf{p}}^{\dagger}\hat{\phi}_{\mathbf{p}}\rangle - \frac{1}{2\omega_{\phi\textit{p}}}\right) \\ &+ \frac{1}{2}\textit{y}^{2}\sum_{\textit{n}}\left(\frac{1}{\textit{V}}\langle\hat{\xi}_{\textit{n}\mathbf{p}}^{\dagger}\hat{\xi}_{\textit{n}\mathbf{p}}\rangle - \frac{1}{2\omega_{\xi\textit{p}}}\right) + \mathcal{O}(\textit{y}^{4},\textit{y}^{2}\textit{g}^{2},\textit{g}^{4}) \end{split}$$

Once ϕ or ξ_n are produced they also generate χ 's effective mass which results in particle production area becoming narrower: $n_{\chi} \downarrow$.

$$g=0.1, y=1, N=1, m_{\phi}=0.001M$$

$$g = 0.1, y = 1, m_{\phi} = 0.001M$$

Thank you for your attention.

Back-up slides

Instant preheating

We describe a new efficient mechanism of reheating. Immediately after rolling down the rapidly moving inflaton field ϕ produces particles χ . which may be either bosons or fermions. This is a nonperturbative process which occurs almost instantly; no oscillations or parametric resonance is required. (...) When the particles χ become sufficiently heavy, they rapidly decay to other, lighter particles. (...)

G. Felder, L. Kofman, A. Linde: 9812289

- three fields background ϕ , χ interacting with ϕ and some other field ψ not coupled to ϕ
- χ particles produced within one-time oscillation of ϕ decay immediately to ψ before the next oscillation of ϕ
- ψ states can be also produced even though there is no direct interaction between ϕ and ψ

	our work	instant preheating
inflaton's behaviour	oscillations	no oscillations
mechanism of production	the quantum corrections	decay
origin of the quenching	backreaction	rapid decay

Varying y with fixed g

$$\frac{1}{4}g^2\phi^2\chi^2$$
 $\sum_{n}\frac{1}{4}y^2\chi^2\xi_n^2$

produced states	effect of varied y
χ, φ	does not influence the initial stage
	of preheating
	influences the final n_χ and n_ϕ :
	$ extstyle y \uparrow \;\;\Leftrightarrow\;\;\; extstyle n_\chi^{ extstyle final}\downarrow, extstyle n_\phi^{ extstyle final}\downarrow$
ξ_{n}	both initial and final stages
	are strongly influenced
	$y\uparrow \Leftrightarrow n_{\mathcal{E}}^{\mathit{final}}\uparrow$
	$y\downarrow\Leftrightarrow$ energy transfer to $\langle\phi angle\uparrow$

For $n_{\varepsilon}^{\mathit{final}} \sim n_{\gamma}^{\mathit{final}}$: quenching of the preheating (y = 0.7 and y = 1)

$$g = 0.1, N = 1, m_{\phi} = 0.001M$$

Varying y with fixed g

$$\frac{1}{4}g^2\phi^2\chi^2$$
 $\sum_{n}\frac{1}{4}y^2\chi^2\xi_n^2$

produced states	effect of varied y
χ , ϕ	does not influence the initial stage
	of preheating
Ėn	influences the final n_χ and n_ϕ : $y\uparrow \Leftrightarrow n_\chi^{\textit{final}}\downarrow, n_\phi^{\textit{final}}\downarrow$ both initial and final stages
Şn	_
	are strongly influenced $y\uparrow \Leftrightarrow n_{\xi}^{\mathit{final}}\uparrow \ y\downarrow\Leftrightarrow $ energy transfer to $\langle\phi\rangle\uparrow$

For $n_{\xi}^{\it final} \sim n_{\chi}^{\it final}$: quenching of the preheating (y=0.7 and y=1)

$$g = 0.1, N = 1, m_{\phi} = 0.001M$$

The new method vs the old one

the old results with secularity are still applicable at the early stages of particle production process.

$$g = 1, m_{\phi} = 0.001M$$

EOMs

$$\begin{split} \langle \hat{\phi}_{\mathbf{k}}^{\dagger} \hat{\phi}_{\mathbf{k}} \rangle^{\cdot} &= \langle \dot{\hat{\phi}}_{\mathbf{k}}^{\dagger} \hat{\phi}_{\mathbf{k}} \rangle + \langle \hat{\phi}_{\mathbf{k}}^{\dagger} \dot{\hat{\phi}}_{\mathbf{k}} \rangle \\ \langle \hat{\phi}_{\mathbf{k}}^{\dagger} \dot{\hat{\phi}}_{\mathbf{k}} \rangle^{\cdot} &= \langle \dot{\hat{\phi}}_{\mathbf{k}}^{\dagger} \dot{\hat{\phi}}_{\mathbf{k}} \rangle + \langle \hat{\phi}_{\mathbf{k}}^{\dagger} \dot{\hat{\phi}}_{\mathbf{k}} \rangle \\ &= \langle \dot{\hat{\phi}}_{\mathbf{k}}^{\dagger} \dot{\hat{\phi}}_{\mathbf{k}} \rangle - \omega_{\mathbf{k}}^{2} \langle \hat{\phi}_{\mathbf{k}}^{\dagger} \dot{\hat{\phi}}_{\mathbf{k}} \rangle - \langle \hat{\phi}_{\mathbf{k}}^{\dagger} \hat{J}_{\mathbf{k}} \rangle \\ \langle \dot{\hat{\phi}}_{\mathbf{k}}^{\dagger} \dot{\hat{\phi}}_{\mathbf{k}} \rangle^{\cdot} &= \langle \ddot{\hat{\phi}}_{\mathbf{k}}^{\dagger} \dot{\hat{\phi}}_{\mathbf{k}} \rangle + \langle \dot{\hat{\phi}}_{\mathbf{k}}^{\dagger} \dot{\hat{\phi}}_{\mathbf{k}} \rangle \\ &= -\omega_{\mathbf{k}}^{2} (\langle \dot{\hat{\phi}}_{\mathbf{k}}^{\dagger} \dot{\hat{\phi}}_{\mathbf{k}} \rangle + \langle \dot{\hat{\phi}}_{\mathbf{k}}^{\dagger} \dot{\hat{\phi}}_{\mathbf{k}} \rangle) - \langle \dot{\hat{\phi}}_{\mathbf{k}}^{\dagger} J_{\mathbf{k}} \rangle - \langle J_{\mathbf{k}}^{\dagger} \dot{\hat{\phi}}_{\mathbf{k}} \rangle \end{split}$$

where

$$\hat{J}_{\mathbf{k}} \equiv \int d^3x \mathrm{e}^{-\mathbf{k}\cdot\mathbf{x}} J(t,\mathbf{x}).$$

Physical mass of ϕ is determined by the relation:

$$\begin{split} 0 &= \langle \hat{\phi}_{\mathbf{k}}^{\dagger} \hat{J}_{\mathbf{k}} \rangle = (m^2 - M^2) \langle \hat{\phi}_{\mathbf{k}}^{\dagger} \hat{\phi}_{\mathbf{k}} \rangle \\ &+ \int d^3 x e^{-i\mathbf{k} \cdot \mathbf{x}} \left\langle \hat{\phi}_{\mathbf{k}}^{\dagger} \frac{dV(\mathbf{x})}{d\phi} \right\rangle \end{split}$$

to remove the infinite part of the mass correction.

Expansion of the universe

we neglect the expansion of the universe \Leftrightarrow we assume that the mean time the trajectory spends in the non-adiabatic region is smaller than the Hubble time

$$\frac{1}{\sqrt{gv}} < \frac{2}{3H(w+1)}$$

Following K. Enqvist, M. Soith: 0109214 the number density of produced particles in the expanding universe is

$$n_{\chi}^{(j)} \sim n_{\chi}^{(1)} \cdot 3^{j-1} \left(\frac{5}{2}\right)^{3/2} \frac{1}{j^{5/2}}$$

j - the number of oscillations.

For $j\sim 10$ and $n_\chi^{(10)}\sim 1\times 10^{-6}$, the oscillation phase finishes when $\frac{1}{2}m_\phi^2\langle\phi_j\rangle^2\sim \rho_\chi^{(j)}\sim g\langle\phi_j\rangle n_\chi^{(j)}$:

we are in agreement!

Bogoliubov transformation (L.E. Parker & D.J. Toms, N. D. Birrell & P. C. W. Davies, ...)

These two sets of operators act in the same Hilbert space so we can express one using another

$$egin{aligned} oldsymbol{a}_{k}^{ ext{out}} &= lpha_{k} oldsymbol{a}_{k}^{ ext{in}} + eta_{k} oldsymbol{a}_{k}^{ ext{in}\,\dagger} \ oldsymbol{a}_{k}^{ ext{out}\,\dagger} &= lpha_{k}^{*} oldsymbol{a}_{k}^{ ext{in}\,\dagger} + eta_{k}^{*} oldsymbol{a}_{k}^{ ext{in}\,\dagger} \end{aligned}$$

and calculate commutation relation in the new basis

$$[\textit{\textit{a}}_{\textit{k}}^{\text{out}},\textit{\textit{a}}_{\textit{k}}^{\text{out}\,\dagger}] = [\alpha_{\textit{k}}\textit{\textit{a}}_{\textit{k}}^{\text{in}} + \beta_{\textit{k}}\textit{\textit{a}}_{\textit{k}}^{\text{in}\,\dagger},\alpha_{\textit{k}}^{*}\textit{\textit{a}}_{\textit{k}}^{\text{in}\,\dagger} + \beta_{\textit{k}}^{*}\textit{\textit{a}}_{\textit{k}}^{\text{in}}] = \ldots = \left(|\alpha_{\textit{k}}|^2 - |\beta_{\textit{k}}|^2\right)\!\left[\textit{\textit{a}}_{\textit{k}}^{\text{in}},\textit{\textit{a}}_{\textit{k}}^{\text{in}\,\dagger}\right]$$

Commutation relation is fixed so we obtain the **normalization condition** for **Bogoliubov coefficients** in case of the scalar field

$$|\alpha_k|^2 - |\beta_k|^2 = 1.$$

For fermions: $|\alpha_k|^2 + |\beta_k|^2 = 1$ because of the different form of commutation relation.

Occupation number of produced particles

$$n_k \equiv \langle 0^{\text{in}} | N_k | 0^{\text{in}}
angle = \langle 0^{\text{in}} | \sigma_{\vec{k}}^{\text{out} \dagger} \sigma_{\vec{k}}^{\text{out}} | 0^{\text{in}}
angle = V | eta_k |^2.$$

It seems that if $\beta_k = 0$ particles are not produced.