
IDL Version 7.1
May 2009 Edition
Copyright © ITT Visual Information Solutions
All Rights Reserved

Getting Started
with IDL

0509IDL71GS

Restricted Rights Notice
The IDL®, IDL Advanced Math and Stats™, ENVI®, and ENVI Zoom™ software programs and the accompanying procedures,
functions, and documentation described herein are sold under license agreement. Their use, duplication, and disclosure are subject to
the restrictions stated in the license agreement. ITT Visual Information Solutions reserves the right to make changes to this document
at any time and without notice.

Limitation of Warranty
ITT Visual Information Solutions makes no warranties, either express or implied, as to any matter not expressly set forth in the
license agreement, including without limitation the condition of the software, merchantability, or fitness for any particular purpose.

ITT Visual Information Solutions shall not be liable for any direct, consequential, or other damages suffered by the Licensee or any
others resulting from use of the software packages or their documentation.

Permission to Reproduce this Manual
If you are a licensed user of these products, ITT Visual Information Solutions grants you a limited, nontransferable license to
reproduce this particular document provided such copies are for your use only and are not sold or distributed to third parties. All such
copies must contain the title page and this notice page in their entirety.

Export Control Information
The software and associated documentation are subject to U.S. export controls including the United States Export Administration
Regulations. The recipient is responsible for ensuring compliance with all applicable U.S. export control laws and regulations. These
laws include restrictions on destinations, end users, and end use.

Acknowledgments
ENVI® and IDL® are registered trademarks of ITT Corporation, registered in the United States Patent and Trademark Office. ION™, ION Script™,
ION Java™, and ENVI Zoom™ are trademarks of ITT Visual Information Solutions.

ESRI®, ArcGIS®, ArcView®, and ArcInfo® are registered trademarks of ESRI.

Portions of this work are Copyright © 2008 ESRI. All rights reserved.

Numerical Recipes™ is a trademark of Numerical Recipes Software. Numerical Recipes routines are used by permission.

GRG2™ is a trademark of Windward Technologies, Inc. The GRG2 software for nonlinear optimization is used by permission.

NCSA Hierarchical Data Format (HDF) Software Library and Utilities. Copyright © 1988-2001, The Board of Trustees of the University of Illinois. All
rights reserved.

NCSA HDF5 (Hierarchical Data Format 5) Software Library and Utilities. Copyright © 1998-2002, by the Board of Trustees of the University of
Illinois. All rights reserved.

CDF Library. Copyright © 2002, National Space Science Data Center, NASA/Goddard Space Flight Center.

NetCDF Library. Copyright © 1993-1999, University Corporation for Atmospheric Research/Unidata.

HDF EOS Library. Copyright © 1996, Hughes and Applied Research Corporation.

SMACC. Copyright © 2000-2004, Spectral Sciences, Inc. and ITT Visual Information Solutions. All rights reserved.

This software is based in part on the work of the Independent JPEG Group.

Portions of this software are copyrighted by DataDirect Technologies, © 1991-2003.

BandMax®. Copyright © 2003, The Galileo Group Inc.

Portions of this computer program are copyright © 1995-1999, LizardTech, Inc. All rights reserved. MrSID is protected by U.S. Patent No. 5,710,835.
Foreign Patents Pending.

Portions of this software were developed using Unisearch’s Kakadu software, for which ITT has a commercial license. Kakadu Software. Copyright ©
2001. The University of New South Wales, UNSW, Sydney NSW 2052, Australia, and Unisearch Ltd, Australia.

This product includes software developed by the Apache Software Foundation (www.apache.org/).

MODTRAN is licensed from the United States of America under U.S. Patent No. 5,315,513 and U.S. Patent No. 5,884,226.

QUAC and FLAASH are licensed from Spectral Sciences, Inc. under U.S. Patent No. 6,909,815 and U.S. Patent No. 7,046,859 B2.

Portions of this software are copyrighted by Merge Technologies Incorporated.

Support Vector Machine (SVM) is based on the LIBSVM library written by Chih-Chung Chang and Chih-Jen Lin (www.csie.ntu.edu.tw/~cjlin/libsvm),
adapted by ITT Visual Information Solutions for remote sensing image supervised classification purposes.

IDL Wavelet Toolkit Copyright © 2002, Christopher Torrence.

IMSL is a trademark of Visual Numerics, Inc. Copyright © 1970-2006 by Visual Numerics, Inc. All Rights Reserved.

Other trademarks and registered trademarks are the property of the respective trademark holders.

http://www.apache.org/
http://www.csie.ntu.edu.tw/~cjlin/libsvm/

Contents
Chapter 1
The Power of IDL ... 7
Using this Manual ... 10
Other Resources .. 11

Chapter 2
Super Quick Start .. 13

Chapter 3
The IDL Workbench ... 19
About the IDL Workbench .. 20
Perspectives ... 23
IDL Workbench Tour .. 24
Compiling and Running an IDL Program ... 31
Breakpoints and Debugging .. 32
Getting Help .. 35
Preferences .. 37
Updating the IDL Workbench ... 38
Getting Started with IDL 3

4

Chapter 4
Line Plots .. 41
IDL and 2-D Plotting ... 42
Plotting with the Tool Palette .. 43
Plotting with iPlot .. 44
Plotting with Direct Graphics .. 50
IDL and 3-D Plotting ... 52

Chapter 5
Images ... 53
IDL and Images .. 54
Displaying Images ... 55
Displaying Images with Direct Graphics ... 63

Chapter 6
Maps .. 65
IDL and Mapping ... 66
Displaying iMaps Tool .. 67
Modifying Map Data .. 70
Fitting an Image to a Projection ... 71
Plotting a Portion of the Globe .. 72
Plotting Data on Maps ... 74
Warping Images to Maps ... 77
Displaying Vector Data on a Map ... 80

Chapter 7
Surfaces and Contours .. 81
Surfaces and Contours in IDL .. 82
Displaying Surfaces ... 83
Displaying Surfaces with Direct Graphics ... 86
Displaying Contours .. 87
Displaying Contours with Direct Graphics .. 89
Working with Irregularly Gridded Data .. 91

Chapter 8
Volumes ... 93
IDL and Volume Visualization .. 94
Volume Rendering with iVolume .. 95
Contents Getting Started with IDL

5

Volume Rendering with Direct Graphics .. 99

Chapter 9
Signal Processing with IDL .. 103
IDL and Signal Processing .. 104
Signal Processing Concepts ... 105
Creating a Data Set .. 107
Signal Processing with SMOOTH .. 109
Frequency Domain Filtering ... 110
Creating Custom Filters ... 113
Wavelet Filtering Example .. 114

Chapter 10
Programming in IDL .. 115
About Programming in IDL .. 116
Types of IDL Programs ... 118
IDL Language Elements .. 120
Arrays and Efficient Programming ... 124
IDL Programming Concepts and Tools ... 128
IDL Workbench Editor .. 130
Executing a Simple IDL Program ... 131
Debugging ... 133

Chapter 11
User Interfaces in IDL ... 135
User Interface Options in IDL ... 136
Non-Graphical User Interfaces .. 137
Existing iTool Interfaces ... 138
Graphical Interfaces with IDL Widgets .. 139
A Simple Widget Example .. 140
Custom iTool Interfaces .. 142

Index ... 143
Getting Started with IDL Contents

6

Contents Getting Started with IDL

Chapter 1

The Power of IDL
IDL, the Interactive Data Language, is the ideal software for data analysis,
visualization, and cross-platform application development. IDL integrates a powerful,
array-oriented language with numerous mathematical analysis and graphical display
techniques, thus giving you incredible flexibility.

Interactive Analysis

A few lines of IDL can do the job of
hundreds of lines of Java, FORTRAN,
or C — without losing flexibility or
performance. Using IDL, tasks that require
days or weeks of programming with
traditional languages can be accomplished
in hours. Explore data interactively using
IDL commands and then create complete
applications by writing IDL programs.
Getting Started with IDL 7

8 Chapter 1: The Power of IDL
Data Analysis and Signal
Processing

Use IDL to read data in a wide variety
of formats — from simple ASCII to
structured data formats like HDF, CDF,
and NetCDF to modern image formats
such as JPEG2000. Fit irregularly-
sampled data to a regular grid, and use
IDL’s signal processing routines to
extract and analyze the signals

contained therein, using techniques from traditional filtering and transform
operations to statistical methods such as prediction analysis. Use IDL’s powerful
graphical visualization tools to view the results of your analysis in two- and three-
dimensional visualizations.

Image Processing and Display

IDL reads most common image files with
a single command. Once you’ve imported
image data into IDL, use a wide variety
of image processing techniques to filter
out noise, expose anomalies, and
highlight true data characteristics. Create
publication-quality, fully-annotated
image displays.

Combine Data and Maps

Easily overlay sampled data on a map
display to extract geographical information
from your data. Modify the map projection
and coordinates to inspect any location on
the globe.
Getting Started with IDL

Chapter 1: The Power of IDL 9
Rapid Application
Development

Use the powerful code
development and debugging
tools of the IDL Workbench to
rapidly create complex
applications in the IDL
language. Distribute your code
to other IDL users, or provide a
compiled version that runs in the
freely-available IDL Virtual
Machine.

User Interface Toolkit

IDL’s user interface toolkit
allows you to quickly
develop graphical user
interfaces entirely in IDL.
Create simple interfaces
with only a few lines of code
using IDL’s built-in widgets,
or use the iTools framework
to build complex interactive
applications in a fraction of
the time you would spend
creating a similar interface
in other languages.
Getting Started with IDL

10 Chapter 1: The Power of IDL
Using this Manual

The chapters included in this manual provide a “hands-on” way to learn basic IDL
concepts and techniques. Getting Started with IDL demonstrates a number of
common IDL applications; each section introduces basic IDL concepts and highlights
some of the commonly-used IDL commands.

Each chapter functions similarly to a tutorial and is a demonstration of a particular
IDL feature. It is recommended that you walk through each short, interactive chapter
to preserve continuity, since many commands rely upon previous commands. Each
chapter assumes the most basic level of IDL experience.

A Note on the Example Code

You don’t have to read all of the descriptive passages that accompany each chapter.
Simply enter the IDL commands shown in courier type at the IDL Command Line
(the “IDL>” prompt) and observe the results. Unless otherwise noted, each line
shown is a complete IDL command (press RETURN after typing each command). If
you want more information about a specific command, you can read the explanations
or consult IDL’s online help system by selecting Help → Help Contents in the IDL
Workbench.

Tip
The dollar sign ($) at the end of a line is the IDL continuation character. It allows
you to enter long IDL commands as multiple lines.

A Note on the Graphics Displays

Many of the examples in this manual use IDL’s iTools, which provide an interactive
graphical interface to visualizations such as plots or images. The iTools use IDL’s
Object graphics system, and will automatically adjust to display correctly on any
computer running IDL.

Other examples use IDL’s Direct graphics routines (which have names like PLOT,
CONTOUR, or TV). The Direct graphics system is simpler to use in some situations,
but lacks some of the display management features of the Object graphics system. As
a result, on most newer systems you will want to tell IDL to use a maximum of 256
colors in its graphics displays by entering the following command at the IDL
command prompt:

DEVICE, RETAIN=2, DECOMPOSED=0
Using this Manual Getting Started with IDL

Chapter 1: The Power of IDL 11
Other Resources

This manual provides examples that will give you a glimpse of the many ways IDL
can speed your data analysis, visualization, and cross-platform development tasks.
The following are some additional resources that can help you continue learning
about IDL.

IDL Documentation

The IDL documentation set is installed along with IDL in hypertext format. To view
the documentation, enter “?” at the IDL> prompt or select Help Contents from the
Help menu of the IDL Workbench.

IDL’s online help system is fully hyperlinked and indexed, and includes a powerful
full-text searching mechanism. See “Getting Help” on page 35 and the Using IDL
Help topic in the IDL Online Help system for information on using the help system
itself.

In addition, Adobe Portable Document Format (PDF) versions of most books in the
IDL documentation set are included in the info/docs directory of the IDL
distribution disk.

ITT Visual Information Solutions Web Site

The ITT Visual Information Solutions web site (www.ittvis.com) provides
additional information about IDL and other ITT Visual Information Solutions
products. On our web site you will find:

• User forums, which allow you to correspond directly with other users of IDL
to discuss problems, solutions, and techniques.

• The ITT Visual Information Solutions Code Contribution Library, which
allows you to share source code, images, data, and more with other IDL users.

• Tips and Tricks for using IDL.

• Technical Support resources, including a database of common IDL questions
and answers.

• Stories about customers’ innovative uses of IDL.
Getting Started with IDL Other Resources

12 Chapter 1: The Power of IDL
IDL Workbench Welcome Page

Numerous local and web-
based resources are
available within the IDL
Workbench interface.
Select Welcome from the
Help menu to display the
Welcome screen, then
click on What’s New to
gain access to up-to-date
information from ITT
Visual Information
Solutions, including news
and announcements of
new downloadable
modules for IDL. Click on Web Resources to get quick access to developer news
items, user forums, and other network resources. Click on Tutorials to access short
lessons describing how to accomplish common tasks in IDL and the IDL Workbench.

IDL Newsgroup

The IDL newsgroup is an independent forum for IDL users to discuss problems and
solutions in IDL. Point your news reading software at the comp.lang.idl-pvwave
USENET newsgroup, or use a web-based reader such as

http://groups.google.com/group/comp.lang.idl-pvwave

to read and join in the discussion.
Other Resources Getting Started with IDL

Chapter 2

Super Quick Start
If you’d like to begin experimenting with IDL right away, before reading any more,
try the following things:

Open the IDL Workbench

The IDL Workbench is a graphical interface and code development environment for
IDL. To start the IDL Workbench:

• On Windows platforms, use the Start menu to select IDL Workbench from
the IDL 7.1 program group.

• On Macintosh platforms, click on the IDL Workbench icon in the IDL 7.1
folder or launch an X11 terminal window and type idlde at the prompt.

• On Solaris and Linux systems, type idlde at the shell prompt.

The IDL Workbench is described in more detail in “The IDL Workbench” on
page 19.
Getting Started with IDL 13

14 Chapter 2: Super Quick Start
Display an Image

To quickly display an image using IDL:

1. Select File → Open in
the IDL Workbench and
browse to the
examples/data
subdirectory of your IDL
installation.

2. Select the file rose.jpg
and click Open. The
image is displayed in an
iImage window.

IDL’s image display and image
processing facilities are
described in more detail in
“Images” on page 53.

Create a 2-D Plot

To further analyze the image displayed in the previous section, you might want to
create a plot showing the values of selected pixels plotted against their positions in
the image (a line profile). You can do this in two ways:

• Click the Line Profile button in the iImage tool and draw a line
interactively across the image. Three line profiles — one each for the red, blue,
and green channels of the image, are displayed in an iPlot window.

• Select a line in the image array numerically. To do this, we’ll use the IDL
variable ROSE_JPG created automatically when we open the rose.jpg file in
the previous section. (If you haven’t already, go back and do that now.)

Use the Variables view in the IDL Workbench to inspect the ROSE_JPG
variable, or type

HELP, ROSE_JPG

at the IDL command prompt. This shows us that the ROSE_JPG variable is a
[3, 227, 149] byte array consisting of red, green, and blue image planes,
each of which is a 227 x 149 pixel array. To extract a single vector of data,
we’ll use IDL’s array indexing syntax:

rose_slice = REFORM(ROSE_JPG[0,200,*])
Getting Started with IDL

Chapter 2: Super Quick Start 15
This tells IDL to create a
new variable named
rose_slice that contains a
vector consisting of the 149
elements found in column
200 of the red image plane
(image plane 0, which is the
first image plane in the
array).

Finally, enter

iplot, rose_slice

at the IDL command prompt.
The iPlot window displays
the selected line profile.

Clearly, creating a line profile
interactively using the iImage tool
is quicker in this example, but numerically selecting a vector from within an array is
more precise and can be accomplished without mouse interaction.

Tip
You can quickly modify the appearance of your plot using the iTools property sheet
controls. Simply double-click on an item (the plot line, for example) to display the
property sheet. Change the selected options and see the results immediately.

IDL provides many tools for creating, annotating, and modifying two-dimensional
plots. See “Line Plots” on page 41 for additional details.

Overlay an Image on a Map

If your data is associated with geographic coordinates, you can easily overlay your
data on a map using any of several map projections available in IDL:

1. Enter imap at the IDL command prompt. The iMap window appears.

2. Select File → Open in the iMap window and browse to the examples/data
subdirectory of your IDL installation.

3. Select the file avhrr.png and click Open. The iMap Register Image wizard
appears, allowing you to specify how the pixels in the image map to
geographic coordinates.
Getting Started with IDL

16 Chapter 2: Super Quick Start
4. Click Next, then Finish
in the Register Image
wizard to accept the
default values.

5. On the Map tab, click
Edit Projection and
select Mollweide in the
Projection field and
click OK.

6. Select Insert → Map →
Countries (low res)
to overlay country
boundaries.

See “Maps” on page 65 for
more on working with maps in IDL.

Create a Simple IDL Program

Creating and running a program in IDL can be as simple as this:

1. Create a new IDL source file in the IDL Workbench by clicking the New IDL
Source file toolbar button .

2. Enter the following text in the editor window:

PRO helloWorld

PRINT, 'Hello, World!'

END

3. Select File → Save and then click OK in the Save As dialog that appears,
accepting the default filename and location. (This saves your code in a file
named helloworld.pro in your default IDL project directory.)

4. Select Run → Run helloworld or press F8. Your routine is compiled and the
string Hello, World! is printed in the Console view.

Tip
You could also run your program by entering helloworld at the IDL command
prompt, or from within another IDL program.
Getting Started with IDL

Chapter 2: Super Quick Start 17
See “Programming in IDL” on page 115 for more on creating programs in the IDL
language.

Get Help

IDL provides several ways to get help, depending on what sort of assistance you
require:

• To launch the IDL online help system, which contains both reference and user
documentation for IDL, select Help Contents from the Help menu or type “?”
at the IDL> prompt. See the Using IDL Help topic in the IDL Online Help for
more information.

• In the Editor view of the IDL Workbench, hover the mouse pointer over name
of a procedure or function. After a second, text describing the syntax of the
routine appears. For example, if you type a = sin in an editor window and
hover the mouse pointer, you’ll see something like this:

This display (known as “hover help”) shows you the syntax for the SIN
routine. Note that IDL keyword values are always shown as “null” in the hover
help display.

• Click on a routine name in the editor window. Press F1 (Windows/Macintosh)
or Shift+F1 (Solaris/Linux). The full IDL help entry for the routine is
displayed.

• Begin a new line in the editor and type the following:

file = dialog

Without moving the cursor from the end of the word “dialog”, press
Ctrl+space. The following windows appear:

This display is known as “content assist.” Use the arrow keys to select
DIALOG_PICKFILE() from the left-hand list, noting that the syntax for the
DIALOG_PICKFILE function is displayed. Press Enter and the function
name is inserted into the editor window. Press Ctrl+space again to see the list
Getting Started with IDL

18 Chapter 2: Super Quick Start
of keywords for the routine, followed by functions whose values could be
entered as arguments.

Note
Content assist is also available in the IDL Command Line view.
Getting Started with IDL

Chapter 3

The IDL Workbench
This chapter introduces the IDL Workbench and its capabilities.
About the IDL Workbench 20
Perspectives . 23
IDL Workbench Tour 24
Compiling and Running an IDL Program . . 31

Breakpoints and Debugging 32
Getting Help . 35
Preferences . 37
Updating the IDL Workbench 38
Getting Started with IDL 19

20 Chapter 3: The IDL Workbench
About the IDL Workbench

IDL includes a graphical front-end called the IDL Workbench that provides
sophisticated code management, development, and debugging tools. The Workbench
is created using the Eclipse framework — an extensible cross-platform environment
that appears as a native application on all platforms. The IDL Workbench looks and
behaves like a Windows application on Windows machines, like a Macintosh
application on Macintosh machines, and like a Linux or Solaris application on those
systems.

Note that the Eclipse features that make up the IDL Workbench are just a front-end:
IDL’s powerful computational engine is still used to analyze and display your data.

For additional information on working with IDL and the IDL Workbench, refer to the
Using IDL manual, located in the IDL Online Help.

Starting the IDL Workbench

Note
For information on installing and licensing IDL, see the IDL installation
instructions for your platform.

To start the IDL Workbench, follow the instructions according to your Operating
System:

Operating
System IDL Workbench Instructions

Windows Select Start → IDL <version> → IDL Workbench

Solaris/Linux At the shell prompt, enter idlde

MacOS X In your IDL installation folder, double-click on the IDL
Workbench icon

OR

At the X11 Terminal window shell prompt, enter idlde
About the IDL Workbench Getting Started with IDL

../com.rsi.idl.doc.core/Introducing_IDL.html

Chapter 3: The IDL Workbench 21
Command Line Options

You can alter some IDL behaviors by supplying command-line switches along with
the command used to invoke IDL. IDL’s options are described in detail in Command
Line Options for IDL Startup in the IDL Online help, but the following are among the
most useful.

-batch

Syntax: idlde -batch filename

Specifies that filename should be executed in non-interactive “batch” mode. Note that
filename should specify the full path to the batch file.

-e

Syntax: idlde -e IDL_statement

Specifies a single IDL statement to be executed. Once the statement has executed,
IDL waits for any widget applications to exit, and then IDL itself exits. Only the last
-e switch on the command line is honored.

Note
If the IDL statement includes spaces, it must be enclosed in quote marks.

-nl

Syntax: idlde -nl locale

Selects a different locale (language). Locale is a two-letter abbreviation, such as en
(English), fr (French), it (Italian), or ja (Japanese).

Eclipse and the IDL Workbench are both internationalized, but do not share the same
language list. If a language is chosen that both platforms do not support, there will be
translation mismatches in the UI (Eclipse portions of the UI will be documented in
one language, and IDL Workbench portions documented in another).
Getting Started with IDL Command Line Options

22 Chapter 3: The IDL Workbench
Starting IDL in Command Line Mode

In command-line mode, IDL uses a text-only interface and sends output to your
terminal screen or shell window. Graphics are displayed in IDL graphics windows.

To start IDL in command-line mode, follow the instructions according to your
Operating System:

For more information about using IDL in command-line mode, see the Launching
IDL topic in the IDL Online Help.

Tip
The command line options described above are also useful in command-line mode.

Operating
System Command-line Mode Instructions

Windows Select Start → IDL <version> → IDL Command Line

Solaris/Linux At the shell prompt, enter idl.

MacOS X In your IDL installation folder, double-click on the IDL icon

OR

At the X11 Terminal window shell prompt, enter idl.
Starting IDL in Command Line Mode Getting Started with IDL

Chapter 3: The IDL Workbench 23
Perspectives

A perspective is a collection of workbench views that combine to make it easy to
accomplish the work you want to perform. For example, if you want to quickly
visualize data, use the Visualize perspective. When you are programming, you may
want to use the IDL perspective. To troubleshoot your code, use the Debug
perspective.

All the perspectives show the command line, the console, and the editor, which are
important no matter what you are doing in IDL.

The differences between the perspectives are:

• Visualize Perspective—contains the Visualization Palette and makes the
Variables view more prominent. The main workflow in this perspective is to
drag and drop variables onto the tools in the Visualization Palette.

• IDL Perspective—shows a larger Editor view and Project Explorer. The main
workflows for this perspective are creating and running IDL programs.

• Debug Perspective—contains the Debug and Program Outline views, and
makes the Variables and Breakpoints views more prominent. The main
workflows for this perspective are creating and troubleshooting IDL programs.

As you work in the Workbench, you will probably switch perspectives frequently.

The Perspectives tab is located at the top right of the IDL Workbench. To switch
perspectives, simply click on the perspective’s name in the Perspectives tab at the top
right of the IDL Workbench:

Customizing IDL Perspectives

You can customize any of the perspectives to reflect your own workflows and
preferences. Views can be rearranged within the perspective, added to the
perspective, or removed from the perspective as you choose. For instructions on how
to move views, see the Views topic in the IDL Online Help.

You can always restore IDL’s default configuration for a perspective by selecting
Window → Reset Perspective ...
Getting Started with IDL Perspectives

24 Chapter 3: The IDL Workbench
IDL Workbench Tour

Figure 3-1: The IDL Workbench

The following sections discuss the components of the IDL Workbench.

Menu Bar

The menu bar, located at the top of the
IDL Workbench window, allows you to
control various Workbench features.

You can display menu commands for each menu using the following methods:

• Clicking the menu on the menu bar.

• Pressing Alt (Option on the Macintosh) plus the underlined letter in the
menu’s title. For example, to display the File menu in Windows, press Alt+F.

Menu Bar
Toolbar Editor Area

Views

Perspective Buttons
IDL Workbench Tour Getting Started with IDL

Chapter 3: The IDL Workbench 25
You can select or execute a menu command using the following methods:

• Clicking the item in the menu.

• Pressing Alt (Option on the Macintosh) plus the underlined letter in the
menu’s title, and then pressing the letter underlined in the menu item. For
example, to select the menu item Edit → Undo in Windows, press Alt+E+U.

Note
Many menu items have alternate keyboard shortcuts. If a command has a keyboard
shortcut, it is displayed to the right of the menu item.

Toolbar

The IDL Workbench toolbar buttons provide a shortcut to execute the most common
tasks found in the main menu. When you position the mouse pointer over a toolbar
button, a brief command description is displayed next to it (along with the keyboard
shortcut, if applicable).

Views

Views are movable windows inside the IDL Workbench that display data, do
analyses, and allow you to interact with the command line interpreter and compiled
programs. For example, the Console view displays output from the command line and
compiled programs.

Moving Views

A view might appear by itself or stacked with other views in a tabbed window. You
can change the layout of a perspective by opening and closing views and by docking
them in different positions in the Workbench window.

There are a number of options for moving views:

• You can move a view to another location by clicking on the view's tab and
dragging it to another spot on the Workbench. You can move a view so that it
occupies its own window, or you can move a view into a group of existing
views (as a new tab).

• A view tab's context menu contains the Detached option, which allows you to
detach the view into its own Workbench-independent window. The context
menu's Move → View option lets you move a single view, and the
Move → Tab Group option lets you move a group of views (as a collection of
tabs).
Getting Started with IDL IDL Workbench Tour

26 Chapter 3: The IDL Workbench
Maximizing Views

You can maximize a view within the workbench interface by double-clicking on the
view's tab. All other views are automatically minimized. Double-click on the view's
tab again to restore it and all other views to the original size.

The following sections explain all the views that appear by default when you first run
the IDL Workbench, but there are more views available. To display one of the other
views, select it from the Window → Show View menu.

Tool Palette View

The Tool Palette is a graphical interface that allows you to quickly visualize data
variables. This view is available only in the Visualize perspective. The Palette
contains options for visualizing plot, image, surface, contour, map, and volume data.
Simply drag a variable from the Variables view to create a visualization.

Figure 3-2: Tool Palette

Tools Actions
for tools

Action

Toggle

Pulldown

Menu
Minimize

Maximize

Drag actions to the command line, to an editor,
or overplot onto an existing visualization
IDL Workbench Tour Getting Started with IDL

Chapter 3: The IDL Workbench 27
For greater control over the visualization that is created, click the Action toggle in the
Tool Palette menu bar do display the actions associated with each tool. Drag variables
from the Variables view to the highlighted fields in the actions and click the button to
create the visualization.

Project Explorer

The Project Explorer view provides a hierarchical
view of the resources in the IDL Workbench. From
here, you can open files for editing or select
resources for operations such as exporting.

Outline

The Outline view displays a structural outline of the
file that is currently open in the editor area. The
Outline view shown at right displays a list of the
procedures contained in a .pro file.

Editors

IDL source files have the
“.pro” extension. The
IDL Workbench can host
many different types of
editors, but .pro files are
edited using the IDL-
supplied .pro file editor.

The editor area of the IDL
Workbench contains the
file editor windows. Any number of editors can be open at once, but only one can be
Getting Started with IDL IDL Workbench Tour

28 Chapter 3: The IDL Workbench
active at a time. By default, editors are displayed as tabs inside the editor area. An
asterisk (*) indicates that an editor has unsaved changes.

Although you will mostly use the IDL-supplied editor to work with .pro files, the
IDL Workbench supports many types of popular editors.

Variables

The Variables view displays the
values of variables in the current
execution scope. In the Visualize
perspective, you can drag
variables from the Variables view
to the Tool Palette to create
visualizations. In the Debug
perspective, the Variables view allows you to see variable values in the routine in
which execution halted. If the calling context changes during execution—as when
stepping into a procedure or function—the variable list changes to reflect the current
context.

For more information on using the Variables view while debugging, see “Viewing
Variable Values” on page 32.

Tip
Right-click on a variable to delete it from the Variables view and from IDL memory.

Visualizations View

When no visualizations are created, the Visualizations view displays links to the
tutorial video and to the relevant online help topic:

When a visualization is created, this view displays thumbnail images that represent
the current visualizations. This view also allows you to control visualizations. To
view a visualization, simply click on the associated thumbnail image. The blue border
around the thumbnail indicates the current iTool. Any overplot action will affect the
current (selected) iTool.
IDL Workbench Tour Getting Started with IDL

Chapter 3: The IDL Workbench 29
To close a visualization, right-click on it and select Close. To close all visualizations,
click the double-x icon in the upper right of the view.

Console

The Console view displays output from both the
IDL command line and compiled IDL programs.
This output includes:

• Commands entered at the IDL command line

• IDL command output and errors

• IDL program output

• Compilation information and errors

Command History

The Command History view displays a list
of commands entered at the IDL command
line. You can copy one or more previous
commands and paste or drag them to an
editor or to the IDL command line. You can
also double-click a single command to
execute it immediately.

Command Line

The Command Line view
displays the IDL command
line, which is used to execute IDL statements, compile and launch applications, and
create main-level programs.

Tasks

The Tasks view displays tasks
inserted into code files. A task
is a short text string explaining
an action to be completed, in
Getting Started with IDL IDL Workbench Tour

30 Chapter 3: The IDL Workbench
relation to a particular line of code. When you are done with a task, you can remove it
or mark it as completed.

Projects

In IDL, a project is a directory that contains source code files and other resources
(data, image files, documentation, and so on). Projects are especially useful as logical
containers for related source code and resource files. A project is saved within the
IDL workspace (which is discussed later in the chapter).

While you can build and run individual .pro files, you can also build and run an
entire project, as well as configure how the project is built.

Workspaces

A workspace is a directory that contains project directories, metadata about the
contained projects, and information about the state of the IDL Workbench. Each
workspace “remembers” the arrangement of the IDL Workbench views and
perspectives. You can have as many different workspaces as you like, but only one
workspace can be loaded at once.

You can select any location and directory name for your workspace. By default, the
workspace directory is named IDLWorkspace and is located in your home directory
(as defined by the $HOME environment variable on UNIX-like platforms and in
Documents and Settings\username or Users\username on Windows
platforms).
IDL Workbench Tour Getting Started with IDL

Chapter 3: The IDL Workbench 31
Compiling and Running an IDL Program

To compile and run an IDL program using the IDL Workbench:

1. Open the file in the IDL editor:

• Use the Project Explorer view to select a file located in one of your
projects. Double-click on the file to open it in an editor.

• Alternately, use File → Open File to select a file from the file system. For
example, you could open the file
examples\demo\demosrc\d_uscensus.pro from the IDL
installation directory.

2. Compile the file by clicking the Compile button on the toolbar, or by
selecting Run → Compile filename, where filename is the name of the file
opened in the IDL editor.

3. Execute the file by clicking the Run button on the toolbar, or by selecting
Run → run filename, where filename is the name of the file opened in the IDL
editor.

Note
You do not need to explicitly compile your program each time you run it.
Clicking the Run button will compile the file automatically if it has not yet
been compiled. You do need to recompile your program if you compiled it
and then made changes to the source code.
Getting Started with IDL Compiling and Running an IDL Program

32 Chapter 3: The IDL Workbench
Breakpoints and Debugging

The IDL Workbench provides robust tools for finding and correcting problems in
your code.

Breakpoints

To set a breakpoint, place the cursor on the line where you want the breakpoint to
appear and press Ctrl-Shift-B or select Run → Toggle breakpoint. A blue dot
appears in the left-hand margin of the editor window.

You can also toggle breakpoints on and off by double-clicking in the left-hand margin
next to the line of code on which you want IDL to pause.

Debug Perspective

The IDL Workbench makes a distinction between editing and debugging code, and
provides the ability to switch automatically to the Debug perspective when an error or
breakpoint is encountered. The Debug perspective is a collection of the views most
useful for debugging and analyzing code.

See the Using the Debug Perspective topic in the IDL Online Help for details.

Viewing Variable Values

When you run a routine that contains a breakpoint, IDL will halt execution when it
reaches the breakpoint. When execution is halted, you can inspect the variable values
in the current execution scope using the Variables view or by hovering the mouse
pointer over a variable in the editor.

Stepping Through Code

When execution is halted due to a breakpoint or an error, you can execute single
statements using the Step commands on the Run menu. See the Stepping Through
Code topic in the IDL Online Help for details.
Breakpoints and Debugging Getting Started with IDL

Chapter 3: The IDL Workbench 33
Debugging a Short Program

Let’s walk through the process of debugging a short program. In this example, we’ll
create a program, set a breakpoint, inspect variable values, and step through the code.

1. To create a new .pro file, click the icon or select
File → New → IDL Source File.

A new editor window appears.

2. Enter the following text into the editor window:

PRO tinyRoutine
; Create a string variable
myString = 'This is a tiny IDL routine'
PRINT, mystring
; Create some other variables
myNumber = 4
myResult = STRING(myNumber * !PI)
; Display the myResult variable
void = DIALOG_MESSAGE('Result: '+myResult)
END

3. To save your new .pro file, click the icon or select File → Save.

4. Select “Default” as the parent folder and click OK, accepting the default
filename (tinyroutine.pro).

5. To execute the program, click the icon, press F8, or select
Run → Run tinyroutine.

The program prints a string to the Console view, displays a dialog, and ends. If
you wanted to temporarily stop execution of your routine somewhere in the
middle, you would set a breakpoint.

6. Click OK on the dialog to clear it.

7. Position the cursor on the words PRINT, myString in the editor window.

8. Press Ctrl-Shift-B or select Run → Toggle breakpoint. A blue dot appears in
the left-hand margin of the editor window.

You can also toggle breakpoints on and off by double-clicking in the left-hand
margin next to the line of code on which you want IDL to pause.
Getting Started with IDL Breakpoints and Debugging

34 Chapter 3: The IDL Workbench
9. Run the tinyroutine program again (press F8, click the icon, or select
Run → Run tinyroutine).

If this is the first time you have run a program with a breakpoint (or an error),
you will see the Confirm Perspective Switch dialog.

10. Click Yes to display the IDL Debug perspective.

The IDL Workbench interface is rearranged to add several new views at the top
of the screen: Debug, Variables, and Breakpoints.

Notice that the Variables view contains entries for the four variables defined in
the tinyroutine routine, but that only the MYSTRING variable is defined. It
is also instructive to examine the contents of the Debug and Console views
when IDL stops at a breakpoint.

11. Press F6, click the icon (on the toolbar in the Debug view), or select
Run → Step Over.

Note how the Debug, Console, Variables, and Editor views adjust as you
repeatedly step through your code.

12. When you have stepped to the end of
tinyroutine (you will see the text
“% Stepped to: $MAIN$” in the
Console view), click the IDL icon on
the Perspective toolbar to return to the IDL perspective.

For additional information on debugging, see the Debugging IDL Code topic in the
IDL Online Help.
Breakpoints and Debugging Getting Started with IDL

Chapter 3: The IDL Workbench 35
Getting Help

There are several sources of user assistance in the IDL Workbench:

• Hover Help

• Content Assist

• Context-Sensitive Interface Help

• Online Help System

Hover Help

Hover Help is displayed in a pop-up window that appears when you hover the mouse
cursor over the name of an IDL routine or variable. For routines, Hover Help displays
the syntax documentation. For variables, Hover Help displays the current value of the
variable (if execution is stopped in the routine in which the variable is defined).

Content Assist

Content Assistance is displayed in a pop-up window that appears when you place the
mouse cursor in a full or partial IDL routine name and press Ctrl-Space. The Content
Assist window displays a list of routine names that begin with the characters in the
selected string.

Highlighting an item from the Content Assist window displays the syntax for that
routine. Selecting the item inserts it at the cursor location.

Context-Sensitive Interface Help

If you are working through a task and encounter a part of the IDL Workbench
interface that you do not understand, you can summon context-sensitive help. By
default, this displays the Help view and gives you some specific information about
the view/editor/dialog you are using, and possibly some links to topics for further
help.
Getting Started with IDL Getting Help

36 Chapter 3: The IDL Workbench
Context-sensitive help can be accessed by clicking on the interface part in question
and then selecting Help → Dynamic Help or pressing F1 (Windows), Shift+F1
(Linux and Solaris), or Help (Macintosh). Clicking the ? icon in the lower left-hand
corner of many IDL Workbench dialogs will also display context-sensitive help.

Online Help System

For more in-depth information, including general information, programming
reference guides, and tutorials, refer to the IDL Online Help system. The Help system
lets you browse, search, bookmark, and print Help documentation.

Tip
See the Using IDL Help topic in the IDL Online Help for complete information on
using the IDL help system.

You can interact with the Workbench help system using either the Help view or a
separate Help browser. The view and browser provide the same information but in
different ways.

The Help View

The Help view provides help inside the Workbench. You can open the view from the
main menu by selecting Help → Dynamic Help or Help → Search. The view opens
showing the Related Topics or Search page, respectively. By default, typing ?
followed by a search term at the IDL command line also displays help topics in the
Help view. See the Help View Interface topic in the IDL Online Help for additional
information.

The Help Browser

The Help browser provides the same content as the Help view, but in a separate
browser application. You can open the window from the main menu by selecting
Help → Help Contents. The first view shown in the window displays the table of
contents for the product documentation. Click on one of the links to expand the
navigation tree for a set of documentation. On some platforms, the Help browser can
be either a stand-alone application or a web browser; on other platforms the Help
browser is always a web browser. See the Help Browser Interface topic in the IDL
Online Help for additional information.
Getting Help Getting Started with IDL

Chapter 3: The IDL Workbench 37
Preferences

Preferences that apply to the IDL
Workbench interface — editor
settings, syntax coloring, and code
templates, for example — are
controlled via the IDL Workbench
Preferences dialog. See the IDL
Preferences topic in the IDL
Online Help for details on IDL’s
workbench preferences. To display
the Preferences dialog, select
Preferences from the Window
menu of the IDL Workbench
interface. IDL Workbench
preferences are grouped together
under the heading IDL.

Note that the Preferences dialog also allows you to modify preferences for features
that are not specifically related to IDL. These preferences include things like the
external editors associated with specific file types, tasks to be invoked when starting
up or shutting down the workbench, and keybindings. These non-IDL preferences are
part of the Eclipse framework on which the IDL Workbench is built.

Use the filter text field at the top of the tree view in the Preferences dialog to
locate specific items in the Preferences dialog.

Note
IDL Workbench preferences apply only when the IDL Workbench is running, and
have no bearing on IDL programs. IDL System preferences, which control how IDL
executes code, are set within IDL itself. See the IDL System Preferences topic in the
IDL Online Help for details.
Getting Started with IDL Preferences

38 Chapter 3: The IDL Workbench
Updating the IDL Workbench

The IDL Workbench provides an easy way to update and add to your IDL installation
via the Internet. The Software Updates feature allows you to locate plugins that
provide new features or revisions to existing features and install them automatically.

Types of features you might install include:

• Updates to the IDL Workbench itself, provided by ITT Visual Information
Solutions.

• IDL features not included in the standard IDL distribution, such as file readers
or even entire code libraries. These additional features may be available from
the ITT Visual Information Solutions Code Contribution library or from other
repositories set up by third parties.

• Eclipse features not included in the standard IDL Workbench distribution, such
as source code managers (CVS, Subversion) or other productivity tools. These
features may be available from ITT Visual Information Solutions (as is the
plugin that integrates the CVS source code manager into the IDL Workbench)
or from third parties.

Warning
While adding plugins provided by third parties should leave the IDL-specific
features of the IDL Workbench unaltered, ITT Visual Information Solutions cannot
vouch for the stability, quality, or usefulness of plugins from other sources. If you
install a plugin that appears to adversely affect the IDL Workbench, uninstalling
that single plugin should resolve the problem.

Installing New Features

To install new features, do the following:

1. Select Help → Software Updates → Find and Install...

2. Select Search for new features to install and click Next>.

3. Select an update site or add a new update site.

The IDL Workbench includes the ITT Visual Information Solutions update site
and some Eclipse-related sites by default. You can easily add other update sites
to the list; see the Installing new features with the update manager topic in the
IDL Online Help for details.

For this example, select the ITT Visual Information Solutions update site.
Updating the IDL Workbench Getting Started with IDL

Chapter 3: The IDL Workbench 39
4. Additions to the IDL
Workbench itself are
contained in the
Workbench Updates
section. In this section
you will find plugins that
provide additional or
updated functionality to
the workbench interface.

The IDL Code
Contributions section of
the update site contains
features that augment the
IDL language. These
plugins generally contain
IDL source code, and
may consist of single routines, entire applications, or even code libraries.
Features available in this section have been created by IDL users either within
or outside ITT Visual Information Solutions. While they have not received the
rigorous quality assurance testing that IDL itself receives, they are of high
quality and may be useful depending on your needs.

5. After selecting a feature to install, click Next>. Read and accept the license
agreement for the feature, and click Next> again.

6. By default, plugins are installed in a subdirectory of the IDL installation
directory, and IDL’s search path is updated so that IDL can find the new plugin.
You can install plugins in other directories by clicking Change Location; note,
however, that if you install plugins in a different location you may need to
manually modify IDL’s search path.

Updating Existing Features

To search for updates to features you have already installed, including the IDL
Workbench itself:

1. Select Help → Software Updates → Find and Install...

2. Select Search for updates of the currently installed features and click
Next>.

3. The Update manager searches the network for updates to features in your
current installation.
Getting Started with IDL Updating the IDL Workbench

40 Chapter 3: The IDL Workbench
4. If it finds updates available, select the features you want to update and click
Next>. Read and accept the license agreement for the feature, and click Next>
again.

Managing Your Configuration

You can also use the Product Configuration dialog to manage your installation,
search for updates, and disable specific plugins.

Select Help → Software Updates → Manage Configuration to display the
Product Configuration dialog.
Updating the IDL Workbench Getting Started with IDL

Chapter 4

Line Plots
This chapter shows how to display and modify two- and three-dimensional plots with the iPlot tool
and Direct graphics.
IDL and 2-D Plotting 42
Plotting with iPlot . 44

Plotting with Direct Graphics 50
IDL and 3-D Plotting 52
Getting Started with IDL 41

42 Chapter 4: Line Plots
IDL and 2-D Plotting

This section demonstrates how to create and manipulate two-dimensional plots using
the Visualization Tool Palette, the iPlot tool, and IDL’s Direct graphics system.

To learn more about plotting linear data in IDL, see the Line Plots topic in the IDL
Online Help.

For more information on working with the iPlot tool, see the Working with Plots topic
in the IDL Online Help.

For a list of Direct graphics plotting routines, refer to the Plotting section of the
Functional List of IDL Routines topic in the IDL Online Help.
IDL and 2-D Plotting Getting Started with IDL

Chapter 4: Line Plots 43
Plotting with the Tool Palette

Using the Tool Palette is an easy way to quickly display your data in graphical form,
without any IDL programming. To create a simple plot with an overplot:

1. Make sure you are viewing the IDL Visualize Perspective. (Click the Visualize
icon in the upper right of the Workbench.)

2. Enter the following variables at the command line:

A=2*!PI/100*FINDGEN(300)
X=sin(a)
Y=cos(a)

The A, X, and Y variables appear in the
Variables View.

3. From the Variables View, drag the x
variable to the Plot Tool.

The data displays in the iPlot tool.

4. Leave the iPlot window open and return to
the IDL Workbench. Notice a plot shown in
the Visualizations view.

5. Click on the Action toggle icon () to expand the Tools Palette to display the
Actions.

6. Click on the Plot tool to display the Plot Actions. In the first action, you should
see X displayed in the variable field.

7. From the Variables view, drag the Y variable on top of the X
in the first action.

8. Now click on the down arrow next to the IPLOT button in
that action, and select IPLOT, /OVERPLOT.

The two plots
now display in the original iPlot
window:
Getting Started with IDL Plotting with the Tool Palette

44 Chapter 4: Line Plots
Plotting with iPlot

The IDL iPlot tool displays your data in plot form. The iPlot tool then allows you
great flexibility in manipulating and visualizing plot data. iPlot can be used for any
type of two- or three-dimensional plot, including scatter plots, line plots, polar plots,
and histogram plots.

Creating a Simple 2-D Plot

To create a simple line plot in the iPlot tool,
enter the following code at the IDL command
line:

iPlot, RANDOMU(seed, 20)

In this case, we are using the RANDOMU
function to return twenty uniformly-distributed,
floating-point, pseudo-random numbers that are
greater than 0, and less than 1.0.

Creating a 2-D Overplot

In the iPlot tool, you may plot a new data set
over a previously-drawn data set. This
process (called overplotting) is useful for
directly comparing multiple data sets.

In this example, we will plot a cosine wave
on top of a sine wave.

1. The variable theory stores the points of a sine wave of decreasing amplitude.

theory = SIN(2.0*FINDGEN(200)*!PI/25.0)*EXP(-0.02*FINDGEN(200))

2. Plot the sine wave in the iPlot tool.

IPLOT, theory

3. Create the variable newtheory to contain cosine wave points.

newtheory=COS(2.0*FINDGEN(200)*!PI/25.0)*EXP(-0.02*FINDGEN(200))
Plotting with iPlot Getting Started with IDL

Chapter 4: Line Plots 45
4. Overplot the cosine data in the iPlot tool.

IPLOT, newtheory, /OVERPLOT, $
LINESTYLE=2

This plots the second line in the same iPlot
window as the first. The LINESTYLE
keyword changes the line style property of
the plot to display a dashed line rather than
a solid line. You can also overplot in the
iPlot tool simply by loading new data over
an older data set.

Plotting an ASCII Data Set

In this example, we will import an ASCII data set into IDL and plot it with the iPlot
tool. Enter the following code at the IDL command line:

1. Create an ASCII template, which defines the format of a particular ASCII file.
IDL will use this template to import the data. The plotTemplate variable
contains the template.

plotTemplate = ASCII_TEMPLATE()

2. A dialog appears, prompting you to select a file. Select the plot.txt file in
the examples/data subdirectory of the IDL distribution.

After selecting the file, the ASCII Template dialog appears.

3. Select the Delimited field type, since the ASCII data is delimited by tabs (or
spaces).

4. In the Data Starts at Line box, enter a value of 3. (The data does not start at
line 1 because there are two comment lines at the beginning of the file.)

5. Click Next.

6. In the Delimiter Between Data Elements section, select Tab.

7. Click Next.

8. Name the ASCII file fields by selecting a row in the table at the top of the
dialog and entering a value in the Name box.

• Click on the table’s first row (FIELD1). In the Name box, enter time.

• Select the second row and enter temperature1.

• Select the third row and enter temperature2.
Getting Started with IDL Plotting with iPlot

46 Chapter 4: Line Plots
9. Click Finish.

10. Enter the following code at the IDL command line to import the ASCII data
file plot.txt using the custom template plotTemplate.

plotAscii = READ_ASCII(FILEPATH('plot.txt', SUBDIRECTORY= $
['examples', 'data']), TEMPLATE=plotTemplate)

11. Plot the temperature1 vs. time data.

IPLOT, plotAscii.time, $
plotAscii.temperature1

For more information on importing ASCII
data, see the Reading ASCII Data topic in the
IDL Online Help.

Adding Plot Titles

The iPlot tool allows you to modify your plots by
adding elements such as error bars, legends, and
axis titles. You can also manipulate the plot with
tools such as curve fitting or filtering.

In this example, we will add a main title and axis
titles to the ASCII data plot we created
previously. The VIEW_TITLE keyword adds a
main title, and the XTITLE and YTITLE
keywords add axis labels. If you have not already
done so this session, do the example “Plotting an
ASCII Data Set” on page 45.

Enter the following code at the IDL command line, which will create a new iPlot
dialog and add titles to the plot.

IPLOT, plotAscii.time, plotAscii.temperature1, $
VIEW_TITLE='Temperature Over Time', $
XTITLE='Time in Seconds', $
YTITLE='Temperature Celsius'

Alternately, you could add title annotations to an existing plot by selecting the Text
tool , positioning the cursor at the location where you want the title to appear, and
typing the text. Double-clicking on the text displays the text annotation property
sheet, which allows you to modify the size, font, color, and other properties of the
annotation.
Plotting with iPlot Getting Started with IDL

Chapter 4: Line Plots 47
Changing the Data Range of a Plot

Your data set may contain more data than you
want to display in a particular plot. While you
could use IDL’s array subscripting syntax to
create a subset of the original array, it is often
easier to simply limit the range used when
creating the plot display.

For example, suppose you wanted to restrict the
range displayed in your plot to show only time
values (the X-axis) between 15 and 18 seconds, and temperature values (the Y-axis)
between 8 and 13 degrees. Using the [XYZ]RANGE keywords to the IPLOT routine
allows you to do this when creating the plot:

IPLOT, plotAscii.time, plotAscii.temperature1, $
XRANGE=[15,18], YRANGE=[8,13]

Alternately, you could start by displaying the full data range in iPlot, and then alter
the Dataspace properties to reflect the new X and Y ranges:
Getting Started with IDL Plotting with iPlot

48 Chapter 4: Line Plots
Using Plotting Symbols and
Line Styles

When plotting several data sets in a single plot, it
is often useful to use symbols, line styles, and
legends to differentiate between the data sets.
The following procedure created the plot shown
at right.

1. First, plot the temperature1 values
using the standard (solid) line style and a
diamond symbol to mark the data points:

IPLOT, plotAscii.time, plotAscii.temperature1, SYM_INDEX=4

Note that we set the SYM_INDEX keyword equal to four to create the
diamond symbols.

2. Next, overplot the temperature2 values using a dashed line
(LINESTYLE=2) and a triangle symbol to mark the data points
(SYM_INDEX=5):

IPLOT, plotAscii.time, plotAscii.temperature2, SYM_INDEX=5, $
LINESTYLE=2, /OVERPLOT

3. To insert a legend, click in the plot area to select it (the axis lines around the
plots will be highlighted), then select New Legend from the Insert menu. The
legend is created using default names for the data sets (Plot and Plot1).

4. Double click on Plot in the legend to bring up the property sheet, and change
the value in the Text field to Temperature 1. Similarly, change Plot1 to
Temperature 2.

Adding Error Bars

You can add error bars to your plot using the [XYZ]ERROR keyword to IPLOT.

Suppose you know that the temperature values
you have collected are only accurate within 0.3
degrees Celsius. To include error bars on your
plot of temperature versus time, you would do
the following:

1. Create an array with the same number of
elements as you have temperature
readings:
Plotting with iPlot Getting Started with IDL

Chapter 4: Line Plots 49
error_bars = FLTARR(N_ELEMENTS(plotAscii.temperature1))+0.3

This creates a floating-point array with the same number of elements as the
plotASCII.temperature1 array, setting each element’s value equal to 0.3.

Note
The size of the error bar does not need to be the same for every data point.
Each element in the error_bars array could contain a different value.

2. Use the YERROR keyword to add the error bars:

IPLOT, plotAscii.time, plotAscii.temperature1, YERROR=error_bars
Getting Started with IDL Plotting with iPlot

50 Chapter 4: Line Plots
Plotting with Direct Graphics

In IDL’s Direct graphics system, plots are created with the PLOT procedure.

Creating plots using Direct graphics is not as convenient as using the iPlot tool, but
may be desirable if you are incorporating images into a larger widget-based
application, or if you need to programatically create a large number of processed
images.

Creating a Simple 2-D Plot

In this example, we will plot a sine wave using the Direct graphics PLOT procedure.

1. Since we are using Direct graphics, tell
IDL to use a maximum of 256 colors and
load a simple grayscale color map.

DEVICE, RETAIN=2, DECOMPOSED=0
LOADCT, 0

2. Create the X-axis values. The FINDGEN
function creates an array of one hundred
elements, with each element equal to the
value of the element’s subscript.

X= 2*!PI/100 * FINDGEN(100)

3. Create the plot.

PLOT, SIN(X)

Creating a 2-D Overplot

As with the IDL iPlot tool, you can overlay plots
in Direct graphics. This is accomplished with the
OPLOT procedure.

It is often a good idea to change the color, line
style, or line thickness parameters when calling
OPLOT to distinguish the data sets. Refer to the
OPLOT topic in the IDL Online Help for more
information.

1. If you have not already done so, do the
example “Creating a Simple 2-D Plot” on
page 50.
Plotting with Direct Graphics Getting Started with IDL

Chapter 4: Line Plots 51
2. Overplot a new sine wave with twice the frequency. Make the line twice as
thick.

OPLOT, SIN(2*X), THICK = 2

3. Overplot yet another sine wave with triple the frequency. Instead of a line, use
long dashes.

OPLOT, SIN(3*X), LINESTYLE = 5

Printing a Direct Graphics Window

To print an image from an iTool window, you simply select Print from the iTool’s
Filemenu. Printing the contents of a Direct graphics window is more involved. To
print a Direct graphics plot, enter the following commands at the IDL command line:

1. Save the current plotting environment variable to a local variable.

MYDEVICE=!D.NAME

2. Designate the printer as the plot destination.

SET_PLOT, 'printer'

3. Plot your data, with the output now directed to the printer.

PLOT, SIN(X)

4. Close the printing device.

DEVICE, /CLOSE

5. Restore the original output device for your plots.

SET_PLOT, MYDEVICE

See The Printer Device topic in the IDL Online Help for information on choosing a
system printer for use when printing Direct graphics windows.

Note
If you experience problems printing on a UNIX platform, check that your printer is
correctly configured. For more information, refer to the IDL Printer Setup for UNIX
or Mac OS X topic in the IDL Online Help.
Getting Started with IDL Plotting with Direct Graphics

52 Chapter 4: Line Plots
IDL and 3-D Plotting

IDL can also create three-dimensional
line plots. As an example, enter the
following code at the IDL command
line to create a simple
three-dimensional plot with the iPlot
tool:

x = FINDGEN(200)
IPLOT, x * COS(x/10), $

x * SIN(x/10), $
x,SYM_INDEX=5

For more information on other types of
three-dimensional plots, see “Surfaces
and Contours” on page 81.
IDL and 3-D Plotting Getting Started with IDL

Chapter 5

Images
This chapter shows how to display and process images with the iImage tool and Direct graphics.
IDL and Images . 54
Displaying Images . 55

Displaying Images with Direct Graphics . . 63
Getting Started with IDL 53

54 Chapter 5: Images
IDL and Images

IDL is ideal for working with image data because of its interactive operation, uniform
notation, and array-oriented operators and functions. Images are easily represented as
two-dimensional arrays in IDL and can be processed just like any other array. IDL
also contains many procedures and functions specifically designed for image display
and processing. The IDL Workbench provides the Tool Palette in the Visualize
Perspective to quickly visualize data without IDL programming. In addition, the
iImage tool allows you great flexibility in manipulating and visualizing image data.

To learn more about IDL’s image processing capabilities, see the Image Processing
user guide in the IDL Online Help.

For more information on working with the image tools, see the Image Visualizations
and Working with Images topics in the IDL Online Help.

For more information on working with images in Direct Graphics, see the Displaying
Images in Direct Graphics topic in the IDL Online Help.
IDL and Images Getting Started with IDL

../com.rsi.idl.doc.gs/Displaying_Images_with_Direct_Graphics.html
../com.rsi.idl.doc.gs/Displaying_Images_with_Direct_Graphics.html

Chapter 5: Images 55
Displaying Images

You can easily create image visualizations using the Tool Palette in the IDL Visualize
perspective or from the command line with the IIMAGE command. Either way, the
visualization displays in the IDL iImage tool, which allows you to visualize, modify,
and manipulate image data in an interactive environment.

For more information on working with the images using the Tool Palette, see the
Image Visualizations topic in the IDL Online Help.

For more information on working with the image tools, see the Working with Images
topic in the IDL Online Help.

Displaying Images Using
the Tool Palette

This example displays a TIFF image
of an aerial view above Manhattan.

1. Make sure you are viewing the
IDL Visualize Perspective.
(Click the Visualize button
() in the upper right of
the Workbench.)

2. In IDL, select File → Open File.

3. Navigate to the examples\data directory of your IDL installation.

4. Select the file image.tif.

Displaying Images Using IIMAGE

You can create the visualization shown in the previous section by opening the iImage
tool from the IDL command line:

1. At the IDL command line, enter iImage.

The iImage tool displays.

2. On the iImage tool, select File → Open, and select image.tif from the
examples\data subdirectory of your IDL installation.

3. Click Open, and the file is displayed in the iImage tool.
Getting Started with IDL Displaying Images

56 Chapter 5: Images
Resizing Images

There are several easy ways to resize an image in
the iImage tool:

• On the toolbar, select a percent value from
the Size menu (25%, 75%, and so on).

• On the toolbar, click the View Zoom button, click on the image, and use the
mouse scroll wheel to increase or decrease the image magnification.

Contrast Enhancement

Sometimes changing how the colors are represented is all you need to improve the
look of an image. IDL provides several ways to manipulate the contrast.

Thresholding

The Thresholding operation takes an image
containing a range of pixel values and
produces a two-value image (effectively a
black and white image). Specifically, all
the pixel values up to a certain value are
represented by either black or white pixels,
and all the pixel values above the threshold
value are represented by the opposite color.
For example, a threshold value of 150
produces an image in which all the pixel
values under 150 are represented by black
pixels, and all pixel values of 150 and
above are represented by white pixels.

In the following example, we use the “greater than” operator (GT) to create a
thresholded image in which pixel values greater than 140 are white and all others are
black.

1. Load the image.tif file into an IDL variable:

img = READ_TIFF(FILEPATH('image.tif', $
SUBDIRECTORY=['examples', 'data']))

2. The operation img GT 140 creates an array of ones and zeros. The BYTSCL
command transforms the array into values of 255 and zero.

Size MenuView Zoom
Displaying Images Getting Started with IDL

Chapter 5: Images 57
Scale the pixel values of the
image.tif file to the entire range
of a byte (0-256), and send all values
greater than 140 to the iImage tool.

IIMAGE, BYTSCL(img GT 140)

To create a thresholded image in which
pixels with values less than 140 are white
(the inverse of the previous example), enter
the following code at the IDL command
line:

IIMAGE, BYTSCL(img LT 140)

In many images, the pixels have values that
are only a small subrange of the possible
values. By spreading the distribution so that
each range of pixel values contains an
approximately equal number of members,
the information content of the display is
maximized. In IDL, the HIST_EQUAL
function performs this redistribution on an
array.

To display a histogram-equalized version of
image.tif, enter the following code at the
IDL command line:

IIMAGE, HIST_EQUAL(img)

Smoothing and Sharpening

Images can be rapidly smoothed to soften edges or
compensate for random noise in an image using IDL’s
Smooth filter. The Smooth filter performs an equally
weighted smoothing using a square neighborhood of an
arbitrary odd width, as shown below.

To smooth an image:

1. In the iImage tool, select File → Open, and select
image.tif from the examples\data
subdirectory of your IDL installation.

2. Click Open, and the file is displayed in the iImage
tool.
Getting Started with IDL Displaying Images

58 Chapter 5: Images
3. Select Operations → Filter → Smooth.

The Smooth dialog appears.

4. In the Width box, enter the value
7. This creates a 7 x 7 pixel-square
smoothing area.

The images at the bottom of the
dialog show the displayed file
before and after the filter is
applied. The image shown at right
is the smoothed image.

5. Click OK.

Unsharp Masking

The previous image looks a bit blurry because it contains
only the low-frequency components of the original image.
Often, an image needs to be sharpened so that edges or
high spatial frequency components of the image are
enhanced. One way to sharpen an image is to subtract a
smoothed image containing only low-frequency
components from the original image. This technique is
called unsharp masking.

To unsharp mask an image:

1. Using the smoothed image.tif file used in the
previous example, select
Operations → Filter → Unsharp Mask.

The Unsharp Mask dialog displays.

2. In the Radius in Pixels box, enter
the value 7.

The images at the bottom of the
dialog show the displayed file before
and after the filter is applied.

3. Click OK.
Displaying Images Getting Started with IDL

Chapter 5: Images 59
Sharpening Images with Differentiation

IDL has other built-in sharpening filters that use differentiation to sharpen images.
The Roberts filter is one of these, and returns the Roberts gradient of an image.

To apply the Roberts filter to an image:

1. Select File → Open, and select image.tif from the examples\data
subdirectory of your IDL installation.

2. Click Open.

The file is displayed in the iImage
tool.

3. Select
Operations → Filter → Roberts.

The Roberts filter is applied to the
displayed image.

Another commonly-used gradient
operation is the Sobel filter. IDL’s Sobel
filter operates over a 3 x 3 pixel region,
making it less sensitive to noise than
some other methods.

To apply the Sobel filter to an image:

1. Select File → Open, and select image.tif from the examples\data
subdirectory of your IDL installation.

2. Click Open.

The file is displayed in the iImage
tool.

3. Select
Operations → Filter → Sobel.

The Sobel filter is applied to the
displayed image.
Getting Started with IDL Displaying Images

60 Chapter 5: Images
Loading Alternate Color Tables

Try loading some of the predefined IDL color tables to increase the contrast of the
image.

1. After loading an image into the iImage tool, click Edit Palette (located on the
Image tab).

The Palette Editor dialog is displayed.

2. Click the Load Predefined... menu at the bottom of the dialog, and select a
color table menu item.

The loaded image will immediately incorporate the new color table. Go ahead
and play with different color tables to observe their effect on the image.

3. When you are finished experimenting with different color tables, select the
first color table in the menu, B-W Linear (the original black and white color
table you have been working with), and click OK.

Cropping Images

To crop an image:

1. Select File → Open, and select image.tif from the examples\data
subdirectory of your IDL installation.

2. Click Open.

The file is displayed in the
iImage tool.

3. Select Operations → Crop.

The Crop dialog displays.

4. Click on the image, and drag
the box around the tip of the
peninsula (actually
Manhattan island).
Displaying Images Getting Started with IDL

Chapter 5: Images 61
5. On the Crop dialog, click Crop.

The cropped portion of the original image is displayed
(the lower tip of Manhattan, in this case).

You may also crop an image directly using the toolbar:

1. Click the Crop button on the toolbar.

2. Click on the image and drag the box around the
peninsula.

3. Double-click inside the box.

The cropped portion of the original image is displayed.

Rotating Images

You can easily flip or rotate in image in the iImage tool.

To rotate an image 90 degrees clockwise:

1. If not already loaded, load the image.tif file and
crop Manhattan island (the procedure is explained in
“Cropping Images” on page 60).

2. Select Operations → Rotate or Flip → Rotate Right.

The rotated image is displayed.

Extracting Profiles

The Line Profile tool plots image pixel values
from a line drawn over your image. The resulting
2-D plot is displayed in a new iPlot window.

To create a line profile plot of an image:

1. On the iImage tool, select File → Open,
and select image.tif from the
examples\data subdirectory of your
IDL installation.

2. Click Open, and the file is displayed in the iImage tool.

3. On the iImage toolbar, click the Line Profile button.
Getting Started with IDL Displaying Images

62 Chapter 5: Images
4. Position the mouse pointer over the
spot on the image where you want to
start the line, and click.

5. Drag the pointer to the end point of
your line, and release the mouse
button.

A new plot window displays showing
a plot of the image pixel values that
fall along the line.

You can move the line around the image or change the endpoints, and the plot
window continuously updates.
Displaying Images Getting Started with IDL

Chapter 5: Images 63
Displaying Images with Direct Graphics

The following sections show examples of reading and displaying image data using
IDL’s Direct graphics system. Working with images using Direct graphics is not as
convenient as using the iImage tool, but may be desirable if you are incorporating
images into a larger widget-based application, or if you need to programatically
create a large number of processed images.

For a brief description of the IDL Direct graphics routines for displaying and
manipulating images, refer to the Direct graphics and Image Processing sections of
the Functional List of IDL Routines topic, found in the Online Help.

Displaying Images

Before processing an image, we must
import the image into IDL.

For this example, we will continue to use
the image.tif file.

1. Read the file by entering the
following code at the IDL
command line:

MYIMAGE=READ_TIFF(FILEPATH('image.tif', $
SUBDIRECTORY=['examples', 'data']))

Using the IDL command line, you can view an image with two different
routines. The TV procedure writes an array to the display in its original form.
The TVSCL procedure displays the image and scales the color values so that
all of the table colors are used (up to 256 colors).

2. Since we are using Direct graphics, tell IDL to use a maximum of 256 colors
and load a simple grayscale color map.

DEVICE, RETAIN=2, DECOMPOSED=0
LOADCT, 0

3. Display the image with the TV procedure:

TV, MYIMAGE
Getting Started with IDL Displaying Images with Direct Graphics

64 Chapter 5: Images
4. Display the color-scaled image
with the TVSCL procedure:

TVSCL, MYIMAGE

5. Dismiss the graphics windows by
clicking in the window’s close
icon or by entering WDELETE at
the command line:

WDELETE

Resizing Images

The REBIN function makes it easy to resize a vector or array to new dimensions. The
supplied dimensions must be proportionate (that is, integral multiples or factors) to
the dimensions of the original image. Since the original image array is 768 by 512,
we need to determine the correct dimensions of the resized image. To resize the
image to half the original size, simply take half of the array’s original dimensions.

1. Create a new image with new
dimensions using the REBIN
function:

NEWIMAGE=REBIN(MYIMAGE,384,256)

2. Display the image:

TV, NEWIMAGE
Displaying Images with Direct Graphics Getting Started with IDL

Chapter 6

Maps
This chapter describes the following topics:
IDL and Mapping . 66
Displaying iMaps Tool 67
Modifying Map Data 70
Fitting an Image to a Projection 71

Plotting a Portion of the Globe 72
Plotting Data on Maps 74
Warping Images to Maps 77
Displaying Vector Data on a Map 80
Getting Started with IDL 65

66 Chapter 6: Maps
IDL and Mapping

IDL’s mapping facilities allow you to plot data over different projections of the globe.
This chapter shows how to display various map projections and plot data over them.

The first part of this chapter demonstrates the mapping capabilities of the Tool Palette
and the iMap tool. The second part discusses how to work with direct graphics
statements at the IDL command line to demonstrate IDL’s interactive mapping
capability.

For additional information, see the following topics in the IDL Online Help:

• Map Visualizations for information on how to use the Tool Palette for mapping

• UsingIDL and IDL Reference Guide for information on the IDL mapping
routines

• Working with Maps in the iTool User’s Guide
IDL and Mapping Getting Started with IDL

Chapter 6: Maps 67
Displaying iMaps Tool

You can easily create map visualizations using the Tool Palette in the IDL Visualize
perspective or from the command line with the IMAP command. Either way, the
visualization displays in the IDL iMap tool, which allows you to visualize, modify,
and manipulate maps in an interactive environment.

The interactive iMap tool gives you great flexibility in manipulating and visualizing
map data. The iMap tool also allows you to manipulate and edit individual
components of a map display, such as rivers, lakes, or national or state boundaries.

Displaying Maps using the Tool Palette

This example displays a map image warped to a map projection.

1. Make sure you are viewing the IDL Visualize Perspective. (Click the Visualize
button () in the upper right of the Workbench.)

2. At the IDL command line, type the following (or click on the code below):

READ_JPEG, FILEPATH('Clouds.jpg', $
SUBDIR=['examples','data']), clouds

3. The CLOUDS variable
appears in the Variables
View.

4. Drag the CLOUDS variable
to the Map Visualization
tool.The iMap window
appears, with the IDL Map
Register Image dialog on
top.

Note
Registration lets the iMap tool properly display image data in the map
projection you select.

5. The default selection is Degree. Accept that selection by clicking Next.
Getting Started with IDL Displaying iMaps Tool

68 Chapter 6: Maps
6. IDL Map Register Image Step 2 dialog appears. Accept the default values by
clicking Finish.

The map image displays with the Mercator projection.

Displaying Maps using IMAP

We’ll start by simply displaying a projection and then adding a map to the display:

1. To open an iMap window, type IMAP at the IDL command line. An empty
iMap window appears.

2. To open and view a
projection, select
Operations → Map
Projection from the iMap
menu. This command
opens the Map Projection
dialog, shown here:

3. Choose a projection from
the Projection pull-down
list. A preview displays in
the dialog. (The example
here uses the Mercator
projection.) Click OK.

4. The results in the iMap
window show just the projection, without other mapping elements.

5. To show the continents against
the projection, select
Insert → Map → Continents.
The continent outlines now
display in the iMap window
against the Mercator projection:
Displaying iMaps Tool Getting Started with IDL

Chapter 6: Maps 69
The iMap tool is a good way to
familiarize yourself with
projections. For example, with a
basic global map such as this, you
can easily change the projection by
clicking Edit Projection in the Map
tab on the right side of the iMap
window. In the Map Projection
window, select another projection
and it displays in the preview
window. This example shows the
Mollweide projection.

To draw a map that looks more like a globe, use the Orthographic projection. Choose
other projections to understand the differences in how they display maps.

See the Map Projections topic in the IDL Online Help for more on the map
projections that IDL supports.
Getting Started with IDL Displaying iMaps Tool

70 Chapter 6: Maps
Modifying Map Data

The iMap tool allows you to make numerous modifications to maps. This section
shows a simple exercise that guides you through a couple of easy modifications:
adding available land features and changing map feature colors.

1. To open an iMap window, type IMAP at the IDL command line. An empty
iMap window appears.

2. To open and view a global map, select Insert → Map → Continents from
the iMap menu. A map of the world appears.

3. Now add countries to the global map. Select Insert → Map → Countries
(high res) from the iMap menu. The countries of the world appear on the map.

4. Choose a part of the map that you want to fill
with color. Right-click on that part and select
Properties from the pop-up menu that
appears. (This example changes the display
properties of Australia.)

5. The IDL iMap Visualization Browser
appears. Change any properties you like.
(This example changes the line thickness and
fill color properties, as shown in the dialog to
the right.)

Changes are made to the map immediately,
so you can see the results and change them to fit your needs. When you are
finished with changes, close the IDL iMap Visualization Browser.

Note
For more on mapping, see the Working with Maps topic in the IDL Online Help.

Result of modifications to Australia
Modifying Map Data Getting Started with IDL

Chapter 6: Maps 71
Fitting an Image to a Projection

IDL gives you the ability to open image data within a map projection through iMap.
IDL warps the image to fit the map automatically. In this example, we’ll use IDL’s
automatic capabilities to open an image containing 1 km resolution global land cover
data. (Image data courtesy of Reto Stöckli, NASA/Goddard Space Flight Center.)

1. Open an iMap window by
typing IMAP at the IDL
command line.

2. Select Operations →
Map Projection. This
command opens the Map
Projection dialog, shown
here:

3. Choose the Mollweide
projection from the
Projection pull-down list,
then click OK.

4. Now, open image data
from the IDL examples
files. Select File → Open and navigate to the IDL examples/data directory.
Choose the file named Day.jpg.

The IDL Map Register Image Step 1 dialog appears.

5. Click Next to accept the default settings. Step Two of the IDL Map Register
Image dialog appears, displaying the default data that IDL uses to fit the image
to the projection.

6. Click Finish to
accept the default
settings. In the
iMap window,
the image data
display in the
Mollweide
projection:

See also “Warping
Images to Maps” on
page 77.
Getting Started with IDL Fitting an Image to a Projection

72 Chapter 6: Maps
Plotting a Portion of the Globe

You do not always have to display the entire globe, you can view just a section of the
globe by defining an area by latitude and longitude in the Map Panel. This example
displays the North American Continent using the Miller Cylindrical projection.

1. Open an iMap window by typing IMAP at the IDL command line.

2. Select Operations → Map Projection. This command opens the Map
Projection dialog, shown below.

3. Choose the Hammer projection from the Projection pull-down list.

4. Change the Longitude and
Latitude settings as follows
(and shown to the right):

• Longitude minimum -130

• Longitude maximum -70

• Latitude minimum 10

• Latitude maximum 55

5. Click OK. The iMap window
now displays a grid:
Plotting a Portion of the Globe Getting Started with IDL

Chapter 6: Maps 73
6. Now add a map to display on
this grid. From the iMap menu,
select Insert → Map →
Countries (high res). The
countries within the specified
area appear on the grid.

7. For better readability, you can
change the way the grid and
annotations appear. From the
iMap menu, select Window →
Visualization Browser.

8. In the Visualization
Browser, expand the
tree view until you can
see the Map Grid
item. Double-click on
Map Grid to expand
the browser and
display the Map Grid
properties. Make the
following changes:

• Automatic grid = False

• Line style = dotted

• Label position = 0.0

The iMap window now displays the
map and grid projection with dotted
lines and the grid annotations on the
edges:

Note
You can add a title and other annotations using the Text tool on the iMap tool bar.
Getting Started with IDL Plotting a Portion of the Globe

74 Chapter 6: Maps
Plotting Data on Maps

You can annotate plots easily using the Direct graphics programming capabilities of
IDL. Creating map displays using Direct graphics routines is not as convenient as
using iMap, but may be desirable if you are incorporating maps into a larger, widget-
based application.

To plot the location of the five cities as shown in the following figure, create three
arrays for the data to plot: one each to hold latitude and longitude locations, and one
to hold the names of the cities.

1. From the IDL command line, type the following command to create a
five-element array of floating-point values representing latitudes in degrees
North of zero.

lats=[40.02,34.00,38.55,48.25,17.29]

2. The values in LONS are negative because they represent degrees West of zero
longitude.

lons=[-105.16,-119.40,-77.00,-114.21,-88.10]

3. Create a five-element array of string values. Text strings can be enclosed in
either single or double quotes.

cities=['Boulder, CO','Santa Cruz, CA',$
'Washington, DC','Whitefish, MT','Belize, Belize']

4. Since we are using Direct graphics, tell IDL to use a maximum of 256 colors.
Load a gray scale color table and set the background to white and the
foreground to black:

DEVICE, RETAIN=2, DECOMPOSED=0
LOADCT, 0
!P.BACKGROUND=255
!P.COLOR=0

5. Draw a Mercator projection and define an area that encompasses the United
States and Central America.

MAP_SET, /MERCATOR, /GRID, /CONTINENT, LIMIT=[10,-130,60,-70]
Plotting Data on Maps Getting Started with IDL

Chapter 6: Maps 75
6. Place a plotting symbol at the
location of each city. The
PSYM keyword creates
diamond-shaped plotting
symbols. SYMSIZE controls
the size of the plotting
symbols.

PLOTS, lons, lats, $
PSYM=4, SYMSIZE=1.4, $
COLOR=120

The result shows a window
with the map projection of the
area with the plotting symbols
(shown here).

7. Place the names of the cities near their respective symbols. XYOUTS draws
the characters for each element of the array CITIES at the corresponding
location specified by the array elements of LONS and LATS. The
CHARTHICK keyword controls the thickness of the text characters and the
CHARSIZE keyword controls their size (1.0 is the default size). Setting the
ALIGN keyword to 0.5 centers the city names over their corresponding data
points.

XYOUTS, lons, lats, cities, COLOR=80, $
CHARTHICK=2, CHARSIZE=1.25, ALIGN=0.5

Now the plotting symbols and city names display on the map:
Getting Started with IDL Plotting Data on Maps

76 Chapter 6: Maps
Reading Latitudes and Longitudes

If a map projection is displayed, IDL can return the position of the cursor over the
map in latitude and longitude coordinates.

1. Enter the command:

CURSOR, lon, lat & PRINT, lat, lon

The CURSOR command reads the “X” and “Y” positions of the cursor when
the mouse button is pressed and returns those values in the LON and LAT
variables. Use the mouse to move the cursor over the map window and click on
any point. The latitude and longitude of that point on the map are printed in the
Output Log.

2. When you are finished with your map, close the graphics window.
Plotting Data on Maps Getting Started with IDL

Chapter 6: Maps 77
Warping Images to Maps

Image data can also be displayed on maps using Direct graphics. The MAP_IMAGE
function returns a warped version of an original image that can be displayed over a
map projection. In this example, elevation data for the entire globe is displayed as an
image with continent outlines and grid lines overlaid.

1. Define the map that you want to display, using WORLD as the variable in which
to store the map data. Define the data dimensions as a 360 by 360 square array
using the DATA_DIMS function. In the IDL command line, enter:

world = READ_BINARY(FILEPATH('worldelv.dat', $
SUBDIRECTORY=['examples', 'data']), DATA_DIMS=[360,360])

2. Since we are using Direct graphics, tell IDL to use a maximum of 256 colors
and load a color table.

DEVICE, RETAIN=2, DECOMPOSED=0
LOADCT, 26

3. View the data as an image using
the variable WORLD that you
defined above.

TV, world

The first column of data in this
image corresponds to 0 degrees
longitude. Because we’ll use
MAP_IMAGE later and it
assumes that the first column of
the image corresponds to -180
degrees, we’ll use the SHIFT
function on the data set before
proceeding.

4. Shift the array 180 elements in the row direction and 0 elements in the column
direction to make -180 degrees the first column in the array.

world = SHIFT(world, 180, 0)
Getting Started with IDL Warping Images to Maps

78 Chapter 6: Maps
5. View the data as an image again,
noting the difference made by
the shift.

TV, world

From the image contained in the
data, you can create a warped
image to fit any of the available
map projections. Define a map
projection before using
MAP_IMAGE, because this
routine uses the currently
defined map parameters.

6. Create a Mollweide projection
with continents and gridlines.

MAP_SET, /MOLLWEIDE, /CONT, /GRID, COLOR=100

7. Warp the image using bilinear interpolation using the BLIN command to
smooth the warped image and save the result in the variable NEW.

new = MAP_IMAGE(world, sx, sy, /BILINEAR)

The SX and SY output variables in the command above contain the X and Y
starting positions for displaying the image.

8. Display the new image over
the map:

TV, new, sx, sy

See the map in the previous
figure and note that the
warped image now displays
over the existing continent
and grid lines.
Warping Images to Maps Getting Started with IDL

Chapter 6: Maps 79
9. The continent outlines and thick grid lines can be displayed, as shown next, by
entering:

MAP_CONTINENTS
MAP_GRID, GLINETHICK=3
Getting Started with IDL Warping Images to Maps

80 Chapter 6: Maps
Displaying Vector Data on a Map

You can use the iVector tool along with the iMap tool to easily add vector data in a
map display.

1. Load some vector data representing global wind patterns:

RESTORE, FILEPATH('globalwinds.dat', SUBDIR=['examples','data'])

This command creates four variables — u, v, x, and y— that contain the vector
data.

2. Create a map display of the globe, using the Mollweide projection:

IMAP, MAP_PROJECTION='Equirectangular', LIMIT=[-35, -90, 35, 90]

3. Select Insert → Map → Continents to display the continental outlines.

4. Double-click on the continental outlines to display their property sheet. Set the
Transparency value to zero and select a light grey fill color.

5. Finally, launch iVector to create the vector display, coloring the wind vectors
according to their magnitude:

IVECTOR, u, v, x, y, /OVERPLOT, X_SUBSAMPLE=3

For additional information on
creating vector displays, see
the Working with Vectors and
IVECTOR topics in the IDL
Online Help.
Displaying Vector Data on a Map Getting Started with IDL

../com.rsi.idl.doc.core/Working_with_Vectors.html
../com.rsi.idl.doc.core/IVECTOR.html

Chapter 7

Surfaces and Contours
This chapter shows how to display and process images with the iSurface and iContour tools, and
with Direct graphics.
Surfaces and Contours in IDL 82
Displaying Surfaces 83
Displaying Surfaces with Direct Graphics . 86

Displaying Contours 87
Displaying Contours with Direct Graphics 89
Working with Irregularly Gridded Data . . . 91
Getting Started with IDL 51

52 Chapter 5: Surfaces and Contours
Surfaces and Contours in IDL

IDL provides tools for visualizing and manipulating many types of three-dimensional
arrays, including contour plots, wire-mesh surfaces, and shaded surfaces. This
chapter demonstrates how to visualize data in three dimensions using the IDL Tool
Palette, iTools, and Direct graphics.

For additional information, see the following topics in the IDL Online Help:

• Using the Visualize Perspective and Using IDL user’s guide to learn more
about visualizing and manipulating surfaces and contours in IDL

• Working with Surfaces and Working with Contours for more information on
working with the iSurface and iContour tools

• SURFACE, SHADE_SURF, and CONTOUR for a description of the
commonly-used Direct graphics routines used for visualizing 3-D data, refer to
Surfaces and Contours in IDL Getting Started with IDL

Chapter 5: Surfaces and Contours 53
Displaying Surfaces

You can easily create surface visualizations using the Tool Palette in the IDL
Visualize perspective or from the command line with the ISURFACE command.
Either way, the visualization displays in the IDL iSurface tool, which allows you to
visualize, modify, and manipulate surfaces in an interactive environment.

Displaying Surfaces using the
Tool Palette

In this example, we use the RESTORE
procedure, which loads IDL variables and
routines into memory that were previously
saved to a file by the SAVE procedure.

1. Make sure you are viewing the IDL
Visualize Perspective. (Click the
Visualize button () in the
upper right of the Workbench.)

2. Restore the marbells.dat SAVE file:

RESTORE, FILEPATH('marbells.dat', $
SUBDIRECTORY=['examples', 'data'])

By restoring marbells.dat, the array variable ELEV is loaded into memory,
and displays in the Variables view in the Workbench.

3. From the Variables View, drag the ELEV variable to the Surface icon in the
Tool Palette.

Displaying Surfaces using ISURFACE

You can create the visualization shown in the previous section using the ISURFACE
command from the IDL command line:

1. Restore the marbells.dat SAVE file, as described above.

2. Load the surface data into the iSurface tool and display it:

ISURFACE, elev
Getting Started with IDL Displaying Surfaces

52 Chapter 5: Surfaces and Contours
Displaying Shaded Surfaces

In the following example, we will add an external light source to a surface in the
iSurface tool.

1. If you have not already done so, restore the marbells.dat SAVE file.

RESTORE, FILEPATH('marbells.dat',$
SUBDIRECTORY=['examples', 'data'])

2. Load the surface data into the iSurface
tool and display it.

ISURFACE, elev

3. Add a light source to the image by
selecting Insert → Light.

4. Select the light bulb icon, and move it
around the surface to see how the
surface shadows change.

Modifying Surfaces

The iSurface tool allows you to manipulate and modify displayed surfaces. For
example, rotation tools are provided to make it easier to see all aspects of a 3-D
surface.

To rotate a surface freely or along an axis:

1. If you have not already done so, restore the marbells.dat SAVE file.

RESTORE, FILEPATH('marbells.dat', $
SUBDIRECTORY=['examples', 'data'])

2. Load the surface data into the iSurface tool and display it:

ISURFACE, elev

3. Select the surface in the iSurface window.

4. Click Rotate on the window toolbar. The rotation sphere is displayed
around the surface.
Surfaces and Contours in IDL Getting Started with IDL

Chapter 5: Surfaces and Contours 53
• To rotate the surface freely, position
the mouse pointer over the surface so
that it changes to a free rotation
pointer . Click and drag to rotate
the surface in the desired direction.

• To rotate the surface along an axis,
position the mouse pointer over an
axis so that it changes to an axis
rotation pointer . Click and drag
to rotate the surface along the axis in
the desired direction.

To rotate a surface in 90° increments left or
right:

1. Select the surface in the iSurface window.

2. Select Operations → Rotate → Rotate Left or
Operations → Rotate → Rotate Right.

To rotate a surface an arbitrary number of degrees:

1. Select the surface in the iSurface window.

2. Select Operations → Rotate → Rotate by Angle.

3. In the Rotate Angle dialog, enter the desired number of degrees to rotate the
surface and click OK.

Alternately, you can rotate the surface programmatically, using the IROTATE
procedure:

ISURFACE, elev
IROTATE, 'surface', 10, /XAXIS
IROTATE, 'surface', 10, /YAXIS

There are many other ways to modify a surface in the iSurface tool, including
manipulating surface color, texture mapping, and surface annotation. For more
information on working with the iSurface tool, see the Working with Surfaces topic in
the IDL Online Help.
Getting Started with IDL Displaying Surfaces

52 Chapter 5: Surfaces and Contours
Displaying Surfaces with Direct Graphics

Working with images using Direct graphics is not as convenient as using the iImage
tool, but may be desirable if you are incorporating images into a larger widget-based
application, or if you need to programatically create a large number of processed
images.

In this example, we will display three-dimensional surface data using IDL Direct
graphics. Enter the following commands at the IDL command line:

1. If you have not already done so, restore the marbells.dat SAVE file.

RESTORE, FILEPATH('marbells.dat', $
SUBDIRECTORY=['examples', 'data'])

2. Since we are using Direct graphics, tell IDL to use a maximum of 256 colors
and load a simple grayscale color map.

DEVICE, RETAIN=2, DECOMPOSED=0
LOADCT, 0

3. Use the CONGRID procedure to
resample the data set so that the grid
can be displayed at a visible size. In
this case, resample the array size to
35 x 45, or one-tenth its original
size.

MARBELLS=CONGRID(elev,35,45)

4. Visualize the grid.

SURFACE, MARBELLS

The SURFACE procedure can be used to
view your data from different angles. The
AX keyword specifies the surface angle of
rotation (in degrees towards the viewer)
about the X axis. The AZ keyword specifies
the surface rotation in degrees,
counterclockwise about the Z axis.

5. View the array from a different
angle.

SURFACE, MARBELLS, AX = 70, AZ = 25
Surfaces and Contours in IDL Getting Started with IDL

Chapter 5: Surfaces and Contours 53
Displaying Contours

You can easily create contour visualizations using the Tool Palette in the IDL
Visualize perspective or from the command line with the ICONTOUR command.
Either way, the visualization displays in the IDL iContour tool, which allows you to
visualize, modify, and manipulate two-dimensional contour data in an interactive
environment.

Displaying Contours in the Tool
Palette

In this example, we use the RESTORE
procedure, which loads IDL variables and
routines into memory that were previously saved
to a file by the SAVE procedure.

1. If you have not already done so, restore
the marbells.dat SAVE file.

RESTORE, FILEPATH('marbells.dat', $
SUBDIRECTORY=['examples', 'data'])

By restoring marbells.dat, the array variable ELEV is loaded into memory,
and displays in the Variables view in the Workbench.

2. Make sure you are viewing the IDL Visualize Perspective. (Click the Visualize
button () in the upper right of the Workbench.)

3. From the Variables View, drag the ELEV variable to the Contour icon in the
Tool Palette.

Displaying Contours Using iContour

You can create the visualization shown in the previous section using the ICONTOUR
command from the IDL command line.

1. Restore the marbells.dat SAVE file, as described above.

2. Load the data into the iContour tool and display it.

ICONTOUR, elev
Getting Started with IDL Displaying Surfaces

52 Chapter 5: Surfaces and Contours
3. To create filled contours:

ICONTOUR, elev, /FILL, $
RGB_TABLE=0, N_LEVELS=10

Modifying Contours

The iContour tool allows you to manipulate and
modify displayed contours. For example, you
can add a legend that shows the contour levels.

To add a legend, from iContour select Insert → New Legend. Double-click on the
legend to display a dialog that allows you to modify the legend contents.

You might, for example, change the
legend title, hide contour levels, or
change the text style. For more
information on working with the
iContour tool, see the Working with
Contours topic in the IDL Online
Help.
Surfaces and Contours in IDL Getting Started with IDL

Chapter 5: Surfaces and Contours 53
Displaying Contours with Direct Graphics

Working with images using Direct graphics is not as convenient as using the iImage
tool, but may be desirable if you are incorporating images into a larger widget-based
application, or if you need to programatically create a large number of processed
images.

In this example, we will display a two-dimensional
array as a contour plot using IDL Direct graphics.
Enter the following commands at the IDL
command line:

1. If you have not already done so, restore the
marbells.dat SAVE file.

RESTORE, FILEPATH('marbells.dat', $
SUBDIRECTORY=['examples', 'data'])

2. Since we are using Direct graphics, tell IDL
to use a maximum of 256 colors and load a
simple grayscale color map.

DEVICE, RETAIN=2, DECOMPOSED=0
LOADCT, 0

3. Plot the contour.

CONTOUR, elev

4. Create a customized CONTOUR plot with
more contour lines.

CONTOUR, elev, NLEVELS=8, $
C_LABELS=[0,1]

The NLEVELS keyword directs
CONTOUR to plot eight equally-spaced
contours. The C_LABELS keyword
specifies which contour levels should be
labeled (by default, every other contour is
labeled).
Getting Started with IDL Displaying Surfaces

52 Chapter 5: Surfaces and Contours
5. Similarly, you can create a filled contour
plot where each contour level is filled with
a different color (or shade of gray) by
using the FILL keyword.

CONTOUR, elev, NLEVELS=8, /FILL

6. To outline the resulting contours, make
another call to CONTOUR and use the
OVERPLOT keyword to overlay the
previous plot.

You can add tickmarks that indicate the
slope of the contours (the tickmarks point
downhill) by using the DOWNHILL
keyword.

CONTOUR, elev, NLEVELS=8, $
/OVERPLOT, /DOWNHILL

7. CONTOUR can plot surface data in a
three-dimensional perspective.

First, set a three-dimensional viewing
angle.

SURFR

8. By using the T3D keyword, the
contours are drawn in a
three-dimensional perspective.

CONTOUR, elev, NLEVELS=8, /T3D
Surfaces and Contours in IDL Getting Started with IDL

Chapter 5: Surfaces and Contours 53
Working with Irregularly Gridded Data

The IDL routines TRIANGULATE
and TRIGRID allow you to fit
irregularly sampled data to a regular
grid, allowing you to visualize the
values using IDL’s surface and
contour visualization routines. This
example creates surface plots of
some irregularly sampled data.

1. First, we create a sample data
set from some random values.

x = RANDOMU(seed, 32)
y = RANDOMU(seed, 32)
z = EXP(-3*((x-0.5)^2+(y-0.5)^2))

(For more on IDL’s random number generation, see the RANDOMU topic in
the IDL Online Help.)

2. Use the TRIANGULATE procedure to construct a Delaunay triangulation of
our set of randomly-generated points:

TRIANGULATE, x, y, tr

The variable tr now contains a three-dimensional array listing the triangles in
the Delaunay triangulation of the points specified by the X and Y arguments.

3. Use the TRIGRID function to create a regular grid of interpolated Z values,
using the Delaunay triangulation:

grid_linear = TRIGRID(x, y, z, tr)

By default, the TRIGRID function uses linear interpolation. To use quintic
interpolation, set the QUINTIC keyword:

grid_quintic = TRIGRID(x, y, z, tr, /QUINTIC)

4. Display the interpolated surface values as wire-frame meshes side by side in
the iSurface tool:

ISURFACE, grid_linear, STYLE=1, VIEW_GRID=[2,1]
ISURFACE, grid_quintic, STYLE=1, /VIEW_NEXT

For more information, see the TRIANGULATE and TRIGRID topics in the IDL
Online Help.
Getting Started with IDL Displaying Surfaces

52 Chapter 5: Surfaces and Contours
Surfaces and Contours in IDL Getting Started with IDL

Chapter 8

Volumes
This chapter describes the following topics:
IDL and Volume Visualization 94
Volume Rendering with iVolume 95

Volume Rendering with Direct Graphics . . 99
Getting Started with IDL 93

94 Chapter 8: Volumes
IDL and Volume Visualization

IDL can be used to visualize multi-dimensional volume data sets either at the
command line or using the Tool Palette or the iVolume tool. Given a 3-D grid of
density measurements, IDL can display a shaded surface representation of a constant-
density surface (also called an isosurface). For example, in medical imaging
applications, a series of 2-D images can be created by computed tomography or
magnetic resonance imaging. When stacked, these images create a grid of density
measurements that can be contoured to display the surfaces of anatomical structures.

This chapter introduces the Tool Palette and the iVolume tool for interactive
exploration of volume data. It also presents some techniques for exploring volume
data using IDL’s Direct graphics routines.

For additional information, see the following topics in the IDL Online Help:

• Volume Visualizations to learn how to use the IDL Workbench Tool Palette

• Working with Volumes to learn about the iVolume tool’s powerful capabilities
for creating and manipulating volumes

• The “Volume Visualization” section in IDL’s list of 3D Visualization routines
for a list of volume-related routines

• Creating Volume Objects for information on volume objects
IDL and Volume Visualization Getting Started with IDL

Chapter 8: Volumes 95
Volume Rendering with iVolume

The Tool Palette interface and interactive iVolume tools allow you great flexibility in
manipulating and visualizing true volume data. Both methods display the
visualization in the IDL iVolume tool, which allows you to visualize, modify, and
manipulate volumes in an interactive environment.

Displaying a Volume using the
Tool Palette

In this example, we load some volume data and
visualize it using the Tool Palette volume tool.

1. Make sure you are viewing the IDL
Visualize Perspective. (Click the
Visualize button () in the upper
right of the Workbench.)

2. At the IDL command line, read the
example volume data with the following
commands:

file = FILEPATH('head.dat', SUBDIRECTORY = ['examples', 'data'])
head_data = READ_BINARY(file, DATA_DIMS = [80, 100, 57])

These commands designate a file location and how to read the file into IDL.
The variables FILE and HEAD_DATA are loaded into memory and display in
the Variables view in the Workbench.

3. From the Variables View, drag the HEAD_DATA variable to the Volume tool in
the Tool Palette.
Getting Started with IDL Volume Rendering with iVolume

96 Chapter 8: Volumes
Displaying a Volume using IVOLUME

Here is a simple example of
one way to visualize a volume
using the iVolume tool.

1. At the IDL command
line, read the example
volume data as
described above.

2. Now invoke the
iVolume tool to
visualize the volume:

iVolume, head_data

To display the volume in color,
as the Tool Palette
visualization does, enter the
following command:

iVolume, head_data, RGB_TABLE0=21

Volume Rendering Quality

In the iVolume tool, Auto Rendering is turned on by default. A volume can be
rendered in two quality modes:

• Low — Done with a stack of 2D texture-mapped semi-transparent polygons.
The polygons are oriented so that the flat sides face the viewer as directly as
possible. On most systems, Low-quality mode renders faster than High-quality
mode, but not as accurately.

• High — Done with the IDLgrVolume ray-casting volume renderer. This
quality mode is CPU-intensive and will usually take much longer than the
Low-quality mode.
Volume Rendering with iVolume Getting Started with IDL

Chapter 8: Volumes 97
Displaying an Isosurface

An isosurface is a set of points in a three-
dimensional array that have the same value. In
volume data, an isosurface generally defines a
structure of some sort. To display an isosurface
using the iVolume tool:

1. Click on the volume data to select it.

2. Select
Operations → Volume → Isosurface
from the iVolume menu.

3. Select the isosurface value and quality using the Isosurface Value Selector
dialog. (Choose an isosurface value of 50 for a good result in this example.)
Click OK.

Note
If you have checked the Auto-Render checkbox on the Volume tab, both the
isosurface and the original volume will be rendered together. To see only the
isosurface, uncheck the Auto-Render checkbox and click in the iVolume window.

Displaying Image Planes

An image plane is a two-dimensional slice
taken through a three-dimensional volume.
When presented as an image, image planes
allow you to look at structures inside the
volume.

To view an image plane:

1. Click on the volume data to select it.
Make sure the Auto-Render checkbox
on the Volume tab is unchecked.

2. Select Operations → Volume → Image plane from the iVolume menu.

3. Click on the image plane and drag back and forth to move the plane across the
volume. To change the orientation of the image plane, double-click to display
the image plane’s property sheet, then select X, Y, or Z from the Orientation
field.

You can also display the image slice in an iImage tool:
Getting Started with IDL Volume Rendering with iVolume

98 Chapter 8: Volumes
1. Click on the image plane to select it.

2. Select Operations → Image Plane → Launch iImage from the iVolume
menu.

A new iImage tool is created to contain the image. Moving the image plane or
changing its orientation in the iVolume tool automatically updates the image
displayed in the iImage tool.

For much more information on working with the iVolume tool, see the Working with
Volumes topic in the IDL Online Help.
Volume Rendering with iVolume Getting Started with IDL

Chapter 8: Volumes 99
Volume Rendering with Direct Graphics

Visualizing volume data using IDL’s Direct graphics routines (as opposed to the
iTools) requires some additional work, but may be desirable if you are incorporating
the volume visualization into a larger widget-based application. The following
sections will guide you through the process of setting up a volume visualization using
Direct graphics routines.

3-D Transformations in Direct Graphics

When creating three-dimensional plots (surface or volume visualizations, for
example) using IDL Direct graphics, you must apply a three-dimensional
transformation matrix to the data before display. The transformation applies a
specified translation, rotation, and scaling to the three-dimensional data array before
displaying it on the two-dimensional computer screen.

Three-dimensional transformations are especially important when using the
POLYSHADE routine to display volume data. Unless the transformation is set up so
that the entire volume is visible, the volume will not be rendered correctly. Once a
3-D transformation has been established, most IDL plotting routines can be made to
use it by including the T3D keyword.

There are a number of ways to set up a transformation matrix in IDL:

• Modify the transformation matrix stored in the IDL system variable !P.T
directly. This method is rather difficult, because you have to figure out the
transformation yourself. More information about the transformation matrix can
be found in the Coordinate Conversions topic in the IDL Online Help.

• Use the T3D, SCALE3, or SURFR routines to modify the !P.T transformation
matrix.

• Use the SURFACE or SHADE_SURF routines to display some data. These
routines calculate a transformation matrix based on the data you supply and
update the !P.T system variable automatically.

In the following example, we will use the SCALE3 routine to update the !P.T
transformation matrix.

Displaying an Isosurface

Two IDL routines, SHADE_VOLUME and POLYSHADE, are used together to
create and display an isosurface. SHADE_VOLUME generates a list of polygons that
define a 3-D surface given a volume data set and a contour (or density) level. The
Getting Started with IDL Volume Rendering with Direct Graphics

100 Chapter 8: Volumes
function POLYSHADE creates a shaded-surface representation of the isosurface
defined by those polygons.

Like many other IDL commands, POLYSHADE accepts the T3D keyword that
makes POLYSHADE use a user-defined 3D transformation. Before you can use
POLYSHADE to render the final image, you need to set up an appropriate three-
dimensional transformation. The XRANGE, YRANGE, and ZRANGE keywords
accept two-element vectors, representing the minimum and maximum axis values, as
arguments. POLYSHADE returns an image based upon the list of vertices, V, and list
of polygons, P. The T3D keyword tells POLYSHADE to use the previously-defined
3D transformation. The TV procedure displays the shaded-surface image.

Enter the following lines at the IDL command prompt:

1. If you created the data variable in the previous section, you can skip this step.
If you have not yet created a head_data variable, read some volume data with
the following commands:

file = FILEPATH('head.dat', SUBDIRECTORY = ['examples', 'data'])
head_data = READ_BINARY(file, DATA_DIMS = [80, 100, 57])

2. Since we are using Direct graphics, tell IDL to use a maximum of 256 colors.
Load a simple grayscale colormap.

DEVICE, RETAIN=2, DECOMPOSED=0
LOADCT, 0

3. Create the polygons and vertices that define the isosurface with a value of 50.
Return the vertices in the variable V and the polygons in the variable P:

SHADE_VOLUME, head_data, 50, V, P, /LOW

4. Set up an appropriate 3-D transformation matrix using the SCALE3 procedure:

SCALE3, XRANGE=[0,80], YRANGE=[0,100], ZRANGE=[0,57]

5. Display a shaded-surface
representation of the previously
generated arrays of vertices and
polygons:

TV, POLYSHADE(V, P, /T3D)

This is the same isosurface created using
the iVolume tool in “Displaying an
Isosurface” on page 88.
Volume Rendering with Direct Graphics Getting Started with IDL

Chapter 8: Volumes 101
Displaying an Image Plane

To display an image plane taken from volume data, use IDL’s array indexing syntax
to specify a “slice” through the three-dimensional data array.

1. The head_data array is 80 x 100 x 57
elements; to extract an X-Y slice from
this array roughly in the middle:

head_slice = head_data[40,*,*]

This command creates a new variable
named head_slice containing a
1 x 100 x 57 element array.

2. Reformat the 1 x 100 x 57 element array
as a two-dimensional array with 100 x 57
elements:

head_slice = REFORM(head_slice)

3. Resize the array to 500 x 400 elements, using cubic interpolation:

head_slice = CONGRID(head_slice, 500, 400, CUBIC=-0.7)

4. Display the image:

TV, head_slice

This is essentially the same process used by the iVolume tool in “Displaying Image
Planes” on page 89.
Getting Started with IDL Volume Rendering with Direct Graphics

102 Chapter 8: Volumes
Volume Rendering with Direct Graphics Getting Started with IDL

Chapter 9

Signal Processing
with IDL
This chapter describes the following topics:
IDL and Signal Processing 104
Signal Processing Concepts 105
Creating a Data Set 107
Signal Processing with SMOOTH 109

Frequency Domain Filtering 110
Creating Custom Filters 113
Wavelet Filtering Example 114
Getting Started with IDL 103

104 Chapter 9: Signal Processing with IDL
IDL and Signal Processing

This chapter introduces you to IDL’s digital signal processing tools. First, we
introduce some basic signal processing concepts such as removing noise, curve
fitting, correlation, and transforms. Then we discuss the process of creating a data set
and adding noise to appear like raw data. We use that “noisy” data set to understand
different methods of removing noise. Finally, we view an existing data set consisting
of damped sine wave data with severe high-frequency noise.

Most of the procedures and functions mentioned here work in two or more
dimensions. For simplicity, only one-dimensional signals are used in the examples.

Using just a few IDL commands, you can perform some complex and powerful signal
processing tasks. IDL has many more signal processing abilities than the ones shown
in this chapter. To take advantage of all of IDL’s powerful capabilities, look for more
information in Chapter 6, “Signal Processing” (Using IDL).
IDL and Signal Processing Getting Started with IDL

Chapter 9: Signal Processing with IDL 105
Signal Processing Concepts

This section introduces some basic signal processing concepts that you need to know
before working with signal data.

Removing Noise

A signal, by definition, contains information. Any signal obtained from a physical
process also contains unwanted frequency components (noise). IDL provides several
digital filter routines to remove noise.

Some noise can simply be removed by smoothing or masking an image or masking it
within the frequency domain, but some noise requires more filtering. (See the
definition for Wavelet, below.)

See the Digital Filtering topic in the IDL Online Help for more information.

Curve Fitting

Curve fitting is the process of finding various ways to fit a curve to a series of data
points that best represents all points. Curve-fitting can also estimate points between
values along a continuum. Curve fitting allows you to find intermediate estimates for
these values. IDL’s CURVEFIT function uses a gradient-expansion algorithm to
compute a non-linear least squares fit to a user-supplied function with an arbitrary
number of parameters.

See the Curve and Surface Fitting topic in the IDL Online Help for more information.

Convolution and Correlation

The term convolution refers to the relationship between the input signal, output
signal, and impulse response. Correlation is a method of detecting a known waveform
in the noisy background signals. Signals of any given type travel at a known rate, and
correlation determines if the signal also occurs in another signal.

Mathematically, convolution and correlation are similar. They both use two signals to
produce a third signal. In correlation, this third signal is called the cross-correlation
of the input signals.

See the Correlation and Covariance topic in the IDL Online Help for more
information.
Getting Started with IDL Signal Processing Concepts

106 Chapter 9: Signal Processing with IDL
Transforms

It is often difficult or impossible to make sense of the information contained in a
digital signal by looking at it in its raw form—that is, as a sequence of real values at
discrete points in time. Signal analysis transforms offer natural, meaningful, alternate
representations of the information contained in a signal. Transforms make signal
processing easier by changing the domain in which the underlying signal is
represented.

Most signals can be decomposed into a sum of discrete (usually sinusoidal) signal
components. The result of such decomposition is a frequency spectrum that can
uniquely identify the signal. IDL provides three transforms to decompose a signal
and prepare it for analysis: the Fourier transform, the Hilbert transform, and the
wavelet transform.

See the Signal Analysis Transforms topic in the IDL Online Help for more
information.

Wavelet Analysis

Wavelet analysis is a technique to transform an array of N numbers from their actual
numerical values to an array of N wavelet coefficients. Since the wavelet functions
are compact, the wavelet coefficients measure the variations around just a small part
of the data array. Wavelet analysis is useful for signal processing because the wavelet
transform allows you to easily pick out features in your data, such as noise or
discontinuities, discrete objects, edges of objects, etc.

See the Using the IDL Wavelet Toolkit topic in the IDL Online Help for more
information.
Signal Processing Concepts Getting Started with IDL

Chapter 9: Signal Processing with IDL 107
Creating a Data Set

In this example, we create a data set and then introduce noise to make it appear more
like real-world data. Then we plot the original data and the “noisy” data together in
the same window to see the difference.

First, we need to create a data set to display.

1. Enter the following command to create a sine wave function with a frequency
that increases over time and store it in a variable called DATA:

data = SIN((FINDGEN(200)/35)^2.5)

The FINDGEN function returns a floating-point array in which each element
holds the value of its subscript, giving us the increasing “time” values upon
which the sine wave is based. The sine function of each “time” value divided
by 35 and raised to the 2.5 power is stored in an element of the variable DATA.

2. To view a quick plot of this data set,
shown in the following diagram,
enter:

IPLOT, data

3. Add some uniformly-distributed
random noise to this data set and
store it in a new variable:

noisy = data + ((RANDOMU $
(SEED,200)-.5)/ 2)

The RANDOMU function creates
an array of uniformly distributed
random values. The original data set
plus the noise is stored in a new variable called NOISY. When you plot this data
set, it looks more like real-world test data.
Getting Started with IDL Creating a Data Set

108 Chapter 9: Signal Processing with IDL
4. Now plot the array:

IPLOT, noisy

5. Display the original data set and the
noisy version simultaneously by
entering the following commands:

IPLOT, data, XTITLE="Time",$
YTITLE="Amplitude", THICK=3

6. Then overplot the previous data:

IPLOT, noisy, /OVERPLOT

The XTITLE and YTITLE
keywords are used to create the X
and Y axis titles. The OVERPLOT
keyword plots the NOISY data set
over the existing plot of DATA.
Setting the THICK keyword causes
the default line thickness to be
multiplied by the value assigned to
THICK, so you can differentiate
between the data. This result can
be seen in the figure to the right.
Creating a Data Set Getting Started with IDL

Chapter 9: Signal Processing with IDL 109
Signal Processing with SMOOTH

A simple way to smooth out the NOISY data set created in the previous example is to
use IDL’s SMOOTH function. It returns an array smoothed with a boxcar average of a
specified width.

1. Create a new variable to hold the smoothed data set by entering the following
command:

SMOOTHED = SMOOTH(noisy, 5)

2. Now plot your new data set:

IPLOT, SMOOTHED, VIEW_TITLE='Smoothed Data'

The TITLE keyword draws the title text centered over the plot. Notice that
while SMOOTH did a fairly good job of removing noise spikes, the resulting
amplitudes taper off as the frequency increases.

See the next example for another method of reducing noise in the data set.
Getting Started with IDL Signal Processing with SMOOTH

110 Chapter 9: Signal Processing with IDL
Frequency Domain Filtering

Frequency domain filtering is another (perhaps better) way to eliminate noise. Noise
is unwanted high-frequency content in sampled data. Applying a lowpass filter to the
noisy data allows low-frequency components to remain unchanged while high
frequencies are smoothed or attenuated. Construct a filter function by entering the
following step-by-step commands:

1. Create a floating point array using FINDGEN which sets each element to the
value of its subscript and stores it in the variable Y by entering:

y=[FINDGEN(100),FINDGEN(100)-100]

2. Next, make the last 99 elements of Y a mirror image of the first 99 elements:

y[101:199]=REVERSE(y[0:98])

3. Now, create a variable filter to hold
the filter function based on Y:

filter=1.0/(1+(y/40)^10)

4. Finally, plot:

IPLOT, filter

The next step applies the filter to
the NOISY data. To filter data in the
frequency domain, we multiply the
Fast Fourier transform (FFT) of the
data by the frequency response of a
filter and then apply an inverse
Fourier transform to return the data
to the spatial domain.

5. Now we can use a lowpass filter on the NOISY data set and store the filtered
data in the variable lowpass by entering:

lowpass = FFT(FFT(noisy,1)*filter,-1)
Frequency Domain Filtering Getting Started with IDL

Chapter 9: Signal Processing with IDL 111
6. Then plot the filtered data:

IPLOT, lowpass

Note
Your plots may look slightly different due to the random number generator.

The same filter function can be used as a high-pass filter (allowing only the high
frequency or noise components through).

7. To accomplish this, enter:

highpass = FFT(FFT(noisy,1)*(1.0-filter),-1)

8. Then plot the result:

IPLOT, highpass
Getting Started with IDL Frequency Domain Filtering

112 Chapter 9: Signal Processing with IDL
Displaying Multiple Plots in a Single Window

To display all the plots that were created in the previous sections, enter the following
IPLOT commands on the IDL command line:

IPLOT, noisy, VIEW_GRID=[2,2], VIEW_TITLE='Noisy Data Set'
IPLOT, filter, /VIEW_NEXT, VIEW_TITLE='Filter'
IPLOT, lowpass, /VIEW_NEXT, VIEW_TITLE='Low-Pass Filtered'
IPLOT, highpass, /VIEW_NEXT, VIEW_TITLE='High-Pass Filtered'

The resulting IPLOT window displays all four plots:

The following list describes the functionality of the IPLOT keywords used in the
previous commands:

• VIEW_GRID — Defines a plot grid by columns and rows.

• VIEW_TITLE — Defines the title for the current plot.

• VIEW_NEXT — Defines the next plot in relation to the current plot.

See the IPLOT topic in the IDL Online Help for complete information on these and
other keywords.
Displaying Multiple Plots in a Single Window Getting Started with IDL

Chapter 9: Signal Processing with IDL 113
Creating Custom Filters

IDL provides the DIGITAL _FILTER function to allow you to compute your own
data filters. This section gives a quick overview of how a Bandstop Finite Impulse
Response (FIR) Filter works.

FIR filters are digital filters that have an impulse response that reaches zero in a finite
number of steps. An FIR filter can be implemented non-recursively by convolving its
impulse response with the time data sequence it is filtering. FIR filters are somewhat
simpler than Infinite Impulse Response (IIR) filters, which contain one or more
feedback terms and must be implemented with difference equations or some other
recursive technique.

The DIGITAL_FILTER
function constructs lowpass,
highpass, bandpass, or
bandstop filters. The figure at
right plots a bandstop filter
that suppresses frequencies
between 7 cycles per second
and 15 cycles per second for
data sampled every 0.02
seconds.

Type @sigprc10 at the IDL prompt to run the batch file that creates this display. The
filter consists of 10 IDL statements, plus a call to the IPLOT routine for display. The
source code is located in sigprc10, in the examples/doc/signal directory. View
the code to start learning how to create your own custom filters. See the Signal
Processing topic in the IDL Online Help for more information.
Getting Started with IDL Creating Custom Filters

114 Chapter 9: Signal Processing with IDL
Wavelet Filtering Example

In this example, we use existing data rather than creating sample data. The example
file is damped sine wave data with severe high-frequency noise.

1. Use the input variable to define the data to use:

input = FILEPATH('damp_sn.dat', $
SUBDIRECTORY=['examples', 'data'])

2. Create another variable to contain the output from the READ_BINARY
function. READ_BINARY reads the contents of a file based on keywords or a
predefined template. The DATA_DIMS keyword sets a scalar or array
specifying the size of the data to be read and returned. (The array value of
damp_sn.dat is provided in the index.txt file in examples/data.)

output = READ_BINARY(input, DATA_DIMS=[512,1])

3. Plot the data:

IPLOT, output

4. Use the wavelet transform to
reduce the noise in the plot:

smooth=WV_DENOISE(output, $
'Coiflet', 3, PERCENT=50)

5. Plot the smoothed data:

IPLOT, smooth, YRANGE=[0,255]

Note that we specify the Y range
to ensure that it is the same as in
the previous plot.
Wavelet Filtering Example Getting Started with IDL

Chapter 10

Programming in IDL
This chapter describes the following topics:
About Programming in IDL 116
Types of IDL Programs 118
IDL Language Elements 120
IDL Programming Concepts and Tools . . . 128

IDL Workbench Editor 130
Executing a Simple IDL Program 131
Debugging . 133
Getting Started with IDL 115

116 Chapter 10: Programming in IDL
About Programming in IDL

IDL applications range from the simple (a short program entered at the IDL
command line) to the complex (large programs with graphical user interfaces).
Whether you are writing a small program to analyze a single data set or a large-scale
application for commercial distribution, you’ll need to understand the programming
concepts used by the IDL language.

Programming in IDL feels familiar to developers already familiar with C, C++, or
FORTRAN. Like these languages, IDL is a high-level programming language with
similar syntax and operation.

While the programming environment is similar enough to make the transition easy,
IDL’s structure and tools make programming faster and more efficient. The following
list outlines the benefits IDL offers over other programming languages:

• Array operations—using arrays creates more efficient code by eliminating
the need for loops to perform operations on each data element.

• Dynamic data types—variables do not need to be explicitly typed because
IDL determines the data type from the code context. Variables can be created
or changed at any time, even within the same program.

• IDL Workbench Development Environment—provides the interactivity to
speed up development, including chromacoding, coding tools, automatic
compilation, and visual debugging tools. Programmers can quickly compile
and run programs for testing and immediately view any problem areas that
cause errors.

• Interactive programming modes—interactive mode allows you to run
commands from the command line to immediately test code lines.

• Graphical User Interface (GUI) Tools—IDL provides several ways to
develop GUI applications. These tools include:

• Widget Programming—use IDL’s library of widget tools to create simple
controls such as buttons and sliders. Widget programming provides
complete control over user interface design and functionality.

• iTools—use IDL’s built-in iTools to quickly visualize data with a minimum
of programming, or create your own custom iTool application.

• Built-in routines—IDL provides a huge library of routines for graphical user
interface (GUI) programming, numerical analysis, and data visualization.
About Programming in IDL Getting Started with IDL

Chapter 10: Programming in IDL 117
• Integrated development—IDL is able to make calls to external programs
written in other development languages, and provides the ability to call from
external programs in IDL.

• Distribution—IDL provides tools that allow you to distribute your
applications either as source code or in a compiled binary format called a
SAVE file. Anyone with an IDL development license can execute IDL source
code. If your colleagues or customers do not have an IDL development license,
they can run most compiled IDL applications in the free IDL Virtual Machine.
If your application uses features available only with an IDL license, you have
the option of purchasing and distributing runtime licenses or embedding a
license directly in the compiled application code.

This chapter gives a very brief introduction and overview into programming in IDL.
To continue to learn to program in IDL, see the Application Programming manual
and the documentation for specific routines in the IDL Reference Guide.
Getting Started with IDL About Programming in IDL

118 Chapter 10: Programming in IDL
Types of IDL Programs

There are multiple ways of writing and executing programs within IDL. These
involve varying levels of complexity and include $MAIN$ programs, procedures, and
functions.

$Main$

You typically create a $MAIN$ program at the IDL command line when you have a
few commands you want to run without creating a separate file. $MAIN$ programs
are not explicitly named by a procedure (PRO) or function (FUNCTION) heading.
They do require an END statement, just as procedures and functions do. Since they
are not named, $MAIN$ programs cannot be called from other routines and cannot be
passed arguments. $MAIN$ programs can be run from the command line using the
.RUN command or saved in a file and run later.

When IDL encounters a main program either as the result of a .RUN command or in a
text file, it compiles the code into the special program named $MAIN$ and
immediately executes it. Afterwards, it can be executed again using the .GO
command.

Note
Only one main program unit may exist within an IDL project window at any time.

Named Programs: Procedures and Functions

Procedures and functions are both modular programs that can be run individually and
called from other programs. A program may include multiple procedures and
functions and call as many other programs as necessary. Developers can choose
whether to save many individual procedures and functions or to combine them in the
same file. Reusing the same procedure or function for multiple programs can be a
deciding factor in saving them separately. See the following sections for more
information about how procedures and functions differ and when to use them.

Note
To view programs written in IDL, use the demo programs that come with IDL,
found in the \examples\demo\demosrc of the IDL distribution. Open and view
these programs to help you understand procedures and functions, but don’t save any
changes you make, as you and other users may use these programs for
demonstration and training purposes.
Types of IDL Programs Getting Started with IDL

Chapter 10: Programming in IDL 119
Procedure

A procedure is a self-contained sequence of IDL statements that performs a well-
defined task. A procedure is identified by a procedure definition statement
(PRO <procedure_name>), where the procedure name is the name of the IDL
statement you are creating. Parameters are named variables that are used in the
procedure.

Use procedures when you are working on data “in place” or when no value is
returned from the program. For example, a procedure could create a plot display on
the screen but return no values back to IDL.

Function

A function is a self-contained sequence of IDL statements that performs a well-
defined task and returns a value to the calling program unit when it is executed. All
functions return a function value which is given as a parameter in the RETURN
statement used to exit the function. A function is identified by a function definition
statement (FUNCTION <function_name>), where the function name is the name of
the IDL statement you are creating.

Use functions when you need easy access to a returned value, since functions create a
new variable by default.

See the Overview of IDL Program Types topic in the IDL Online Help for more
information.
Getting Started with IDL Types of IDL Programs

120 Chapter 10: Programming in IDL
IDL Language Elements

The basic language elements of IDL are a bit different from other programming
languages such as FORTRAN, C, and C++. These elements include dynamic data
types, array operations, positional parameters (arguments), keywords, and automatic
compilation. The following sections introduce the basics of these IDL language
elements, along with how to avoid naming conflicts.

Variables and Data Types

IDL is different from other languages that require programmers to specifically
designate a particular data type for each variable. IDL interprets variable types by
their usage. This “loose” or dynamic data typing gives IDL flexibility and the ability
to redefine variable data types at the command line or within programs. With this
flexibility comes the need to keep track of the data types. IDL’s built-in HELP
procedure is an easy tool to use to return the data type of any variable, as shown in the
following command-line example:

IDL> varvalue = 7.99
IDL> help, varvalue
VARVALUE FLOAT = 7.99000

Another example shows how the same variable is redefined as another data type:

IDL> varvalue = '7.99'
IDL> help, varvalue
VARVALUE STRING = '7.99'

Notice that since the variable value is within single quotes, IDL interprets it as a
string. IDL does not hold the previous value of the variable in memory, so it can be
changed at any time.

The three valid IDL variable organizations are scalars, arrays, and structures:

• Scalars—contain single values

• Arrays—contain multiple values arranged in an n-dimensional “grid.”

• Structures—are collections of scalars, arrays, or other structures.
IDL Language Elements Getting Started with IDL

Chapter 10: Programming in IDL 121
There are 16 variable types in IDL, which are shown in the following table:

Arguments

Arguments in IDL are positional parameters that pass information to a routine. In
other words, each argument must be given in the order specified by the syntax of the
routine. Some arguments are required, while others are optional, depending on the
routine.

For example, the IDL system routine PLOT has two arguments: x and y. The
arguments must be given in the correct order or the resulting plot’s axes will be
incorrect. If the y argument is not given, the routine plots y as a function of x, as
shown in the following example:

IPLOT, EXP(FINDGEN(10))

IDL Variable Types

Undefined Structure

Unsigned byte Double precision complex

16-bit integer Pointer heap variable

32-bit integer Object reference heap variable

Single precision floating Unsigned 16-bit integer

Double precision floating Unsigned 32-bit integer

Single precision complex 64-bit integer

String Unsigned 64-bit integer
Getting Started with IDL IDL Language Elements

122 Chapter 10: Programming in IDL
The result of this command is the following plot:

Keywords

Keywords are optional parameters that consist of keyword-value pairs. They can be
passed to a routine in any order. If a keyword is not specified, the default value of that
keyword is passed to the routine. A routine may have many available keywords to
choose from. You can use as many or as few as you need.

Continuing with the PLOT example, we adds keywords to label the x and y axes:

IPLOT, EXP(FINDGEN(10)), XTITLE='Time', YTITLE='Velocity'
IDL Language Elements Getting Started with IDL

Chapter 10: Programming in IDL 123
Automatic Compilation

IDL compiles routines any time it encounters a routine name, whether it is typed at
the command line or called from another routine. If the routine is already in IDL’s
memory, IDL runs it. If the routine is not in memory, IDL searches each directory in
the path definition for (filename.pro) and automatically compiles it. (For more on
the IDL path, see the IDL_PATH topic in the IDL Online Help.)

Note
IDL routines all have specific names, which can conflict with user-written routines
if those routines have the same name. When IDL encounters this conflict, the
automatic compilation mechanism ignores the user-written routine. For more
information, see the Advice for Library Authors topic in the IDL Online Help.

Code Written in Other Programming Languages

IDL allows you to incorporate routines written in other programming languages using
the following methods:

• Call Java or COM objects and methods using the Import Bridge technology.
See the IDL Import Bridge topic in the IDL Online Help for information.

• Call other types of external sharable object code (C or FORTRAN, for
example). See the CALL_EXTERNAL, LINKIMAGE, MAKE_DLL routines,
and the External Development Overview topic in the IDL Online Help for
information.

• You can also export IDL objects for use by Java or COM programs. See the
IDL Export Bridge topic in the IDL Online Help for information.
Getting Started with IDL IDL Language Elements

124 Chapter 10: Programming in IDL
Arrays and Efficient Programming

IDL has been specifically designed to process arrays easily and naturally. You can get
excellent performance in your applications by using the built-in array processing
routines, which allow an operation to be performed on every element in an array,
without having to explicitly create a loop. This functionality makes for simpler
coding and faster computing. For more information, see the Writing Efficient IDL
Programs topic in the IDL Online Help.

Using Operators on Arrays

IDL has a large number of different operators. In addition to the usual operators —
addition, subtraction, multiplication, division, exponentiation, relations (EQ, NE, GT,
etc.), and logical arithmetic (&&, ||, ~, AND, OR, NOT, and XOR) — other operators
exist to find minima, maxima, select scalars and subarrays from arrays (subscripting),
and to concatenate scalars and arrays to form new arrays.

All of IDL’s operators can be applied to arrays as well as to scalars.

IDL’s ability to perform operations directly on entire arrays makes it ideal for
processing array data. For example, suppose you had an array A consisting of 100
floating point integers, and you wanted to create a corresponding array containing the
absolute value of each array element. Most languages would require you to write a
loop to create the new array. In IDL, the following single statement suffices:

B = ABS(A)

The array B is created as a 100-element array, each element of which contains the
absolute value of the corresponding element in array A.

Similarly, multiplying each element of array C by the corresponding element of array
D is simple:

E = C * D

See the Arrays and Expressions and Operators topics in the IDL Online help for
additional details.

Subscripts

Subscripts retrieve or modify individual array elements, and are also referred to as
array indices. In IDL subscripts, the first array index element is always zero. This is
different from FORTRAN, where indices start by default with one. In a one-
dimensional array, elements are numbered starting at 0 with the first element, 1 for
the second element, and running to n - 1, the subscript of the last element.
Arrays and Efficient Programming Getting Started with IDL

Chapter 10: Programming in IDL 125
You can use array subscripts to access one element, a range of elements, or a number
of non-sequential elements in an array. You can also use subscripts to designate new
values for array elements.

For example, the following expression gives the value of the seventh element of the
variable arr (remember that array subscripts start at zero, not 1).

arr[6]

The next statement stores the number three at the seventh element of arr, with no
changes to other array elements.

arr[6] = 3

Using Array Operators to Avoid IF Statements

Suppose you want to add all positive elements of array B to array A:

• Using a loop will be slow:

FOR I=0, (N-1)DO IF B[I]GT 0 THEN A[I]=A[I] + B[I]

• Fast way: Mask out negative elements using array operations.

A = A + (B GT 0) * B

• Faster way: Add B > 0

A = A + (B > 0)

When an IF statement appears in the middle of a loop with each element of an
array in the conditional, the loop can often be eliminated by using logical array
expressions.

Using Array Operators and the WHERE Function

In the example below, each element of the array C is set to the square-root of the
corresponding element of array A if A[i] is positive; otherwise, C[i] is set to minus
the square-root of the absolute value of A[i].

• Using an IF statement is slow:

FOR I=0,(N-1) DO IF A[I] LE 0 THEN C[I]=-SQRT(-A[I]) ELSE
C[I]=SQRT(A[I])

• Fast way:

C = ((A GT 0) * 2 - 1) * SQRT(ABS(A))

The expression (A GT 0) has the value 1 if A[I] is positive and has the value
0 if A[I] is not. (A GT 0)* 2 - 1 is equal to +1 if A[I] is positive or -1 if
Getting Started with IDL Arrays and Efficient Programming

126 Chapter 10: Programming in IDL
A[I] is negative, accomplishing the desired result without resorting to loops or
IF statements.

Another method is to use the WHERE function to determine the subscripts of the
negative elements of A and negate the corresponding elements of the result.

• Get subscripts of negative elements.

negs = WHERE(A LT 0)

• Take root of absolute value.

C = SQRT(ABS(A))

• Negate elements in C corresponding to negative elements in A.

C[negs] = -C[negs]

Using Vector and Array Operations

Whenever possible, vector and array data should be processed with IDL array
operations instead of scalar operations in a loop. For example, consider the problem
of flipping a 512 × 512 image. This problem arises because approximately half the
available image display devices consider the origin to be the lower-left corner of the
screen, while the other half recognize it as the upper-left corner.

Note
The following example is for demonstration only. The IDL system variable
!ORDER and corresponding features in the iTools and Direct graphics image
display routines are easier to use and more efficient.

A programmer without experience in using IDL might be tempted to write the
following nested loop structure to solve this problem:

FOR I = 0, 511 DO FOR J = 0, 255 DO BEGIN

• Temporarily save pixel:

TEMP=IMAGE[I, J]

• Exchange pixel in same column from corresponding row at bottom.

image[I, J] = image[I, 511 - J]
image[I, 511-J] = temp
ENDFOR
Arrays and Efficient Programming Getting Started with IDL

Chapter 10: Programming in IDL 127
A more efficient approach to this problem capitalizes on IDL’s ability to process
arrays as a single entity.

• Enter at the IDL Command Line:

FOR J = 0, 255 DO BEGIN

• Temporarily save current row.

temp = image[*, J]

• Exchange row with corresponding row at bottom.

image[*, J] = image[*, 511-J]
image[*, 511-J] = temp
ENDFOR

At the cost of using twice as much memory, processing can be simplified even further
by using the following statements:

• Get a second array to hold inverted copy.

image2 = BYTARR(512, 512)

• Copy the rows from the bottom up.

FOR J = 0, 511 DO image2[*, J] = image[*, 511-J]

• Even more efficient is the single line:

image2 = image[*, 511 - INDGEN(512)]

that reverses the array using subscript ranges and array-valued subscripts.

• Using the built-in ROTATE function:

image = ROTATE(image, 7)

This works because inverting the image is equivalent to transposing it and
rotating it 270 degrees clockwise.

• Using the built-in REVERSE function:

image = REVERSE(image, 2)
Getting Started with IDL Arrays and Efficient Programming

128 Chapter 10: Programming in IDL
IDL Programming Concepts and Tools

IDL’s programming environment provides tools that help you organize and accelerate
code development. The IDL workspace and projects provide the basic framework for
IDL programming. The different programming tools include object and GUI
programming, including the iTools library. These concepts are introduced in the
following sections, along with how to distribute your IDL applications.

Workspace

The Workbench in IDL uses the concept of a workspace, where IDL stores all
projects, folders, and files in a single directory. All projects reside in the workspace.
You can choose where the workspace physically resides on your system, and you can
create multiple workspaces, but only one can be open at a time.

Projects

An IDL project is a virtual collection of folders, files, and metadata. Projects are not
required by IDL, but the benefits of saving programs in projects include cross-project
searching and easy navigation. You can also use projects for customizing builds,
version management, sharing, and resource organization.

In the IDL workflow, you first create a project using the Workbench and specify a
location for it in the file system. Code files are then associated with the project.

Object Programming

Object-oriented programming blurs the lines between routines and the data that they
act upon. The benefits of using object-oriented programming include reusable classes
and more modular code (easier to find and fix errors). Object-oriented applications
can also be easier to maintain and extend.

IDL began as a procedural language, but object-oriented programming was
introduced in IDL 5.0. One of the driving reasons was to simplify 3D graphics
capabilities (known as Object graphics in IDL). The IDL Object graphics system is a
collection of pre-defined object classes that act as building blocks. To build a useful
application, you must use several of these building blocks together. Compared to
IDL’s Direct graphics, object graphics are more complex, but produce robust, 3-D
visualizations. Another difference is that object graphics are meant for application
development rather than for command-line users.
IDL Programming Concepts and Tools Getting Started with IDL

Chapter 10: Programming in IDL 129
For more information, see The Basics of Using Objects in IDL topic in the IDL
Online Help.

Graphical User Interface (GUI) Programming

IDL provides several programming options for creating user interfaces. The
following list shows the options in order from simplest to most complex:

• Command-line—using the IDL command line, you can display data in the IDL
output log or direct graphics visualizations. For example, using statements
such as PLOT, PRINT, and TV.

• iTool Interface—using an existing iTool allows you to quickly display data and
manipulate images. Existing iTools include iPlot, iImage, iContour, iSurface,
and iVolume.

• Custom Widget Interface—IDL provides a library of widget tools to create
simple controls such as buttons and sliders. Using widgets offers you complete
control over user interface design, but you must code all the underlying
functionality. It is possible for more advanced programmers to create
applications that combine iTools and widgets.

• Custom iTool—The most complex programming option is creating custom
iTool interfaces. This option allows you to expand the capabilities and
appearance of the standard iTools.

iTool Programming

The term iTools stands for intelligent tools, which are a collection of IDL
applications that share a common framework. The iTools all have a graphical user
interface (GUI) that allows you to program applications with custom toolbars, menus,
buttons, etc. IDL provides several predefined iTools, and you can develop your own
using iTool programming.

Programming in iTools uses the iTools Component Framework, which is a set of class
files and utilities that help you create new tools or extend the existing iTools.

For more information, see the Creating an iTool topic in the IDL Online Help.

Distributing Programs

Once you have completed your application, you can quickly and easily create a
distribution of your software product. See the Running and Building Projects topic in
the IDL Online Help for information on packaging your application for distribution.
Getting Started with IDL IDL Programming Concepts and Tools

130 Chapter 10: Programming in IDL
IDL Workbench Editor

The Editor is the IDL Workbench area where you create, view, and edit code. Within
the Editor, you’ll find tools that help you format, comment, test, and debug code. The
Editor provides tools that help you create code faster and more efficiently than you
could in a simple text editor.

Some of the features of the IDL Editor that are discussed in this chapter are:

• Writing Code—The Editor provides tools such as content assist, key bindings,
and commenting code to help you speed up code development.

• Formatting Code—Tools such as syntax coloring and other formatting options
help you quickly format the code for readability.

• Viewing and Finding Code—Features such as code folding, open declaration,
and hover help allow you to quickly scan your code. Finding what you need is
easy with the find and replace and parentheses matching tools.

• Organizing Code—The bookmark and task markers help you easily annotate
and organize your code.

• Testing and Debugging Code—The debugging features of the IDL Workbench
include setting breakpoints in the Editor.

• Code Versioning—The Editor allows you to compare the current version of a
file with previous versions to restore any necessary revisions.

For more information, see the IDL Editor Tips and Tricks topic in the IDL Online
Help.
IDL Workbench Editor Getting Started with IDL

Chapter 10: Programming in IDL 131
Executing a Simple IDL Program

To show IDL’s programming capabilities, the following program example uses the
iVolume iTool to display volume data. This example uses Black Hole volume data
provided by the University of North Carolina.

1. From the IDL Workbench, open a new IDL Editor window by selecting
File → New → IDL Source File.

2. Type (or copy) the following lines of code into the new Editor window to form
a program:

PRO my_ivolume, _EXTRA=_extra

; Set the variable fname to the black hole volume data file
fname = FILEPATH('cduskcD1400.sav', SUBDIR=['examples', 'data'])
RESTORE, fname
; load a color table and supress the color table message using
; the keyword /SILENT
LOADCT, 15, /SILENT
; Return the Red, Green, Blue values from the
; internal color tables
; to the variables r, g, b
TVLCT, r, g, b, /GET
; Display the data using the iVolume iTool
 IVOLUME, density, RGB_TABLE0=[[r],[g],[b]], $
 /AUTO_RENDER, /NO_SAVEPROMPT
END

Note
Semicolons (;) in IDL code are indicators of the beginning of comment lines, which
explain what the actual code lines are doing and/or help you understand your code
(while being ignored by IDL itself).

Note
The dollar sign ($) at the end of a line is the IDL continuation character. It allows
you to enter long IDL commands as multiple lines.
Getting Started with IDL Executing a Simple IDL Program

132 Chapter 10: Programming in IDL
Saving, Compiling, and Running

To view the program at work, IDL requires a few additional steps:

1. Save the file as my_ivolume.pro by selecting File → Save As and then
entering “my_ivolume.pro”.

2. Run the program by selecting Run → Run my_ivolume.pro (IDL
automatically compiles the program if it is in the IDL path).

The resulting iVolume window displays the following image:

Note
If your program encounters an error while executing, be sure to check your code for
typographical errors.
Executing a Simple IDL Program Getting Started with IDL

Chapter 10: Programming in IDL 133
Debugging

Debugging is the process of finding and correcting errors or undesirable behavior in
your code. The IDL Workbench supplies tools that let you monitor the execution of
your program, stop and re-start execution, step through the program one statement at
a time, and inspect or change the values of variables.

The debugging process begins when IDL temporarily stops execution before it
reaches the end of a program. There are two ways this can happen: when IDL
encounters an error that forces either compilation or execution to halt, or when IDL
encounters a breakpoint you have set in the code to cause a temporary halt. Note that
not every error in your code will cause IDL to halt execution; many problems involve
code that runs correctly to completion but creates incorrect results.

For complete information, see the Debugging and Error-Handling topic in the IDL
Online Help.
Getting Started with IDL Debugging

134 Chapter 10: Programming in IDL
Debugging Getting Started with IDL

Chapter 11

User Interfaces in IDL
This chapter describes the following topics:
User Interface Options in IDL 136
Non-Graphical User Interfaces 137
Existing iTool Interfaces 138

Graphical Interfaces with IDL Widgets . . 139
Custom iTool Interfaces 142
A Simple Widget Example 140
Getting Started with IDL 135

136 Chapter 11: User Interfaces in IDL
User Interface Options in IDL

If you create an application that requires user interaction, you will need to supply a
user interface. IDL gives you several options for supplying an interface. In order of
increasing complexity, you can use any of the following:

• Non-graphical Interface — You can use the IDL command line as a non-
graphical user interface to request simple textual user input, display Direct
graphics visualizations, or display data in the IDL Console view. See “Non-
Graphical User Interfaces” on page 137 for more information.

• Existing iTool Interface — You can use an existing iTool to provide quick data
display and manipulation capabilities for image, plot, surface, volume and map
data. See “Existing iTool Interfaces” on page 138 for more information.

• Graphical Interface — You can use IDL widgets to build a complete graphical
interface of your own design. Creating a user interface from scratch (as
opposed to using the iTools framework) gives you complete control over the
appearance and functionality of the interface, but you must code all underlying
functionality. You can also create a hybrid widget-iTool application, but this
requires additional programming expertise. See “Graphical Interfaces with
IDL Widgets” on page 139 for more information.

• Custom iTool — You can create a custom iTool interface that allows you to
expand on the capabilities of the standard iTool design and configure the
appearance of your iTool. This option requires the most programming
expertise. It is likely that one of the other options will meet the needs of the
majority of applications, but this level of customization is available for those
who require it. See “Custom iTool Interfaces” on page 142 for more
information.
User Interface Options in IDL Getting Started with IDL

Chapter 11: User Interfaces in IDL 137
Non-Graphical User Interfaces

If your application requires little interaction
from the user and runs in a full IDL
installation (that is, if your user has a
licensed copy of IDL and can use either the
IDL Workbench or the IDL command line
version), you may not need to create a
graphical user interface at all. For example,
if you have created a simple program that
requires the user to enter a small number of
data values and returns a numerical result,
you may not want the overhead of a
graphical interface.

The READ routine allows you to use the
IDL command line to prompt the user for
values, providing a record of both the
prompts and the values entered in the
Console view. See the READ/READF topic
in the IDL Online Help for details.

This kind of textual interface behaves
identically on all systems that run IDL and
requires very little programming, but it does
require that a licensed version of IDL be
available. Applications using graphical
interfaces can run using a runtime IDL
license or in the IDL Virtual Machine, neither of which requires that the application’s
end user have a full IDL license.
Getting Started with IDL Non-Graphical User Interfaces

138 Chapter 11: User Interfaces in IDL
Existing iTool Interfaces

The IDL Intelligent Tools (iTools) are a set of interactive utilities that combine data
analysis and visualization with the task of producing presentation quality graphics.
Based on the IDL Object graphics system, the iTools are designed to help you get the
most out of your data with minimal effort. They allow you to continue to benefit from
the control of a programming language, while enjoying the convenience of a point-
and-click environment.

Using an existing iTool user
interface for data display
and modification is the
easiest way to allow your
user to access, visualize,
and modify plot, volume,
surface, map, and image
data.

The example exercises in
this manual use the iTools
extensively. Trying the
examples and
experimenting with the
iTools should give you a
good idea of whether an
existing iTool can provide
the interface your
application needs. See the Introducing the IDL iTools topic in the IDL Online Help
for information on using the iTools.

If you need functionality beyond that provided by an existing iTool, you can expand
the functionality by adding:

• Custom operations or manipulators to standard visualization types

• Custom file writers or file readers

• Custom messages

Using an existing iTool lets you provide your users with a great deal of pre-built
functionality. For information on expanding the iTool functionality mentioned above,
see the iTool Programming topic in the IDL Online Help.
Existing iTool Interfaces Getting Started with IDL

Chapter 11: User Interfaces in IDL 139
Graphical Interfaces with IDL Widgets

IDL allows you to construct and manipulate graphical user interfaces using widgets.
Widgets are simple graphical objects such as pushbuttons or sliders that allow user
interaction via a pointing device (usually a mouse) and a keyboard. Widget
applications can be simple or complex; the IDL iTools are examples of sophisticated
applications with a graphical user interface constructed from IDL widgets.

While creating an interface using IDL widgets is significantly simpler than building a
similar interface using native window system graphical interface toolkits, the style of
programming required is fundamentally different than in other IDL programs. A
program written to be used from the IDL command line generally accepts its inputs
when the program is invoked. The program then proceeds in a well-defined order to
process those inputs and provide some output — a calculated value, a plot, an image,
etc. In contrast, widget applications are event-driven.

In an event-driven system, the program creates an interface and then waits for
messages (events) to be sent to it from the window system. Events are generated in
response to user manipulation, such as pressing a button or moving a slider. The
program responds to events by carrying out the action or computation specified by the
programmer, and then waiting for the next event.

See “A Simple Widget Example” on page 140 for code that creates a very simple
widget application that allows you to choose and display a JPEG image file from the
IDL distribution.
Getting Started with IDL Graphical Interfaces with IDL Widgets

140 Chapter 11: User Interfaces in IDL
A Simple Widget Example

The following lines of IDL code create the simple application described in
“Graphical Interfaces with IDL Widgets” on page 139.

PRO simple_image_viewer_event, ev

WIDGET_CONTROL, ev.TOP, GET_UVALUE=drawid
WIDGET_CONTROL, ev.ID, GET_UVALUE=uval
CASE uval OF

'get_image' : BEGIN
path = !DIR+'/examples/data'
file = DIALOG_PICKFILE(PATH=path, /READ, $

FILTER='*.jpg', /FIX_FILTER)
image = READ_IMAGE(file)
WSET, drawid
ERASE
IF (SIZE(image, /N_DIMENSIONS) EQ 3) THEN BEGIN

TV, image, /TRUE
ENDIF ELSE BEGIN

TV, image
ENDELSE

END
'done' : WIDGET_CONTROL, ev.top, /DESTROY

ENDCASE

END

PRO simple_image_viewer

main_base = WIDGET_BASE(/ROW, XSIZE=400, YSIZE=255)
draw = WIDGET_DRAW(main_base, XSIZE=250, YSIZE=250)
button_base = WIDGET_BASE(main_base, /COLUMN)
button = WIDGET_BUTTON(button_base, VALUE='Get image', $

UVALUE='get_image')
button = widget_button(button_base, VALUE='Done', $

UVALUE='done')

WIDGET_CONTROL, main_base, /REALIZE
WIDGET_CONTROL, draw, GET_VALUE=drawid
WIDGET_CONTROL, main_base, SET_UVALUE=drawid

XMANAGER, 'simple_image_viewer', main_base, /NO_BLOCK

END

It is beyond the scope of this manual to describe every detail of the
simple_image_viewer program. But as you can see, it requires fewer than 40 lines
A Simple Widget Example Getting Started with IDL

Chapter 11: User Interfaces in IDL 141
of IDL code to create a program that allows you to quickly select and view the
contents of an image file.

If you are interested in trying the simple_image_viewer program, do the
following:

1. Open the IDL Workbench.

2. Select File → New → IDL Source File to create a new editor window.

3. Enter the code lines from the previous page in the editor window.

4. Select File → Save and then click OK in the Save As dialog that appears,
accepting the default filename and location. (This saves your code in a file
named simple_image_viewer.pro in your default IDL project directory.)

5. Select Run → Run simple_image_viewer or press F8. The program is
executed and the graphical interface is displayed.

6. Click Browse to choose a JPEG image to be displayed. Click Done to dismiss
the application.

For more on using the IDL Workbench to create programs, see “The IDL
Workbench” on page 19. For more on creating graphical user interfaces using IDL
widgets, see the Creating Widget Applications topic in the IDL Online Help.
Getting Started with IDL A Simple Widget Example

142 Chapter 11: User Interfaces in IDL
Custom iTool Interfaces

Each of the standard iTools (such as the iPlot or iImage tools) have the same basic
interface style. Beyond adding operations or manipulators, you can modify the
existing iTool interface by adding:

• Modal dialogs, implemented through a user interface service

• iTool panels, which provide a set of controls that are attached to a visualization
window and are always available

Beyond this, you have the option of modifying the standard iTool interface. Standard
iTools are constructed of a number of compound widgets designed to work explicitly
within the iTool architecture. You can modify the standard iTool interface by creating
a custom iTool-widget interface, a hybrid tool that combines traditional widget
functionality and iTool compound widgets. This requires knowledge of widget
programming, how to create an iTool, how to create a UI service, and how to use the
iTool compound widgets. For more information on the previous topics, see the iTool
Programming topic in the IDL Online Help.
Custom iTool Interfaces Getting Started with IDL

Index

Symbols
$ sign, 10, 131
$Main$ program, 118
; comment, 131

Numerics
2D plot, 107
3D contour plot, 90
3D contours, 90

A
adding

error bars with iPlot, 48
plot titles with iPlot, 46

annotating maps, 74
arguments, 121
array

definition, 120
operations, 116, 124
subscripts, 124

automatic compilation, 123, 132

B
bandpass filters, 113
bandstop filters, 113
breakpoints, 32

C
code
Getting Started with IDL 143

144
breakpoints, 32
commenting, 131
compiling, 31
debugging, 32, 133
development, 130
efficient, 116, 124
line continuation, 131
modular, 128
PRO, 119
running, 31

coding, interactive, 116, 118, 120, 129
colors

alternate color tables with iImage, 60
contrast enhancement, 56
decomposed, 10
filling contours, 90
in Direct graphics examples, 10

COM, 123
command

history view, 29
line

coding, 116, 118, 120, 129
mode, 22
view, 29

comments, 131
compiling, 31, 123, 132
console view, 29
continuation character, 10, 131
contours, 87–90
contrast enhancement, 56, 56
copyrights, 2
creating

2-D plots
Direct graphics, 50
iPlot, 44

3-D plots
iPlot, 52

data sets, 107
surface plots of irregularly sampled data, 91

cropping in the iImage tool, 60

D
data

images, 71
sets, creating, 107
types, 116, 120
vector, 80

debugging, 32, 133
decomposed color, 10
DEVICE command, 10
differentiation, 59
DIGITAL_FILTER function, 113
Direct graphics

creating 2-D plots, 50
displaying

contours, 89, 90
images, 63
surfaces, 86

mapping, 74, 77
printing, 51
resizing images, 64

displaying
contours

Direct graphics, 89, 89, 90
iContour, 87

iImage, 55
images

Direct graphics, 50, 63
iImage, 55
iMap, 71

maps, 67
plots, 44
surfaces

Direct graphics, 86
iSurface, 83
visualizations, 83

volumes
Direct graphics, 99
iVolume, 96

distributing IDL applications, 117, 129
dollar sign, 131
dynamic data types, 116, 120
Index Getting Started with IDL

145
E
Editor, 27, 130
efficient programming, 116, 124
elevation levels, contours, 89
entering commands, 10
error handling, 133
example

code, 10, 131
widget program, 140

executing programs, 132
export restrictions, 2
external programs, 117
extracting profiles in iImage, 61

F
Fast Fourier transform, 110
filling contours, 90
filters, 110–113
finite impulse response (FIR) filters, 113
FIR filter, 113
frequency domain filtering, 110
functions, overview, 118–119

G
getting help, 10
globe

drawing, 69
plotting, 72

Graphical User Interface (see GUI)
graphics

mapping, 71
object, 128

GUI
iTools, 116, 129, 138, 142
routines, 116
widget programming, 116, 129
widgets, 136, 139

H
highpass filters, 113

I
iContour, 87–90
IDL

distributing applications, 117, 129
Editor, 130
external programs, 117
programming, 116
projects, 128
quick start, 13
routines, 116
Workbench, 13, 116, 128, 133

see alsoWorkbench
workspace, 128

iImage
about, 55
cropping, 60
differentiation, 59
displaying images, 55
extracting profiles, 61
line profile tool, 61
loading alternate color tables, 60
resizing images, 56
rotating images, 61
sharpening, 58
smoothing, 57
thresholding, 56
unsharp masking, 58

images
contrast enhancement, 56
display routines, 63
displaying (quick start), 14
iImage, 55
mapping, 71, 77
opening, 63
planes, 97
reading, 63
Getting Started with IDL Index

146
sharpening, 57
smoothing, 57
working with in IDL, 54

iMap
about, 67
area plot, 73
map data, 70
overview, 67
vector data, 80
visualization, 70

interactive programming, 116, 118, 120, 129
iPlot

2-D plots, 44
3-D plots, 52
about, 44
ASCII data set, 45
changing a plot data range, 47
error bars, 48
plot titles, 46
symbols and line styles, 48

isosurfaces, 97
iSurface

about, 83, 87, 95
displaying surfaces, 83
rotating surfaces, 84

iTools
programming, 116, 129
user interface, 138

iVector, 80
iVolume, 95, 132

J
Java, 123

K
keywords, 122

L
latitude, 72, 76
legalities, 2
legends with iContour, 88
levels, contour, 89
line continuation, 131
longitude, 72, 76
lowpass filters, 113

M
main programs, 118
MAP_IMAGE, 78
mapping

annotations, 74
area, 72
data, 70, 77
Direct graphics, 74
display (quick start), 15
graphics, 71
grid, 73
images, 71
iMap, 67
latitude, 72, 76
longitude, 72, 76
overview, 66
plotting data, 74
projections, 67, 69
vector data, 80
warping images, 77

maximizing views, 26
menu bar, 24
Mercator projection, 68, 74
modular code, 128
Mollweide projection, 71, 78
moving average filter, 113
moving views, 25
Index Getting Started with IDL

147
N
named programs, 118–119
naming conflicts, 123
noise reduction filter, 110
non-graphical user interface, 137

O
object

graphics, 128
programming, 128

opening image files, 63
orthographic map projection, 69
outline view, 27
overplotting, 44, 50, 90

P
partial globe, 72
perspectives, 23
plot

2D, 107
displaying (quick start), 14
map, 74

plotting
annotating maps, 74
ASCII data set with iPlot, 45
overplotting, 90

preferences, 37
printing a Direct graphics window, 51
PRO code, 119
procedures

overview, 118–119
programming

arguments, 121
debugging, 133
development, 130
efficient, 116, 124
example, 131
executing, 132

file names, 123
functions, 118–119
GUI, 129
interactive, 116, 118, 120, 129
iTools, 116, 129
keywords, 122
line continuation, 131
main programs, 118
object-oriented, 128
overview, 116
procedures, 118–119
quick start, 16
saving programs, 132
subscripts, 124
widget, 116, 129

project explorer view, 27
projections

Mercator, 68, 74
Mollweide, 71, 78
orthographic, 69
overview, 67

projects, 30, 128
PSYM keyword, 75

Q
quick start, 13

R
reading images, 63
rendering volumes, 96, 99
resizing images with Direct graphics, 64
reusable code, 128
rotating

images in iImage, 61
surfaces in iSurface, 84

routines
arguments, 121
IDL, 116
Getting Started with IDL Index

148
image display, 63
keywords, 122

running programs, 31, 132

S
saving programs, 132
scalars, 120
semicolon, 131
sharpening

differentiation, 59
images, 57, 58

signal processing, 104
SIN function, 107
sinewave function, 107
smoothing images, 57, 57
starting

IDL in command line mode, 22
the IDL Workbench, 20

structures, 120
subscripts, 124
SYMSIZE keyword, 75

T
tasks view, 29
three-dimensional

contour plot, 90
transformation matrix, 99

thresholding, 56
Tool Palette, 26
toolbar, 25
trademarks, 2
tutorials, 10

U
unsharp masking, 58, 58
updating the IDL Workbench, 38
user interface

custom, 139
GUI, 136
iTools, 138, 142
non-graphical, 137
widgets, 139

V
variables

types, 120
view, 28

vector data, 80
views

command history, 29
command line, 29
console, 29
explanation, 25
maximizing, 26
moving, 25
outline, 27
project explorer, 27
tasks, 29
Tool Palette, 26
variables, 28
Visualizations, 28

Visualization Browser, 70
Visualizations

displaying surfaces, 83
view, 28

volumes
image planes, 97, 101
isosurfaces, 97, 99
iVolume, 95
rendering, 96
visualizing, 95

W
warping images, 77
widgets
Index Getting Started with IDL

149
example, 140
overview, 136
programming, 74, 116, 129

Workbench
adding features, 38
Editor, 27, 130
overview, 116
perspectives, 23

preferences, 37
projects, 30
starting, 13, 20
tools, 133
updating, 38
workspaces, 30, 128

workspaces, 30, 128
Getting Started with IDL Index

150
Index Getting Started with IDL

	Online Manuals
	IDL Documentation
	What's New in IDL 7.1
	Installation and Licensing
	Getting Started with IDL
	Using IDL
	Application Programming
	User Interface Programming
	Image Processing in IDL
	iTool User's Guide
	iTool Programming
	Object Programming
	IDL Quick Reference
	IDL Reference Guide
	Scientific Data Formats
	IDL Connectivity Bridges
	External Development Guide
	Obsolete IDL Features

	Documentation for add-on Products
	IDL Advanced Math and Stats
	IDL Dataminer
	IDL Wavelet Toolkit
	Medical Imaging in IDL

	Search Documentation

	Getting Started with IDL
	Contents
	The Power of IDL
	Using this Manual
	Other Resources

	Super Quick Start
	The IDL Workbench
	About the IDL Workbench
	Command Line Options
	Starting IDL in Command Line Mode

	Perspectives
	IDL Workbench Tour
	Compiling and Running an IDL Program
	Breakpoints and Debugging
	Getting Help
	Preferences
	Updating the IDL Workbench

	Line Plots
	IDL and 2-D Plotting
	Plotting with the Tool Palette
	Plotting with iPlot
	Plotting with Direct Graphics
	IDL and 3-D Plotting

	Images
	IDL and Images
	Displaying Images
	Displaying Images with Direct Graphics

	Maps
	IDL and Mapping
	Displaying iMaps Tool
	Modifying Map Data
	Fitting an Image to a Projection
	Plotting a Portion of the Globe
	Plotting Data on Maps
	Warping Images to Maps
	Displaying Vector Data on a Map

	Surfaces and Contours
	Surfaces and Contours in IDL
	Displaying Surfaces
	Displaying Surfaces with Direct Graphics
	Displaying Contours
	Displaying Contours with Direct Graphics
	Working with Irregularly Gridded Data

	Volumes
	IDL and Volume Visualization
	Volume Rendering with iVolume
	Volume Rendering with Direct Graphics

	Signal Processing with IDL
	IDL and Signal Processing
	Signal Processing Concepts
	Creating a Data Set
	Signal Processing with SMOOTH
	Frequency Domain Filtering
	Displaying Multiple Plots in a Single Window

	Creating Custom Filters
	Wavelet Filtering Example

	Programming in IDL
	About Programming in IDL
	Types of IDL Programs
	IDL Language Elements
	Arrays and Efficient Programming
	IDL Programming Concepts and Tools
	IDL Workbench Editor
	Executing a Simple IDL Program
	Debugging

	User Interfaces in IDL
	User Interface Options in IDL
	Non-Graphical User Interfaces
	Existing iTool Interfaces
	Graphical Interfaces with IDL Widgets
	A Simple Widget Example
	Custom iTool Interfaces

	Index

