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An introduction to the theory of diffusive shock 
acceleration of energetic particles in tenuous plasmas 

L O’C Drury 
Max-Planck-Institut fur Kernphysik, Postfach 103980, D6900 Heidelberg-1, West Germany 

Abstract 

The central idea of diffusive shock acceleration is presented from microscopic and 
macroscopic viewpoints; applied to reactionless test particles in a steady plane shock 
the mechanism is shown to produce a power law spectrum in momentum with a slope 
which, to lowest order in the ratio of plasma to particle speed, depends only on the 
compression in the shock. The associated time scale is found (also by a macroscopic 
and a microscopic method) and the problems of spherical shocks, as exemplified by 
a point explosion and a stellar-wind terminator, are treated by singular perturbation 
theory. The effect of including the particle reaction is then studied. It is shown that 
if the scattering is due to resonant waves these can rapidly grow with unknown 
consequences. The possible steady modified shock structures are classified and gen- 
eralised Rankine-Hugoniot conditions found. Modifications of the spectrum are 
discussed on the basis of an exact, if rather artificial, solution, a high-energy asymptotic 
expansion and a perturbation expansion due to Blandford. It is pointed out that no 
steady solution can exist for very strong shocks; the possible time dependence is briefly 
discussed. 
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1. Introduction 

The subject of this review is a mechanism, basically simple, whereby shock waves in 
tenuous ionised media such as fill interstellar and interplanetary space can accelerate 
energetic charged particles. While of interest in itself the idea’s chief attraction is 
that it may be a first step towards understanding the universal acceleration mechanism 
long suspected by workers in high-energy astrophysics to exist and to be responsible 
for the galactic cosmic rays and the energetic electrons inferred in many non-thermal 
radio sources (the main evidence is that all the particle energy spectra seem to be 
power laws with very similar indices). As sometimes happens in the history of Science 
the concept appears to have been ‘in the air’ and was independently and almost 
contemporaneously published by Krymsky (1977), Axford et a1 (1977), Bell (1978a, b) 
and Blandford and Ostriker (1978). Even prior to these four semirial papers which 
all, but with interesting variations, describe the same basic process of diffusive shock 
acceleration (also known as first-order or regular Fermi acceleration by shock waves) 
certain papers clearly foreshadowed the concept; thus Hoyle (1960), without specifying 
a mechanism, postulated that shocks could efficiently accelerate particles, Parker 
(1958) and Hudson (1965, 1967) attempted to obtain a first-order Fermi mechanism 
based on pairs of converging shocks and most notably Schatzman (1963) constructed 
a theory very similar to diffusive shock acceleration but based on perpendicular shocks. 
The idea is also implicit in the papers of Jokipii (1966, 1968), Fisk (1971) and Scholer 
and Morfill (1975). 

In the six years since its first publication the concept has been considerably 
elaborated and is already the subject of reviews by Blandford (1979), Axford 
(1980, 1981a, b) and Toptyghin (1980). This review deals exclusively with the theo- 
retical aspects of the mechanism; the relevant observational data as well as much 
theoretical background can be found in the monograph by Longair (1981) and in the 
volumes of conference proceedings containing Blandford’s (1979) and Axford’s (1 980) 
reviews. Virtually all work in this area has been reported (and criticised) at the 
biannual international cosmic-ray conferences (the last three were at Plovdiv in 1977, 
Kyoto in 1979 and Paris in 1981); the published proceedings are an invaluable guide 
to current research and contain discussions of the mechanism’s application to the 
acceleration of the galactic cosmic rays (cf in particular the incisive criticism by 
Ginzburg and Ptuskin (1981)). The theses of Achterberg (1981) and Ellison (1981) 
are also useful sources. 

A shock wave, or briefly a shock, can be generally defined as a transition layer 
which propagates through a plasma and changes its state. The physically important 
case, and the only one considered here, is where the shock compresses the plasma 
and some of the kinetic energy of the incoming plasma is transferred to internal 
degrees of freedom of the downstream plasma. The thickness of the transition layer 
(the shock front) is determined by the physical process responsible for this energy 
conversion. In an ordinary gas shock the energy is transferred by two-body collisions 
to the random thermal motion of the gas molecules and the thickness is of the order 
of a few collisional mean free paths. However, in tenuous plasmas collisions are rare 
and the energy transfer proceeds through collective electromagnetic effects; thus the 
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thickness of these collisionless shocks is of the order of the gyroradius of a thermal 
ion (or the Debye length if electrostatic effects are important). An energetic charged 
particle is one with sufficient momentum not to resonate with this electromagnetic 
turbulence in the shock front and thus see the shock essentially as a discontinuity 
(whereas the ‘thermal’ particles interact strongly and are ‘heated’). The general 
properties of shocks are discussed in the books by Zeldovich and Raizer (1966), 
Whitham (1974) and Lighthill (1978); the standard reference on collisionless shocks 
is the monograph by Tidman and Krall (1971). 

The notation and nomenclature used in this review is, in general, standard. The 
Dirac distribution is denoted as usual by S and the Heaviside unit step function by 
H. The symbol A is used both for the cross product of two vectors (denoted by 
boldface type) and for the exterior (or wedge) product of differential forms. ‘Cosmic 
ray’ is often used as a convenient synonym for ‘energetic charged particle’ and the 
definition of pitch in (2.1) is non-standard. Momentum always means kinetic momen- 
tum (not the canonical momentum which contains an electromagnetic part) but this 
does not affect the use of Liouville’s theorem. 

2. Basic theory 

This section begins with a simple heuristic derivation of the diffusive transport equation. 
The kinematic structure (i.e. space-time geometry) of the electromagnetic and velocity 
fields at a shock is then discussed and scatter-free acceleration briefly considered. 
The third, and major, part discusses as simply as possible the fundamental ideas of 
diffusive shock acceleration. 

2.1. Transport of energetic charged particles 

We begin with the elementary result that in a uniform magnetic field a freely moving 
charged particle follows a helical trajectory, the superposition of a uniform translation 
parallel to the field and a regular gyration perpendicular to the field. The particle’s 
pitch, p, is the cosine of the angle between its momentum vector p and the magnetic 
field B :  

k = P ‘ B I P B  (2.1) 
and its parallel and perpendicular momenta are 

PI1 = PP 

p 1  = (1 - p 2)1’2p. 

The gyroradius is 

rg = p , / Z e B  (2.3) 

where Z e  is the particle’s electric charge (in SI units; in Gaussian units the RHS must 
be multiplied by the speed of light). 

Fortunately the real world is not as simple as first-year physics; cosmic magnetic 
fields are usually neither static nor uniform, they contain irregularities and variations 
which perturb the particles and lead to scattering. If we think of the simplest case, a 
homogeneous background medium permeated by a uniform magnetic field on which 
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are imposed small static irregularities, then because the electric field is identically 
zero particles conserve their energy (and scalar momentum) on scattering but have 
their pitch changed (and also their gyrophase, but this is usually unimportant). If the 
scattering is ‘sufficiently stochastic’ (it would be interesting to be able to give a precise 
definition of this) the distribution function F(p, x, t )  or phase space density of the 
particles is kept close to isotropy, F(p ,  x, t )  - f(p, x, t )  where f is the isotropic part of 
F, and the particle transport can be described by the diffusion equation 

af 
at 
-= V(KVf) (2.4) 

where K is the (anisotropic) diffusion tensor. Much effort has gone into calculating K 

in terms of the irregularity spectrum (see, for example, Volk (1973) or Skilling (1975) 
and references therein) but the general nature of the result is adequately shown by 
the following simple argument (cf Blandford (1979) and Longair (1981)). 

The irregularities which are most effective at scattering a particle are those with 
length scales comparable to its gyroradius; the mean square field variation due to 
these is of the order of kI (k )  where k - r g l  and I ( k )  is the spatial power spectruln 
of the irregularities. The mean square variation in the field direction on the length 
scale rg is thus 

c p 2 -  k I (k) /Bg (2.5) 

where Bo is the uniform mean field. Each gyroperiod the particle’s pitch angle is 
changed a random amount of the order of cp and after N periods the accumulated 
change is of the order of N1/2cp, This becomes of the order of unity, i.e. the particle 
‘forgets’ its original pitch, when N - q - 2 - B z [ k I ( k ) ] - 1  so that the mean free path 
along the field is All-Nr, and the scattering frequency U - V/Ali. The diffusion 
coefficient parallel to the field is thus 

~ 1 1 -  ?jA ;f U - $,vB [kI ( k ) ] - ’ .  (2.6) 
Between scatterings a particle accumulates a displacement perpendicular to the mean 
field of the order of 

AL-N1’2cprg-rg (2.7) 

so that the perpendicular diffusion coefficient is 
1 2  1 K ~ - ~ A ~ u  -jr,v/N. 

Thus 

where K B  = $rgv, the ‘Bohm’ diffusion coefficient, is essentially the smallest diffusion 
coefficient allowed by this model of particle transport (it corresponds to a totally 
random field on the scale r g ) .  

This assumes scattering by stationary magnetic irregularities (scattering centres) 
which is, of course, unrealistic. There are two types of scattering centre motion which 
must be considered. First, there can be large-scale motions of the background system 
which advect the centres with velocity U. Clearly this requires us to replace the time 
derivative in (2.4) by a convective derivative: 

(2.10) 
a a  --H-+u.v 
at at 
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and also, if the large-scale motion is convergent or divergent, we must add a term to 
represent adiabatic changes in the particle momenta. The form of this term can be 
deduced either by energy conservation or, more simply, by using Liouville’s theorem; 
a convergence in position space must be matched by an equal divergence in momentum 
space. These heuristic arguments (similar to those used by Parker (1965); cf also 
Dolginov and Toptyghin (1966)) lead to the transport equation 

af 
at aP 
z+ U Vf = V(KVf) +$v * up - (2.11) 

for diffusive transport in a medium where the scattering centres are fixed in the 
background. 

There remains the second type of motion, that of the individual centres relative 
to the background. If this has a systematic component it should obviously be added 
to the background velocity U (the energetic particles cannot see the background 
directly, they can only sense the mean velocity of the scattering centres). The residual 
random component causes each particle to have its momentum changed by a random 
amount of the order of Ap - p V / v  at each scattering where V is the velocity of a 
centre. This gives rise to a diffusion in momentum space with coefficient 

D - f ( A p ) ’ ~  - V 2 p 2 / q q  (2.12) 

which represents classical second-order Fermi acceleration (Fermi 1949, 1954) so that 
the complete transport equation is 

(2.13) 

A formal derivation of essentially this equation is given in the paper by Skilling (1975). 
The velocity V is the propagation speed of a small disturbance in the plasma, thus 
under astrophysical conditions it will usually be of the order of the AlfvCn speed and 
is often small enough to be neglected. 

2.2. Shock kinematics and scatter-free acceleration 
Let us leave, for the moment, the dynamical questions of scattering and transport and 
turn to the kinematical questions of the magnetic-field configuration at a shock and 
the particle trajectories in this field. At least locally we can treat the shock front as 
plane and the upstream and downstream media as uniform with velocities U1,  Uz and 
magnetic fields B1,  B2. In almost all cases the high plasma conductivity will ensure 
that the electric field vanishes in the plasma rest frame (so that = -U1,2  AB^,^). 
Let us begin in an inertial frame moving with the upstream fluid and look at the 
velocity with which the point of intersection between a magnetic-field line and the 
shock front moves. There is a physically significant distinction between those shocks 
in which this velocity is subluminal and those in which it is greater than or equal to 
the speed of light; only in the first case can charged particles be reflected from the shock. 

In the subluminal case, by boosting parallel to the field at the velocity of the 
intersection point, we find a proper Lorentz transformation which takes us to a frame 
in which U 1  is parallel to B 1 ,  El = 0 and the shock front is stationary. We can then 
translate the origin to the shock front and rotate the coordinate system so that the 
upstream region is the half-space x < 0 and U1 lies in the xy plane. The electromagnetic 
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matching conditions imply that 

(2.14) 

but Ez Bz = OjEZxBzx = 0 .$ EZx = 0; thus EZ = 0 and Uz is also parallel to BZ. In 
this way, if the shock is subluminal, we can construct an essentially unique frame in 
which the shock is stationary and the electric field vanishes everywhere (figure l(a)). 

il ' Bz 

Figure 1. The simplified normal forms of the magnetic and velocity fields at a steady plane shock where 
the intersection point between a magnetic-field line and the front moves (a) subluminally and ( b )  super- 
luminally. 

The kinematic structure of the shock is contained in the angles e l ,  e2 between B1,  
BZ and the shock normal and the compression ratio r = Ulx /Uzx .  If = OZ = 0 the 
shock is said to be parallel, else oblique. The dynamical constraints imposed by mass 
momentum and energy conservation (which give the MHD Rankine-Hugoniot condi- 
tions: see de Hoffmann and Teller (1950) and Lust (1955a, b)) show that, except in 
very unusual circumstances, Vz and Bz lie in the xy plane and relate e2 and r to the 
upstream dynamical parameters. The general formulae are quite complicated, but 
the special case of a strong shock (where the kinetic energy density and kinetic pressure 
dominate upstream) is simple and instructive. From mass conservation 

PlUlX = p z U z x  = A  (2.15) 

where p is the mass density, momentum conservation gives 

u1, = u 2 y  

AUI, =AUzx +P 

where P is the downstream pressure and energy conservation gives 

(2.16) 

(2.17) 

2 E  . $ r = l + -  
P 
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where E is the downstream internal energy density. For a monatomic non-relativistic 
gas P =$E and r = 4; for a relativistic gas P =;E and r = 7. From U1, = rUZx and 
U1, = U2,  we deduce that r tan 81 = tan 82.  

But what if the point of intersection moves superluminally at velocity v > c ?  Then 
a boost along the field at c 2 / v  is a proper Lorentz transformation to a frame where 
this velocity is infinite, i.e. where the entire field line intersects the shock front 
simultaneously. In this frame the magnetic field upstream is perpendicular to the 
shock normal but the shock is not stationary; however, by boosting along the shock 
normal at the shock speed we can find a frame where the field B1 (and hence also 
B2) is still perpendicular to the shock normal and the shock is stationary. The incoming 
fluid flows in at velocity U1 and at an angle el to the shock normal and exists at U2, 
02:  the upstream electric field, -U1 A B1, is of magnitude UIBl cos 8; matching to the 
downstream field shows that El = E2 # 0 and B2 = rB1 (figure l(6)). 

Thus in both the subluminal and superluminal cases we can find certain frames in 
which the electromagnetic field has an especially simple form. The luminal case does 
not admit such simplification, but is exceptional and physically should probably be 
regarded as a degenerate form of the superluminal case. We now examine energetic 
particle trajectories in these fields, a problem considered for the case of a purely 
perpendicular shock by Dorman and Freidman (1959), Shabanskii (1961) and Schatz- 
man (1963) and for the general case by Hudson (1965), Alekseev and Kropotkin 
(1970) and many subsequent workers. 

Let us begin by looking at a superluminal shock; then the fields reduce to an 
electric field 

(2.18) E = -UlxBley = -U2*B2ey 

perpendicular to the magnetic field 

(2.19) 

The trajectory of an energetic particle in the upstream region consists of the usual 
helical motion in the B field superimposed on an ‘E A B ’  drift towards the shock at 
velocity U1,. As the particle (or rather its guiding centre) drifts through the shock 
the smaller downstream gyroradius causes a drift parallel to E which increases its 
momentum. This effect can be rather simply calculated in the limit U >> U1, by applying 
Liouville’s theorem. The momentum gained by a particle is then almost independent 
of its gyrophase so that 

2n-p,2 d p ~  A dp112 A dx2 A dy2 A dzz = 2 x p ~ 1  dpLl A dpii1 A dxl A dy1 A dzl.  (2.20) 

But clearly dx2 A dy2 A dz2 = ( l / r )  dxl A dyl A dzl  and pi12 =pill .  Thus 

~ 1 2  ~ P , Z  = rpll  dp i i  (2.21) 

(2.22) 

The constant can be found by noting that pI1 = 0 implies (in this limit, U >> UlX)pI2 = 

and integrating 
2 2 p L 2  = rpll +constant. 

0; it follows that 

(2.23) 
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i.e. the particle approximately conserves its first magnetic moment as it would have 
(and for exactly the same reason, namely approximate gyrophase independence) had 
the change in the magnetic field been adiabatic rather than abrupt. 

We see that the perpendicular momentum of an energetic particle can be increased 
by a factor of the square root of the compression ratio. With r in the range 4-7 this 
is not much acceleration. Furthermore a subsequent expansion of the medium to its 
original density annuls the effect. 

We now turn to the subluminal case. Here we can find a frame where the 
electromagnetic field reduces to a purely magnetic field and in which, therefore, 
particles must conserve their energy. Whereas in the superluminal case all particles 
were forced to go through the shock, and had in consequence to increase their energy 
to find enough downstream phase space, in this case, because they are not allowed 
to increase their energy, there is not enough phase space for all particles to be 
transmitted and some must be reflected. Considering particles of momentum p ,  
upstream pitch p1 and gyrophase a l ,  if these are transmitted with pitch p2 and 
gyrophase a2 then Liouville's theorem states that 

p 2  d p  1 A d a  1 A dxl = p 2  dp2 A dc12 A d ~ 2  

but 

dx1.2 = p1,zu dt COS 01,2 (2.24) 

so that 

cos 01p1 d p l  A d a l  =COS 02p2 dp2 A da2 (2.25) 

or 

(2.26) 

and there is a similar formula for reflected particles. The assumption of approximate 
gyrophase invariance again implies approximate conservation of the magnetic moment, 
as verified by numerical simulations (e.g. Terasawa 1979). 

If all particles incident on the shock from upstream were transmitted, then 

so that particles must be reflected if the downstream field is stronger than the upstream. 
There is, however, no need for particles incident from downstream to be reflected 
and indeed they are not as shown by Hudson (1965). An interesting and important 
implication of these formulae is that, if the upstream and downstream distributions 
are isotropic and have the same density, the combined distribution of particles 
transmitted through and reflected from the shock is also isotropic and has the same 
uniform density. This clearly follows on thermodynamic grounds; if the distribution 
were anisotropic this would imply a violation of the second law. 

As far as acceleration is concerned the subluminal case looks even worse than the 
superluminal because we have perfect conservation of particle energy. However, this 
is to some extent an artefact of the frame we are using; with respect to other reference 
systems, in particular that in which the incoming fluid flows parallel to the shock 
normal, the reflected particles are accelerated. The effect can be quite substantial if 
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the transformation to the E = 0 frame involves ‘large’ velocities, i.e. for quasi-perpen- 
dicular shocks, but is not enormous; the maximum kinetic energy gain of a non- 
relativistic particle is 

AT - 4 T ( r  - 1) (2.28) 

and for a relativistic particle the momentum gain is only 

Ap-2p(r- l )  (2.29) 

(Toptyghin 1980). Of course, these energy changes can be interpreted in terms of 
particle drifts at the shock parallel to the U A B  electric field (cf Webb et a1 1983). 

2.3. Diffusive acceleration at shocks 

We have seen in the last subsection that particles can gain energy by interacting once 
with a shock front. However, this effect, even in the most favourable cases, can only 
increase the energy of a particle by a moderate amount; furthermore, as the process 
is purely kinematic and reversible the spectrum of the accelerated particles is essentially 
the pre-acceleration spectrum shifted in energy. This situation is completely changed 
when diffusive effects are included. The number of times a particle interacts with the 
shock then becomes a random variable and some particles, by interacting many times 
with the shock, achieve very high energies. This stochastic aspect also means that the 
process destroys information (equivalently entropy is generated, not only in the 
background plasma, but also in the energetic particle distribution) so that the spectrum 
of the accelerated particles can be relatively independent of the details of the pre- 
acceleration spectrum. Studies of the simplest version of this effect, the steady diffusive 
acceleration of test particles at a one-dimensional parallel shock, have followed two 
approaches: a microscopic approach in which the energy changes and histories of 
individual particles are studied and a macroscopic approach which uses the formalism 
of the distribution function and its associated transport equation. 

2.3.1. The macroscopic approach. In this version (historically the first (Krymsky 1977, 
Axford et a1 1977, Blandford and Ostriker 1978)) it is assumed that the velocity of 
the particles is very much greater than that of the fluid and that scattering of the 
particles keeps the distribution function almost isotropic in the fluid frame (so that 
the diffusion approximation is valid), that this scattering is elastic, and that the scatterers 
behave as if they had an infinite effective mass (the particle energy in the local fluid 
frame does not change on scattering). The shock front is taken to be an infinite plane 
separating uniform upstream and downstream media and perpendicular to the uniform 
magnetic field (i.e. the field lines are parallel to the shock normal). From the standard 
theory of shock waves we know that there exists an inertial frame in which the shock 
front is stationary and occupies the y ,  z plane and in which the fluid flows parallel to 
the x axis. In this frame all quantities depend spatially only on x (it is in this sense 
that the problem is one-dimensional) and the flow velocity is steady and given by 

(2.30) 

where U1 and U, are the, constant, upstream and downstream velocities. The transport 
equation for the isotropic part of the energetic particle phase space density as seen 
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in the local fluid frame, f ( t ,  x ,  p ) ,  is then 

(2.31) 

where K ( x ,  p )  is the spatial diffusion coefficient for particles of momentum p along 
the field lines. 

Having chosen a frame such that the background plasma flow is steady it is natural 
to look for steady solutions of (2.31). Upstream and downstream this reduces to 

(2.32) 

where U equals U1 or U2 and is constant. The general solution is easily found to be 

(2.33) 

where g l  and g 2  are arbitrary functions of p .  If we now impose the natural boundary 
conditions that f tend to some given distribution f l  far upstream, i.e. f ( x , p ) + f l ( p )  
as x + -CO, and remain finite downstream, i.e. I f (x ,  p)I < CO as x +CO,  then 

(2.34) 

as long as j,” dX‘ /K  ( x ’ ,  p )  + *CO when x -j fa. (If this condition is not satisfied stricter 
boundary conditions are required.) The physical content here is simply that in the 
diffusion-advection equation (2.32) a steady state can be achieved by balancing the 
diffusive flux against the advected flux only in the upstream half-space. 

To relate the two unknown functions f z  and g l  to f l  we need two matching 
conditions at the shock. The key here is that a parallel shock does nothing locally to 
energetic particles; there is no discontinuity in the magnetic field and the particles 
simply continue their helical paths across the front. Thus the complete momentum 
space distribution function, as measured in the shock frame, must be continuous across 
the front. 

In the diffusion approximation the angular dependence in the fluid frame of the 
complete distribution function, F ( x ,  p ,  k ) ,  can be obtained by expanding F in a series 
of Legendre polynomials, truncating after two terms and setting the anisotropic part 
proportional to the gradient of the isotropic part; thus 

a 
F ( x ,  p ,  k )  - f  ( x ,  P )  -PA G f  ( x ,  P )  (2.35) 

where A is the ‘scattering mean free path’ related to K by K =hu/3 where v is the 
particle velocity. Inserting expression (2.34) for the isotropic part and evaluating just 
upstream and just downstream from the shock gives 

(2.36) 

In this expression p (but not x )  is measured in the local fluid frame; on transforming 
to the shock frame, which moves at velocity -U relative to the fluid, to order U/v  

x =o+.  
[ f 2  
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the particle momenta transform as 

P - P ) = P  (1 - P  !) 
and in consequence, phase space densities being invariant, 

(2.37) 

Equating the isotropic and anisotropic parts of the upstream and downstream distribu- 
tions then gives the two required matching conditions, namely 

f l + g l  = f 2  (2.39) 
and 

a a 
U$ - ( f l  + g I)  + 3 U1g 1 = UZP - fz. 

aP aP 
(2.40) 

These are usually interpreted as expressing continuity of the particle number density 
and particle streaming at all momenta. 

It is interesting to note that these matching conditions are in a sense already 
contained within the transport equation (2.31) itself; if we require this to hold, not 
only upstream and downstream from the shock, but also at the front itself, then we 
recover exactly the above conditions. Of course, as U is discontinuous at the shock, 
and perhaps K also, we cannot require f to satisfy (2.31) there in the usual sense; we 
can, however, require that it be what is technically called a weak solution. Roughly 
speaking, this means that if we multiply both sides of the equation by a smooth test 
function, integrate across the shock from - E  to E and interpret all ambiguous terms 
by formally applying integration by parts, then on taking the limit E + 0 the result 
should be an identity for all test functions. Thus multiplying by 5," dX'/K and noting 
that the worst singularity allowed by the representation (2.34) is a simple discontinuity 
in f at x = 0, after some manipulation and estimation we derive 

[fl"'E= O(E) (2.41) 

from which it follows that f is in fact continuous at x = 0. If we now use 1 as a test 
function we get 

(2.42) 

which gives the second matching condition and fixes the discontinuity in the derivative 
of f .  One can then show that if these conditions are satisfied the integral with any 
other test function is also O ( E ) .  That we are able to derive the boundary conditions 
from the transport equation in this way is simply another expression of the fact that 
at the microscopic level a parallel shock does nothing to energetic particles and should 
not be given any deeper significance. 

Eliminating gl between (2.39) and (2.40) and introducing r = U1/U2,  the shock 
compression ratio, we obtain 

(2.43) 
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as the required equation relating the distribution function f l  far upstream to that 
downstream, f2. Setting a = 3r(r - l)-' the solution is easily found by elementary 
means to be 

(2.44) 

where b is an arbitrary constant of integration. The first term can be interpreted as 
the spectrum of particles advected into the shock from upstream and there accelerated; 
the second as representing particles injected from the thermal background plasma 
into the same acceleration process. Ignoring for the moment the second term, the 
first term can be written 

(2.45) 

so that for those particles which are advected through the shock the downstream 
spectrum is obtained from the upstream spectrum by convolving with a truncated 
power law. 

The significance of this is that if the upstream spectrum is softer than a power law 
spectrum with slope a, then the downstream spectrum has as asymptote at high 
momenta a power law spectrum of slope a regardless of the detailed form of the 
incoming spectrum. Furthermore, shocks in fluids with a ratio of specific heats y have 
a compression ratio 

Y + l  r =  
y - 1 (2.46) 

where M is the shock Mach number so that for the standard case of a strong shock 
in a non-relativistic plasma, y = 5/3, M + CO, we have r + 4- and a + 4+. This is 
encouragingly close to the index of 4.3 inferred for the source of the galactic cosmic 
rays. 

2.3.2. Microscopic derivation. The above macroscopic analysis is straightforward; 
however it appears to lack physical content (essentially because this has all gone into 
deriving the transport equation); at the end of a formal analysis we find a downstream 
spectrum which contains accelerated particles, but how were they accelerated and 
why should they have a power law spectrum? The advantage of the alternative 
microscopic derivation (Bell 1978a, see also Peacock 1981, Michel 1981) is that it 
reveals the basic physical processes responsible for the acceleration. 

Let us consider an energetic particle which crosses the shock front from upstream 
to downstream and ask the question: what is its probability of never returning to the 
shock, that is of escaping downstream to CO? Denote the number density of particles 
having velocity U relative to the local fluid frame by n ;  then from the diffusion model 
we know that n is constant downstream. The flux of such particles escaping to CO is 
nU2 whereas the flux entering the downstream region by crossing the front from 
upstream to downstream is lo pun dp/2 = nv/4 (assuming an almost isotropic distribu- 
tion; of the n particles one-half are moving to the right with an average projected 
velocity of one-half U). Thus the probability of not returning must be nU2(nv/4)-' = 
4U2/v which by assumption is small, i.e. almost all particles cross the shock many times. 

1 
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We now ask: what is the average change in a particle’s momentum with respect 
to the local fluid frame when it crosses the shock? If the particle has momentum p ,  
velocity U and pitch p in the upstream fluid frame, then in the shock frame its 
momentum is p(1 +pU1/u) .  This is unchanged on crossing the shock, and thus relative 
to the downstream frame its momentum is p[1 + p ( U 1  - U2)/z1]. Note that as we are 
only working to order U/V we can ignore the small changes in pitch angle as we go 
from frame to frame and also the anisotropy of the distribution when averaging. Thus 
the average change in momentum is 

(assuming isotropy, the probability of crossing the shock at an angle 8 is proportional 
to cos 8, hence the weighting factor of 2p) .  On re-crossing the shock in the other 
direction U1 and U2 are interchanged, but p runs from 0 to -1 so that the answer 
is the same. 

We can now calculate the downstream spectrum. It is rather easier to work here 
with the integral spectrum N ( x ,  p ) ,  the number density of particles with momentum 
greater than p ,  

(2.48) 

For simplicity (and with no real loss of generality) let us consider the case where all 
the particles are advected in from upstream with the same momentum p o .  Then 
upstream, 

(2.49) 

and because particles are conserved and never lose energy, downstream 

Let p n  and v,, denote the momentum and associated velocity of a particle which returns 
from the downstream region n times and so makes a total of 2n crossings of the 
shock. In reality p n  is a random variable with a complicated distribution, but for large 
n and v >>U the distribution is sharply peaked and to first order in U/V we may 
regard it as determinate and given by 

so that 

(2.52) 

The probability of the particle reaching this momentum, i.e. of returning n times from 
downstream, is 

(2.53) 
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so that 

or 

(2.54) 

(2.55) 

The number density of particles accelerated to momentum p,, or more is the total 
number density of particles, N2(po) ,  multiplied by the probability of crossing the shock 
sufficiently often, P,; thus 

(2.56) 

and 

in agreement with the macroscopic derivation. 
This derivation shows very clearly that, as in all Fermi acceleration processes, the 

key to obtaining a power law is that the momentum gained by a particle in each 
elementary acceleration event should be proportional to the momentum it already 
has and to its probability of escaping from the acceleration region. However, unlike 
other Fermi processes, the constant of proportionality, which determines the slope of 
the power law, is not arbitrary but is fixed by the kinematics of the shock. 

3. Linear modifications 

The elementary and idealised theory of the last section can be generalised and made 
more realistic in several ways. It is convenient to divide these extensions into two 
classes according to whether the reaction of the particles on the acceleration process 
is considered; this section deals with those in which the particles are treated as test 
particles and their reaction ignored. This assumption, that they move without influence 
on one another or on the background plasma, means that the problem of their transport 
in a given plasma system is linear and as usual this greatly simplifies the mathematical 
analysis. In the last section the shock was parallel, steady and plane and the particles 
moved very much faster than the background plasma, were scattered elastically, were 
not subject to additional energy loss processes and did not react on the plasma system; 
the modifications produced by relaxing all but the last of these conditions will now 
be examined. 

3.1. Oblique shocks 

The restriction to parallel shocks seems to be a major defect of the elementary theory 
(the average shock obliquity is some 60" if the magnetic-field direction is uncorrelated 
with the direction of shock propagation). Of course, it is clear that the acceleration 
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mechanism continues to operate as long as particles can cross the front in both 
directions and be diffusively scattered on either side, but one might expect that the 
possibility of direct particle reflection from the shock would lead to significant alter- 
ations. Rather remarkably, at least to O ( U / v ) ,  this is not the case. 

Consider an oblique shock where the point of intersection between a magnetic-field 
line and the front moves subluminally; then there exists a unique frame where the 
electric field vanishes, the fluid flows in upstream parallel to the magnetic field B1 at 
velocity U1 and angle to the shock normal and exists downstream parallel to B2 
at velocity U, and angle O2 (figure l (a ) ) .  In the macroscopic approach the transport 
equation (2.1 1) for this problem reduces to 

where i = 1 if x < 0, 2 if x > 0 and K ~ I ,  K~ are the diffusion coefficients parallel and 
perpendicular to the field (normally K I ~  > > K ~ ) .  The upstream and downstream solutions 
are clearly exactly the same as in the parallel case if normal components are used, 
i.e. if U is interpreted as U cos 8 and K as K I ~  cos2 8 + K~ sin28. The problem of finding 
the correct matching conditions between these two solutions is not quite as easy as it 
is for the parallel shock because particles interact with an oblique shock in a non-trivial 
way. One can however argue that as long as the particles perceive the shock front 
merely as a kink in the magnetic field (unlike the low-energy particles constituting 
the background plasma which must be heated by collective effects in the front) the 
matching conditions must take the form of a linear relationship between the density 
f and the streaming S (in the shock frame) upstream and downstream: 

where s = -$Up(af/ap)-K af/ax. 
Liouville's theorem implies that a possible solution must be f+  = f-, S ,  = S -  = 0, 

from which it follows that a = 1, c = 0. Requiring particle number conservation then 
shows that d = 1. The remaining parameter, b, has the dimensions of an inverse 
velocity and is clearly of order l / u .  Thus when, as in all the cases here considered, 
S/f = O ( U )  this term is essentially of order U/v  and can be neglected. One must 
however be slightly cautious; the distributions at the shock front cannot have the 
simple anisotropies presupposed in the diffusion approach so that, although the above 
argument shows that within the diffusion approach the only possible matching condi- 
tions are continuity off and of the streaming, it is not obvious that this approximation 
can correctly describe acceleration at an oblique shock. Ignoring this worry, we see 
that within a macoscopic diffusion theory the upstream solutions, the downstream 
solutions and the matching conditions at the front for an oblique shock are all exactly 
the same as those for a parallel shock once normal components are used. Thus the 
spectrum is still determined by the same single parameter, the shock compression, 
and is essentially independent of the obliquity. 

It is sometimes argued that if a fraction E of particles incident on the front are 
reflected then the first matching condition should be 

f(0+)=(1-c)f(O-) (3.3) 
(see Fisk 1971, Achterberg and Norman 1980) but this is clearly incorrect if the 
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reflection is of the magnetostatic type considered here. The second boundary condition 
can probably be justified by measuring the streaming, not directly at the front, but a 
few mean free paths away (cf Toptyghin 1980); however, the argument is rather 
delicate and the more convincing proof of its correctness is that the same results follow 
if we repeat, as always working only to first order in Ulv, the essential steps of the 
microscopic derivation. 

Suppose a particle reaches the shock from upstream on a trajectory with pitch p1 
and gyrophase a l .  It then interacts with the shock and is either transmitted with pitch 
and phase p2,  a z  or is reflected back with p3,  a3.  If transmitted it diffuses in the 
downstream region until either escaping to 00 or returning to the shock with p4, a4 
whereupon it is then transmitted back with p5, a5 into the upstream region (figure 2). 
Denote by T1 the set of p, CY values corresponding to upstream trajectories which 
lead to particle transmission through the shock, by R1 those leading to reflection, by 
T2 those downstream leading to transmission back upstream and let a superior bar 
denote the set of reversed trajectories; thus, for example, 

(3.4) T2 = { (p ,  4 - p ,  CY)ETz). 

Figure 2. Schematic representation of the five sets of pitches and gyrophases used in the discussion. 

Then clearly a particle which starts on a trajectory in T1 after interacting with the 
shock proceeds downstream on a trajectory in Tz and one in R1 gets reflected onto 
a trajectory in R1. Together T1 and R1 constitute the right hemisphere and Tz is the 
left hemisphere (no reflection from downstream) 

Ti u R ~  = { ( p ,  C Y ) ~ O  < p  s 1, O G C Y  < 2 ~ }  
(3.5) 

Assuming that particles incident from upstream on the shock come from an almost 
isotropic and uniform distribution the probability of transmission is the ratio of the 
flux in T1 to the total incident flux: 

T z = { ( p ,  C X ) ~  - 1 S p  < O , O <  CY < 2 ~ } .  
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By Liouville’s theorem 

Thus, transforming to the downstream variables, 

and the flux into the downstream region is 

nu n 
- cos elp1 d p l  A da 1 = --U cos 82 4 (3.9) 

whereas the flux to CO is nU2 cos oz. Thus exactly as in the case of the parallel shock 
the probability of escape after transmission is 4U2/v. The combined probability that 
a particle incident from upstream will cross the shock and escape is therefore 

A particle which does not escape gains energy either by direct reflection, or by 
two transmissions across the shock. If its momentum with respect to the upstream 
fluid frame is p ,  then the expected momentum gain is 

4u2 COS 62/21 COS 81. 

r 

+PTJ ( p 4 U z - p s U d p 4 d p 4 ~ d a 4  (3.10) 

(the probability of escaping is O(U/u) and can be ignored in this calculation). But 
by repeated application of Liouville’s theorem 

T2 

(3.11) [R,-p3p1dp1Adcf1= - p 3  2 dp3Ada3= p 2 d p  Ada I,, I 

and 

(3.12) 

and 

Thus 

(3.14) 

Finally by exactly the same argument as in the case of the parallel shock the slope 
of the integral spectrum is given by the ratio of the escape probability to the mean 
momentum gain: 

(3.15) 
- -3 U2 COS 8 2  - d In N -4U2 cos 0 2 / u  cos O1 -- - 

d lnp  ( A P ) / P  U1 cos e1 - U2 cos e 2  
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which, when expressed in terms of the shock compression ratio, r =  
U1 cos Ol/U2 cos 02,  is independent of the obliquity. Thus if U is the conventional 
shock velocity (normal to the front, i.e. U = U1 cos 81) the steady spectrum does not 
depend on the obliquity 8 if sec 8 << v/U (this constraint can be very severe for almost 
perpendicular shocks). 

3.2. Time-dependent solutions 

A dimensional argument suggests that the basic time scale associated with diffusive 
shock acceleration should be of order K/U' and this is confirmed by more detailed 
calculations (Forman and Morfill 1979, Krymsky et a1 1979, Vasil'yev et a1 1980, 
Axford 1981a, b). Following Axford (1981a, b) we study the model system of a steady 
planar shock in which a steady monoenergetic source of particles located in the shock 
is switched on at t = 0. Thus we look for time-dependent solutions of (2.31) with 
velocity profile (2.30), f(t, x ,  p )  = 0 at t = 0 and a source Q 6 ( p  - p o )  at x = 0. 

On taking the Laplace transform with respect to time: 

(2.31) becomes upstream ( i  = 1) and downstream ( i  = 2) 

(3.17) 

(for simplicity we assume K to be independent of x )  of which the solutions satisfying 
the boundary conditions g + 0 as x += *OO are g CC exp (pix)  where 

1/2  U. 
pi = 1 [ 1 - (-1)i (1 +$) i 1. 2Ki (3.18) 

Let go(s, p )  = g ( s ,  0 ,  p )  be the transform of the spectrum at the shock; then the matching 
conditions 

imply that 

(3.19) 

(3.20) 

On letting Ai = (1 + ~ K ~ s / U ?  )l/' - 1 this can be written 

with solution 
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The time-dependent spectrum of accelerated particles at the shock can now 
formally be obtained by inverting the transform: 

(the path of integration lies to the right of all the singularities of the integrand). As 
usual, the asymptotic behaviour at large times is obtained by looking only at the 
contribution from the rightmost singularity of the integrand, here the simple pole at 
s = 0, which gives the steady spectrum 

At the injection momentum p o  this steady value is established immediately, i.e. 

fo(t, P o )  =fo(m, Po)  = ____ 3Q t > O .  
U1 - U, 

(3.24) 

(3.25) 

At a general time t > O  and momentum p > p o  (3.22) shows that the spectrum has the 
form 

(3.26) 

where 

(3.27) 
1 +ioD 

27rl -im 
cp ( t )  = - [ exp [ t s  -h  (s)] ds 

and 

(3.28) 

Physically we can interpret cp ( t ,  p o ,  pl) either as the probability distribution function 
for the time taken to accelerate a particle from momentum p o  to p1 or, by fixing t 
and regarding cp as a function of pl, as the particle momentum spectrum (normalised 
to the steady spectrum) resulting from the acceleration over a time interval t of a 
single burst of particles injected at momentum po .  

If we think of cp(t) as the acceleration time distribution for given p o ,  p1,  then from 
the obvious relations: 

and h (0) = 0, we see that 

Iom cp ( t )  exp ( - ts)  dt = exp [-h (s)] 

lom p ( t )  dt = 1 

(3.29) 

(3.30) 

so that the distribution is correctly normalised. On differentiating with respect to s 
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and then setting s = 0 we obtain an expression for the mean acceleration time: 

a 
( t )  = I tcp(t) d t  = -h(O) 

0 as 

m 

Repeating this procedure we find the variance of the acceleration time: 

2 2 a2 6 -+3 K:)dP - ( t  ) - ( t )  = - 7 h ( O ) = -  
as u1-u2 po U2 P 

(3.31) 

(3.32) 

and in general the n th derivative of h at s = 0 gives the n th cumulant of the probability 
distribution cp(t). 

It is interesting to note that if K has a power law dependence on momentum, 
K =pa,  then for pl >>po the relative width of the distribution: 

(3.33) 

Thus, unless K is almost independent of momentum (a  - 0) the peak in the acceleration 
time distribution is not very sharp. 

For large values of s 

h ( s ) = P J s - z =  - 3 U1+~21nPl+O(s-"2) 

where 

(3.34) 

(3.35) 

and thus for small t 

The asymptotic behaviour of cp for large t is determined by the singularity of h ( s )  
with the most positive real part. Let 

(3.37) 

then the relevant singularity is at so and is a branch point of order Y = $ or !. It follows 
that for large times 

exp [sot - h (sO)][l + ~ ( t - " * ) ] .  (3.38) 

These asymptotic forms for the wings of the distribution and the first few moments 
provide sufficient information for most purposes. An explicit expression for cp can be 
found in the special case K independent of p and A 1  =A2 (see Toptyghin (1980) and 
Axford (1981b) for details); the case K ocp" can also be solved in terms of parabolic 
cylinder functions (M Forman, personal communication). 

t-'-" 
v(t)--- U-v)  
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The most important conclusion to be drawn from expression (3.31) for the mean 
acceleration time is that the time scale for acceleration of particles of momentum p 
in an unmodified shock is 

t , , , (p)  =- -+- I 

u1-u2 ( K 1  U1 3 (3.39) 

An interesting alternative derivation of this result is possible from the microscopic 
viewpoint (cf Lagage and Cesarsky 1981). Recall that the particle flux across the 
shock into the upstream region is nv/4.  But the total number of particles in the up- 
stream region (in a steady state) is j!mn exp (U1x/K1)  dx = Kln/U1.  Therefore the 
mean residence time of each particle must be (Kln /U1)  (nv/4)-' = 4 ~ 1 / U l v .  This 
simple argument applied to the downstream region gives an infinite mean residence 
time, which is of course correct as there is a finite probability of escape. What we 
really require is the mean residence time of those particles which do not escape and 
to find this we need to know the probability of returning to the shock as a function 
of distance downstream. 

Consider the steady solution of the diffusion equations corresponding to a source 
located a distance xo  downstream and with an absorbing boundary at the origin: 

an a2n 
ax ax 

U - = K 7 + Q S  ( X  - X O )  

n ( 0 ) = 0  n(co)<W. 
(3.40) 

It is clearly 

Q 
- [exp ( U X / K )  - 11 exp ( - U X ~ / K )  0 s x s xo 

( - U X ~ / K ) I  xo<x<co 
(3.41) 

U 

so that the flux to the origin is 

(3.42) 

Thus for a particle inserted into the flow a distance xo  downstream the probability 
of diffusing back to the origin must be P,,, = exp ( - U X ~ / K ) .  It follows that the number 
of particles downstream which will return to the shock is 

an 
ax 

K - = Q exp ( - U X ~ / K ) .  

(3.43) 

and thus the mean residence time downstream of these particles is ~ K ~ / U , V .  We see 
that the mean time taken for a particle to complete one cycle of entering the 
downstream region, returning upstream and then re-entering the downstream region 
is 

(3.44) 
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With a mean momentum gain per cycle of 

this implies an acceleration time scale: 

(3.45) 

(3.46) 

3.3. Non-planar shocks 

In the simple theory the shock front was taken to be planar; it is reasonably clear 
that the condition for this assumption to be valid is that the diffusion length scale, 
K/U,  be small compared to the radius of curvature of the front, R. In practice this 
tends to be the case if the shock is propagating and the time scales allow significant 
diffusive acceleration; the shock time scale is typically R/U and R/U >> K / U ~  implies 
R >> K/U.  However, in view of the importance of spherical shocks, it is interesting to 
look at them in more detail. Two main cases have been considered: the blast wave 
from a point explosion and the shock terminating a stellar wind. 

3.3.1. The spherical explosion. This is the more interesting case because of its possible 
application to the acceleration of cosmic rays in supernova blast waves. It has been 
studied by Krymsky and Petukhov (1980) and Prishchep and Ptsukin (1981), both of 
whom approximate the flow behind the blast wave by a linear velocity field. By further 
assuming the diffusion coefficient to be independent of momentum and position they 
obtain integral representations for the solution of the transport equation (in terms of 
confluent hypergeometric functions) which they then approximate for small values of 
the diffusion coefficient. It seems more direct to use the presence of a small parameter 
from the start of the analysis and this has the further advantage of allowing more 
general solutions to be studied. 

The transport equation (2.11) in spherical coordinates is 

(3.47) 

where K is the radial component of the diffusion tensor, U is the radial velocity, d is 
the dimensionality (d  = 3 is the only physically significant case, but it is as easy to do 
the calculations for general d and it is interesting to see how the solutions depend on 
the number of spatial dimensions) and spherical symmetry is assumed. We consider 
a self-similar velocity field of the form 

(3.48) 

where [ = r/R ( t )  is a dimensionless co-moving radial coordinate and R ( t )  is the radius 
of the shock front at time t ;  (3.47) then becomes 

E %+ ( V  - 1)[- a f  = - a ( E  -) Jf + (d - 1) 
R at a t  a t  a t  

where the dimensionless small parameter E = K/RR’. The matching conditions at 
[ = 1 are [ f ]  = 0 and [ E  af/a[] = iV( l )p  a f /ap .  
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Let us suppose all particles enter the acceleration process below some momentum 
po; because the acceleration time scale is short we expect a power law spectrum to 
be established from po up to some (time- and space-dependent) cut-off momentum. 
The amplitude of this spectrum is determined by the balance between advection out 
of the shock and advection and injection into the shock. If the seed particles are 
mainly advected in from a uniform external distribution we expect an almost constant 
spectrum, but if they are directly injected a dependence on the shock radius is quite 
possible. With these motivations (and because it works) we look for solutions with a 
time and momentum dependence of the form f ocp-"R ( t ) b .  Clearly in the limit E + 0 
a should approach the spectral slope found for the planar shock; the aim here is to 
find out how rapid this approach is, i.e. to calculate the first-order corrections to a. 

With the above ansatz (3.49) becomes 

E af (3.50) af a af f + ( v - l ) ~ - = - E - + ( d - 1 ) - - - .  
a5 a t  a5 5 a t  

This is a standard type of singular perturbation problem; direct expansion of f in 
powers of e leads to 'outer' solutions which, in general, do not satisfy the full set of 
matching and boundary conditions and have to be matched to 'inner' boundary layer 
type expansions. The outer upstream solution is simply f = 0 (we are only looking at 
a momentum range where there are no upstream particles). The outer downstream 
solution is found by substituting f = 2zo fie' in (3.50) and solving the resulting recur- 
rence relations. The first equation 

af 0 (1 - u ) t - =  [b +$a(dV  +gav/ag)-y" 
a t  

(3.51) 

simply represents particle advection without diffusion. It thus has a trivial solution in 
Lagrangian coordinates which, expressed in terms of 5, takes the more complicated 
form 

f0=A5-ad'3 exp ( (b  +ad/3)1  ' dg' ) (1- V(5))-"' (3.52) 
1 5'11 - V(5" 1 - V(1) 

The higher terms, which we do not actually need, can in principle be found in terms 
of quadratures and represent small corrections for the limited diffusion which does 
take place. Clearly, a direct matching of the upstream and downstream outer solutions 
is only possible for the trivial solution, f = 0 everywhere, so that an inner solution is 
needed. 

To obtain this expansion, valid in the neighbourhood of the shock front, we 
introduce a new local variable 4' by setting 5 = 1 + E L .  Then upstream, where V = 0, 
(3.50) becomes 

(d - 1) - - "f>. 
1 + E [  a5 (3.53) 

Substituting the expansion f = Z z o  eYi and imposing the boundary condition f + 0 as 
5 + CO (to match the outer upstream solution) and f = A  at 5 = 0 (to match the outer 
downstream solution) we easily find the first two terms to be 

fo = A  exp (-0 
f l  = -A exp (-1)[312 + (d + b 111. (3.54) 
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Thus to first order the inner upstream solution is 

f = A  exp(- [ ){ l -~[&?+(d+b)[ ]+O(~~)}  [ a O .  (3.55) 

This problem does not need an inner downstream expansion behind the shock (for 
the same reason that the downstream solution in the planar solution is constant), but 
for matching purposes it is convenient to re-express the outer solution in terms of the 
inner variable [. This gives 

f = A  [ l + ~ [ ( b  +: V(l)+:V’(l)) [l- v ( l ) ] + O ( ~ ~ ) ] .  (3.56) 

We now determine the spectral index, a, by joining the upstream and downstream 
solutions. The condition [f] = 0 has been automatically satisfied by choosing the same 
constant, A, in each region; the second condition, [af/a[] = -aV(l)f/3, gives 

U 
l + E + ( d + b ) + c -  V(l)+: V‘(1)) [ l -V( l ) ] - ’=-V( l )  (3.57) 

3 3 

or 

U =  3u+ [l+(d+b)(-+-)+----]+O(~~) K +  K -  v’(1) K -  (3.58) 
U+ - U- RU+ RU-  V(1)RU-  

where + and - denote values just in front of and just behind the shock, U+=& 
and U- = d [ 1 - V( l)]. 

We see that in the limit E + 0 the spectral slope is that of the planar shock, as 
expected. The first-order correction consists of two parts. The first, as can be seen 
from its proportionality to d + b and the acceleration time scale tact, results from the 
finite rate at which particles gain energy; the accelerated particles were injected in 
the past when the shock was smaller and the injection rate different. The second, 
proportional to V’(l)/ V(1), results from adiabatic losses in the expanding flow behind 
the shock, but, at first sight rather surprisingly, only expansion above that due to the 
uniform linear enlargement of the shocked volume is significant (recall that U = VSR). 
Prishchep and Ptuskin (1981) consider the case b =0 ,  d =3 ,  V([)=constant and 
obtain a first-order correction which agrees with the above. 

It is worth noting that the Sedov solution for a strong point explosion in a gas 
with y = 5/3 (Kahn 1975) gives V(i3-3(tE+ 1)(3[8+5)-1so that V’(1) = V(1) = 3/4; 
thus for this important case 

a = 4 [ 1 + (3 + b ) (K+ + 5) + ‘-3 + 0 ( E  2) 
R U +  RU- RU-  

(3.59) 

and, with a = 4, the approximate downstream solution (3.52) is 

This shows that because of the downstream adiabatic deceleration the energetic 
particles are concentrated in a relatively thin shell behind the shock. 

3.3.2. Stellar-wind terminal shocks. The other astrophysically significant case where 
acceleration at a spherical shock may be important is that of a stellar-wind terminal 
shock (Jokipii 1968, Fisk 1969, CassC and Paul 1980, Webb et a1 1982). A rough 
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description of the dynamics of a stellar wind, sufficiently good for our purposes, is to 
say that after acceleration near the star the wind expands radially at constant velocity 
until its ram pressure drops to that of the external medium. A strong shock then 
separates the wind from the external flow which proceeds essentially at constant 
pressure (the flow downstream from a shock is subsonic) so that the velocity, if cooling 
is unimportant, goes approximately as the inverse square of the radius. Thus the 
radial velocity is 

U1 r<R 
= U Z ( R / ~ ) ~  r > R 

when R is the radius of the shock. 
The transport equation downstream, i.e. outside the shock, is 

with the general solution 

On setting 
00 

Q, = exp ( IR RG dr) - 1 
K r  

this gives 

f ( R ) = A  
f (a) = A  +@B 

U2 3 (R,) = -B. 
K d r  

(3.61) 

(3.62) 

(3.63) 

(3.64) 

It should be noted that @, although it can be very large, is not infinite. Thus the 
spectrum at infinity must be specified as one of the boundary conditions and it is not 
enough merely to require that the solution be bounded downstream. 

Inside the shock, r < R,  there is strong adiabatic deceleration in the expanding 
wind and the transport equation is 

(3.65) 

The matching conditions at the shock are the usual ones, continuity of f  and of the 
streaming. The inner boundary condition depends on the behaviour of K .  If K + 0 as 
r + 0, then any particles near the origin suffer catastrophic adiabatic cooling and f + 0 
as r + 0. However, if K does not go to zero, or if the boundary condition is applied 
at a finite radius, it will be necessary to supply more information. 

This problem is non-trivial. However, by assuming K to be proportional to r and 
independent of momentum Webb et a1 (1982) were able to find a complete analytic 
solution. Although the answer is given in closed form and in terms of elementary 
functions it is extremely complicated and will not be reproduced here. Instead, as in 
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the blast wave case, I will consider the ‘small K ’  limit as a perturbation to the plane 
shock theory. 

Assume E = K ~ ( R ) / U ~ R  is a small parameter and introduce the inner variable 

Then to first order in E the transport equation (3.65) becomes 

where 

8 In K a In K 

a Inp a In r - P.  -- --(y -- 

(3.66) 

(3.67) 

(3.68) 

The zeroth-order solution, as always, is fo = A ( p )  exp (5) and the first-order solution 
is easily found to be 

f = A e x p ( f ) ( l - ~ [ ( f - ~ ) f ’ + ( 2 + ~ + ~ ~ a p  2a 2 p a A )  f 11 . 
The inward streaming at the shock is 

(3.69) 

(3.70) 

and matching this to the streaming outside gives 

where Q is a source term representing injection at the shock and the 1J2B term is a 
source due to inward diffusion from infinity. Combining the two sources, for injection 
at a single momentum p o  we find an approximate power law spectrum above p o  with 
slope 

3u1 [ 1 + 2 E  (A-:)]. a l n  f -- = - 
a l n p  U 1 - U 2  u,-u2 3 

(3.72) 

In this problem there also exists a tail of decelerated particles below p o ,  To see 
this we have to introduce an ‘inner’ momentum variable as well. Let p =po( l  +&II), 
then to zeroth order the transport equation reduces to 

af a’f a f  
a i  a i 2  an +- -=- (3.73) 

which is to be solved subject to the boundary conditions f = exp ( f )  for f < 0, II = 0, 
continuity of the streaming across f = 0 and f + 0 as II+ -m. 
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The solution is 

(3.74) f =  i [ exp (lj erfc (‘) - 1 -erf (*)I l - n  5 < 0 ,  I I<O 

which shows the typical effects of modulation by the stellar wind. 
These results agree with the exact solution found by Webb et a1 (1982) and, as 

can be seen from figure 3, reproduce its qualitative features well; above the injection 
energy the spectrum is a slightly steeper power law than the plane shock theory would 
predict and inside the shock there is a ‘modulated’ tail below the injection energy. 

Figure 3. The spectrum of particles (at radius r )  accelerated by a spherically symmetric stellar-wind terminal 
shock (radiusR). The source of particles is a monoenergetic density n l  at infinity, the shock has a 
compression ratio of four and the diffusion coefficient is assumed to equal Ur everywhere (from Webb et 
a1 1982). 

An interesting feature of this case is that the only reasonable source of ‘seed’ 
particles for acceleration is direct injection at the shock from the thermal background 
(cf 9 4.4). Energetic particles released at the star, e.g. by flares, suffer strong adiabatic 
losses as they are advected to the shock and external cosmic rays have to diffuse 
inwards against the downstream flow which reduces their intensity by a factor @ =  
o (exp e - ’ ) .  

3.4. Additional energy gains and losses 

One can easily add terms to the basic transport equation (2.11) to represent other 
physical processes capable of changing a particle’s momentum; obvious examples are 
synchrotron losses at high energy, ionisation losses at low energy, collisional losses 
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and second-order Fermi acceleration in the downstream turbulence. However, it is 
not so easy to solve the resulting equations; simple exact solutions are unknown, but 
perturbation methods tend to work rather well. The crucial point is to compare the 
time scales. If the time scale associated with the added effect is longer than the 
diffusive acceleration time scale found in § 3.2 ,  then the effect can be treated as a 
small perturbation in the same way that the adiabatic losses associated with spherical 
shocks were treated in § 3 .3 .  If it is shorter, then it is the diffusive acceleration which 
must, both physically and mathematically, be treated as a perturbation. Because the 
two time scales usually have very different momentum dependencies the effect, in a 
first approximation, is simply to fix a cut-off momentum where the two are equal and 
above or below which the spectrum has the typical power law form of shock acceler- 
ation. This crude rule is probably good enough for most applications. Collisional 
losses, adiabatic cooling and synchrotron losses are discussed by Bulanov and Dogel’ 
(1979); the effect of a collisional-type loss term, -f/r, has been investigated by Volk 
et a1 (1981); Webb (in preparation) has studied the effect of second-order Fermi 
acceleration and synchrotron losses. 

3.5, Effects of higher order in (U/u)  

As has been frequently emphasised the simple theory is correct only to O(U/u).  
Actually the transport equation is correct to O ( U / v ) ’  (see, for example, Gleeson and 
Axford 1967) but the shock matching conditions for oblique shocks are known only 
to O ( U / v ) .  It is desirable to have a theory correct to higher order, first, for discussions 
of injection (cf § 4 .4 )  and, secondly, for applications involving relativistic shocks. 
Unfortunately, this is a very difficult problem as a glance at the pioneering paper of 
Peacock (1981) will show. An analytic theory can probably be developed for the 
physically rather uninteresting case of a non-relativistic parallel shock, but apart from 
this future developments will probably depend on numerical simulations (cf the work 
of Ellison (1981)). 

4. Non-linear modifications 

The previous section dealt extensively with modifications of the basic theory which 
did not consider the reaction of the accelerated particles. However, this cannot in 
general be$ ignored. It is easy to see from the elementary theory that the ratio of the 
downstream energetic particle pressure to that upstream is a ( a  - 3-yJ-l where a = 
3r(r - l)-’ is the slope of the power law and y c  is the effective specific heat ratio of 
the particles ( 5 / 3  for non-relativistic, 4 / 3  for relativistic). Thus in the linear theory 
the downstream particle pressure diverges for strong shocks (a  + 4 )  and the reaction 
on the flow must be considered; even for moderate shocks the reaction must be 
considered if the upstream particle pressure is comparable to the gas pressure (as is 
observed in the interstellar medium). This means that the shock structure must be 
self-consistently calculated by including the cosmic-ray pressure in the fluid dynamics 
and cannot just be assumed given. Of course, the modification of the shock structure 
in turn implies changes in the spectrum of accelerated particles so that this is a highly 
non-linear problem. 

There is a second type of reaction effect whch is not so non-linear-the effect of 
the energetic particles on the scattering. Streaming of particles through the background 
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plasma leads to an instability which excites waves. These then produce enhanced 
scattering of the particles and, in principle, the particles can themselves generate the 
scattering centres needed for their acceleration. 

This quasilinear problem is dealt with first and then the fully non-linear problems 
are considered. Throughout this section we consider only parallel one-dimensional 
shocks. 

4.1. Self-induced scattering 

The idea that the upstream scattering required for diffusive acceleration could be 
produced by self-excited AlfvCn waves goes back to the paper of Bell (1978a). (There 
is no problem downstream, because behind a collisionless shock there is strong 
magnetic turbulence which produced plenty of scattering.) He considered the standard 
transport equation (note that the velocity of the scattering centres is U - V where U 
is the fluid speed and V is the AlfvCn speed; the self-excited waves all travel in the 
same direction as the streaming) 

af+ (U - V) - af = - a ( K  -) af 
at  ax ax ax 

with an approximation from quasilinear theory for the diffusion coefficient 

4 B2/8.rr 
K ( p ,  x )  = - rgv - 

3~ Ew 

(4.1) 

(4.2) 

where r g  is the particle gyroradius, zi is its velocity and Ew(x, p )  is the energy density 
of AlfvCn waves (resonant with particles of momentum p )  per unit logarithmic 
bandwidth. The wave intensity is given by 

(4.3) 
aEW aEw 

at  ax 
-+ (U - V )  -= (V - r)Ew 

where 

is an approximation from quasilinear theory for the growth rate due to the particle 
streaming and I? represents damping of the waves. 

Bell looked for a steady solution of these equations in which there was no damping 
of the waves and found the simple solution 

f(x, P )  = f i ( p ) + [ f z ( ~ ) - f i ( ~ ) I ( l  -XIxn)- '  

Ew(x,p)=-- P 40 [fz(p) -fi  ( P  )I(1 -X/xn)-l 
(4.5) v 47r 

U-v 3 
where 

(4.6) 

This shows what one would expect: the diffusion coefficient is small near the shock 
and increases (in fact, linearly) as one goes away from it. The quantity (47r/3)p4vf(p) 
is the pressure per logarithmic bandwidth of particles with momentum p so that the 
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energy density of the excited waves at the shock is exactly the cosmic-ray pressure 
increase divided by the AlfvCn Mach number of the scattering centres. It is clear that 
the waves become non-linear for strong shocks or if the background magnetic field 
is weak (cf § 4.2.2.). 

An interesting aspect of this solution, discovered by Lagage and Cesarsky (1982), 
is that the acceleration time scale associated with it is infinite. The reason is easy to 
see: the number of accelerated particles in the upstream region at some momentum 

n (0,  P) dx 
0 

I_, 1-x/xo 
diverges logarithmically. Thus the mean residence time upstream is infinite and the 
solution can never be established as a time-asymptotic state. Of course, in reality the 
diffusion coefficient cannot go on increasing indefinitely and some low level of pre- 
existing wave activity will provide a cut-off. 

4.2. Shock structure 

The harder problem, of determining a self-consistent shock structure, can also be 
traced back to one of the seminal papers on diffusive shock acceleration, that presented 
by W I Axford, E Leer and G Skadron at the 15th International Cosmic Ray 
Conference in Plovdiv (1977). This paper is, however, very short; more extensive 
discussions can be found in Drury and Volk (1981) and Axford et a1 (1982). Following 
these papers, we begin by looking at the simplest possible model in which this question 
can be asked. 

4.2.1. The two-fluid model. The problem posed, namely how the reaction modifies 
the shock structure, is essentially one in fluid dynamics. This suggests that we try an 
approach in which the accelerated particles are treated as a fluid and the details of 
the spectrum ignored. The background plasma can then be described by the Euler 
equations with the reaction of the particles incorporated as an additional cosmic-ray 
pressure, Pc, in the momentum equation; thus 

9 + - ( p U ) = O  a 
at  ax (4.7) 

(4.9) 

where p, U, PG and EG are the density, velocity, pressure and internal energy density 
of the background gas, respectively. The internal energy density is related to the 
pressure through an ‘adiabatic exponent’ or specific heat ratio Y G :  

PG = (YG - ~ ) E G  (4.10) 

(for a monatomic non-relativistic gas with no internal degrees of freedom y G  = 5/3). 
The cosmic-ray pressure is given by one ‘moment’ of the distribution function: 

(4.1 1) 
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and the internal energy density by 

(4.12) 

where T is the particle kinetic energy. 

equation for the cosmic rays: 
By taking this moment of the transport equation we obtain a 'hydrodynamic' 

where 

(4.13) 

(4.14) 

is an effective mean diffusion coefficient. Finally, the internal energy density is related 
to Pc through an 'adiabatic exponent' yc  (4/3 for relativistic, 5/3 for non-relativistic 
particles) by 

Pc = ( y c -  1)Ec. (4.15) 

The propagation of small periodic disturbances in this system has been investigated 
by Ptuskin (1981). He shows that perturbations with very short wavelengths are 
practically decoupled from the cosmic rays and propagate at the gas sound speed, 
( ~ G P G / P ) ' / ~ ,  whereas very-long-wavelength perturbations couple to the cosmic rays 
and travel at the enhanced speed, [(YGPG + y c ~ c ) / p ] 1 / 2 .  

To investigate shock structures in this system we look for steady solutions represent- 
ing transitions from one asymptotically uniform state (upstream) to another (down- 
stream). Assuming that all time derivatives are zero we can at once write down four 
first integrals: 

p U = A  (4.16) 

(4.17) AU + Pc + PG = B 

(4.18) 

PG U yG D. (4.19) 

The first three of these are simply statements of the conservation of mass, momentum 
and energy. The last, which states that the gas entropy is constant, is of a less 
fundamental nature and will, in general, only hold piece-wise; if a gas sub-shock has 
to be inserted in the transition, the entropy will increase there. 

If we assume suitable values for the exponents yG and yc  and the mean diffusion 
coefficient I? the above system consists of three algebraic equations and one differential 
equation in four unknowns. We can use the algebraic equations to eliminate in favour 
of one unknown (or combination of unknowns) and reduce the system to a single 
first-order ordinary differential equation in one unknown which then gives the shock 
structure (for details see Axford et a1 (1982)). An equivalent, but more geometrical, 
procedure is to use only the two linear algebraic equations to eliminate the density 
and the cosmic-ray pressure from the system and then to study the integral curves of 
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the reduced system in the U, PG plane. This has some advantages in discussing the 
insertion of gas sub-shocks. 

In the U, PG plane (see figure 4) the obvious inequalities p 30, P c 3 0 ,  P G L  0 
confine us to the triangular region bounded by the lines U=O, PG=O and P c =  
B - A U - P G = O .  The energy equation tells us that the diffusive component of the 
cosmic-ray energy flux is equal to a quadratic expression in U and PG; thus it vanishes 
on a second-order curve in the diagram which is easily seen to be a hyperbola. The 
portions of this curve, which will be called the Hugoniot, lying within the triangle 
correspond to all possible uniform flows having the same mass, momentum and energy 
fluxes as the given one. The initial and final asymptotic states must lie on this curve, 
but this is the only information yielded by the conservation laws alone. Of course, if 
we specify that one of the pressures vanishes identically, then there are only two 
possible states (the intersections of the corresponding side of the triangle with the 
hyperbola) which define the normal Rankine-Hugoniot relations. 

U -  

Figure 4. The shock construction described in the text; the figure has been drawn for the case yc = 4/3, 
y~ = 5/3, M = 2.0 and N = 0.3 (from Drury and Volk 1981). 

Thus to relate a given upstream state to a downstream state we must provide some 
physics beyond the basic conservation laws; in this simple model it consists of the 
assumption that the gas entropy only changes at gas sub-shocks and that the mean 
diffusion coefficient, K, is positive. In consequence, as the fluid flows through the 
transition from one uniform state to another, its state follows a path in the U, PG 
diagram (note that this is a standard specific volume-pressure diagram) which consists 
of sections of gas adiabats connected by jumps corresponding to sub-shocks. The 
jump conditions at such a sub-shock are the ordinary Rankine-Hugoniot conditions 
for a pure gas shock, consistent with our assumption that there is no local energetically 
significant effect of a gas shock on the cosmic rays. Thus the cosmic-ray pressure and 
energy flux are continuous across the shock and the conditions are 

[AU + PG] = [Pc] = 0 (4.20) 



1006 L O’C Drury 

and 

If we temporarily use angle brackets for a mean as well as square brackets for a 
difference, i.e. [U] = U,- U ,  ( U )  = (U2+ Ul)/2, and note the identity 

[XY 1 = [Xl(Y) + (XXY 1 (4.22) 

the second condition can be written 

(4.23) 

and, on using the first condition, this simplifies to 

A ( U )  = YG(PG). (4.24) 

This means that in the U, PG diagram the jump at a sub-shock must be parallel to 
the line Pc = 0 and its mid-paint must lie on the line A U  = YGPG.  This line is the 
‘sonic line’ where the local velocity equals the local gas sound speed, (YGPG/P)~”, 
and the jump must be from the supersonic to the subsonic side. 

The sonic line has, however, a second significance; on any given gas adiabat the 
cosmic-ray pressure has a single maximum which is attained where the adiabat 
intersects this line. This is easily seen by substituting the differential form of the 
adiabatic relation, U dPG+ Y G P G  d U  = 0, into the differential form of the momentum 
conservation equation: 

dPc = -A d U  -dPG = -(A U -YGPG) dU/ U. (4.25) 

In the same way one can show that the quantity 

(4.26) 

has a single maximum on each gas adiabat when it intersects the line AU = 
YGPG+ ~ C P C  (this is where the fluid velocity equals the propagation speed of a 
long-wavelength disturbance as found by Ptuskin (1981)). Thus, if an adiabat intersects 
the Hugoniot, it does so in two points, one on either side of this line. 

We can now classify the possible types of transition (i.e. allowed shock structures) 
and obtain generalised Rankine-Hugoniot conditions. The key points are that as a 
fluid element goes through the transition its position coordinate, x, must increase 
monotonically, that equation (4.18) shows that aPc/ax is positive inside the Hugoniot 
curve and negative outside and that we know that on a gas adiabat Pc has a maximum 
at the sonic line. 

The simplest possibility is that of a completely smooth transition. In the U, PG 
diagram such a structure is represented by a section of a gas adiabat starting and 
ending on the Hugoniot. As the path lies inside the Hugoniot where aPc/ax is positive 
and as x increases monotonically the cosmic-ray pressure must also increase monotoni- 
cally. It follows that such a solution can only exist if the section of adiabat does not 
cross the sonic line. This necessary condition is also sufficient because the differential 
equation can be inverted and integrated along such a path to yield a smooth shock 
structure. The simplest, but important and instructive, example is the cold plasma 
limit, P G  = 0. 
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The section of gas adiabat then degenerates into part of the U axis and the 
integration is elementary. We have 

A U + P c = B  (4.27) 

and 

Yc upc = c + L 5, 1 
-AU2+- 
2 yc- 1 y c - i  ax 

Thus, on eliminating Pc in favour of U, aU/ax is given by a quadratic in U :  

E-=- %+l (U-U,) (U-U2)  
ax 2 

(4.28) 

(4.29) 

where the zeros of the quadratic, U1 and U;?, are the upstream and downstream 
speeds. An integration then shows that the shock structure is basically a hyperbolic 
tangent velocity profile: 

U ( x )  =--- tanh(  (1 + Yc)(U1- Uz) IxK). Ul+U2 U1-Uz (4.30) 
2 2 xg ( x  'I 

The integration is elementary because the section of gas adiabat is straight; although 
this is exactly true only in the limit PG = 0, it is still a good approximation for weak 
shocks where the section of adiabat is so short that its curvature can be neglected. 
Thus we also obtain smooth shock structures of the same hyperbolic tangent type in 
the limit of infinitesimal shocks; with E = (U, - U,)/(U, + U,) << 1 the approximate 
solution is easily found to be (J F McKenzie, personal communication) 

U ( x  ) = U [ 1 - E tanh ( E  Up I =) + O(E)'] 
xo K ( x ' )  

with 

(4.31) 

(4.32) 

The transition length scale ('the shock thickness') is inversely proportional to the 
shock strength and, for small cosmic-ray pressures, directly proportional to Pc. These 
infinitesimal shocks travel at the velocity found by Ptuskin for long-wavelength 
disturbances: 

(4.33) 

Let us now consider the possibility of structures containing embedded gas sub- 
shocks. A sub-shock is represented in the diagram by a jump across the sonic line 
to the subsonic side. This jump must go directly to a point on the Hugoniot, i.e. the 
gas sub-shock must occur at the very end of the transition. To see this, suppose first 
that the subshock jumps to a point outside the Hugoniot. Then aPc/ax is negative 
and if x is to increase PC must decrease. Thus the adiabatic section following the 
sub-shock leads away from the Hugoniot and cannot end before running into the 
region Pc<O. If, however, the sub-shock jumps to a point inside the Hugoniot, then 
Pc must increase and the adiabat inevitably runs into the sonic line. A second 
sub-shock is impossible because jumps must start on the supersonic side of the sonic 

U = [(YGPG + 'YCpC)/k)]1'2* 



1008 L O'C Drury 

line. The only possibility therefore is that the sub-shock jumps directly to the final 
downstream state. 

In summary, the cosmic-ray reaction either smooths the shock structure completely, 
or the transition consists of a smooth part followed by an ordinary gas shock. The 
necessary and sufficient condition for the transition to be smooth is that the flow be 
everywhere supersonic. (This agrees with the general theory of Whitham (1974 p 353 
et seq) . )  However, beyond this qualitative description, the above discussion tells us 
how to quantitatively relate upstream and downstream states; that is, it allows us to 
obtain generalised Rankine-Hugoniot conditions. Of course, they do not have quite 
the certainty that attaches to the gas dynamic Rankine-Hugoniot conditions (which 
are based only on the fundamental conservation laws) and they leave, as will be seen, 
certain questions open, but the value of such information is obvious. 

In detail, the prescription for finding the possible downstream states compatible 
with a given upstream state is first to calculate the mass, momentum and energy fluxes 
A ,  B and C. With these values one then constructs the triangle of possible states, 
the sonic line and the Hugoniot curve. If the Hugoniot intersects the sonic line, one 
also constructs the locus of all points from which a sub-shock jump takes one directly 
to the Hugoniot (this curve is the sheared reflection in the sonic line of the Hugoniot, 
hence also a hyperbola; for brevity I will call it the reflected Hugoniot). Then one 
constructs the gas adiabat through the point representing the upstream state. All 
intersections of this adiabat with the reflected Hugoniot or the Hugoniot which lie 
on the supersonic side of the sonic line correspond to possible shock structures. One 
such intersection is, of course, the point representing the upstream state; this corre- 
sponds to the solution of no shock at all, i.e. the downstream state is the same as that 
upstream. Excluding this trivial solution it is clear that at least one other solution 
exists and that the number of non-trivial solutions must be odd (counting intersections 
with the appropriate multiplicity). It is, however, not obvious that the solution is 
unique, and indeed an analytic investigation of strong shocks in the limit of small 
cosmic-ray pressures (for details see Drury and Volk (1981)), or simply calculation, 
shows that in the case yc = 4/3, yG = 5/3 there can exist three possible solutions for 
certain upstream conditions. This lack of uniqueness should not be too surprising 
(the problem is, after all, non-linear). 

The specification of the upstream state requires four dimensional parameters 
(p ,  U, PG, Pc), but from these only two dimensionless combinations can be formed so 
that if we identify all upstream states which are related by pure scaling, the space of 
physically significant upstream states is two-dimensional and is conveniently para- 
metrised by the shock Mach number M :  

M 2  = p U 2 ( Y G P G +  yCPC)-l (4.34) 

(the ratio of the velocity of the shock with respect to the upstream fluid to the 
propagation speed of an infinitesimal shock) and the fractional contribution of the 
cosmic rays to the total pressure: 

N = Pc(PG + Pc)-'. (4.35) 

The structure of the solution space, relative to this parametrisation, is sketched in 
figure 5 .  The vertical coordinate represents the downstream particle pressure (nor- 
malised to the total momentum flux) as a function of N and M over the physically 
significant region 0 s N s 1, M 1. This surface has a single cusp point where the 
gas adiabat and the reflected Hugoniot intersect with three-point contact and two fold 
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1 0  M +  

Figure 5. A sketch of the downstream ratio of the particle pressure to the total momentum flux as a 
function of the upstream parameters M and N. The dashed line on the surface indicates the approximate 
location of the boundary between those solutions with internal gas subshocks and those without. 

N 

Figure 6. Calculated sections of the surface sketched in figure 5 at M =4.0(a), 5.0(6) ,  5 . 5 ( c )  and 6.0(d). 
The chain line is an extrapolation from the linear test particle theory. This diagram shows clearly how 
non-linear effects enhance the acceleration and lead to multiple solutions in shocks with Mach numbers 
greater than about five (from Drury and Volk 1981). 
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Figure 7. Three examples of shock structures: ( a )  M = 2.0, N = 0.3, (6) M = 2.0, N = 0.8, ( c )  M = 13.0, 
N = 0.3. The adiabatic exponent of the gas is 5/3, of the particles 4/3 and the solhtions have been scaled 
to unit mass and momentum fluxes (from Drury and Volk 1981). 
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lines where they intersect with two-point contact. Between the two fold lines there 
exist three possible downstream states for every upstream state; at the fold lines two 
of these coalesce and disappear. The dashed line marks the boundary between smooth 
solctions and those which contain embedded sub-shocks. The results in figure 6 (which 
were calculated, not sketched) show sections of this surface at fixed M and figure 7 
shows three typical shock structures. 

How should we interpret these results physically? This is a hard question. It is 
important to realise that all we have done is to classify the possible downstream states, 
if there exist steady solutions and if the simple two-fluid model is applicable; the 
stability of these shock structures and the possibility of their creation have not been 
discussed. Indeed there are good reasons (see D 4.5) for supposing that if K increases 
with p steady solutions cannot exist for strong shocks. Furthermore, the only thing 
we know about the cosmic rays in this simple two-fluid model is their pressure; their 
number density is unknown and this makes any discussion of, e.g. particle injection, 
very difficult. Nevertheless we can draw some tentative conclusions. 

First, and most importantly, the model clearly indicates that shock waves tend to 
accelerate cosmic rays with high efficiency. The cosmic-ray diffusion is the major 
entropy generation process in both strong and weak shocks; only in moderate shocks 
(Mach 3 or so) are sub-shocks important. Taken literally, the model predicts that in 
very strong shocks 98"/0 of the incoming kinetic energy is converted to cosmic-ray 
energy (with relativistic particles providing the dominant downstream pressure the 
shock has a compression ratio of 7 and the fraction of the incoming kinetic energy 
not available for conversion is 7-* - 2%). While this almost certainly pushes the 
model beyond its limits of validity (unless K is bounded) it shows that there is no 
obvious reason why the acceleratior? efficiency should be low. 

A second important point is that the reaction modifies the acceleration in two 
ways (a point noted by Blandford (1979)). The smoothing of the shock decreases the 
acceleration (this is the effect one intuitively expects) but there is also a second, more 
subtle, effect which can increase the acceleration. If, as will normally be the case, the 
cosmic rays have a 'softer' equation of state than the gas ( y c < y G )  a cosmic-ray- 
dominated shock will have a larger compression ratio than a gas-dominated shock; 
the additional acceleration due to this increased compression can more than com- 
pensate for that lost due to the smoothing. 

The conflict between these two effects provides a plausible physical explanation 
for the occurrence of multiple solutions in strong shocks with small upstream cosmic- 
ray pressure: either the structure is essentially that of a gas shock and the cosmic-ray 
pressure, though amplified, is small or the shock is cosmic-ray-dominated with the 
resulting increased acceleration itself producing this domination; between these two 
stable states there exists a third unstable state which, if perturbed, tends either to the 
gas-dominated or the cosmic-ray-dominated state. This accords with the fact that, if 
the upstream cosmic-ray pressure is too high, the only solution is the cosmic-ray- 
dominated one. 

4.2.2. The two-fluid model with waves. The simple model analysed above assumes 
that the scattering of particles occurs from centres which move with the velocity of 
the fluid so that there is, in effect, a direct coupling between the cosmic rays and the 
gas. This is possible (for example, if the centres are tangential discontinuities), but 
we expect the scattering to be caused mainly by waves moving with respect to the 
gas. McKenzie and Volk (1981,1982) and Volk and McKenzie (1981) have shown 
that, if these waves are AlfvCn waves, they can be explicitly incorporated into a simple 
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‘hydrodynamical’ model which, as well as yielding a non-linear version of Bell’s result 
for the wave generation, indicates how the approximation of neglecting the wave 
velocity could be justified. 

As before we consider for simplicity a steady parallel shock and write down the 
three conservation laws: 

p U = A  (4.36) 

AU + PG + Pc+ Pw = B (4.37) 

$A U’ + FG + F~ + F~ = C. (4.38) 

The subscripts G, C and W refer to gas, cosmic rays and waves, the F are energy 
fluxes and the P are the pressures. 

The gas energy flux consists of advection of the associated internal energy density 
EG with the fluid velocity U plus a pressure work term: 

FG = UEG + UPG. 

The cosmic-ray energy flux consists of the advection of internal energy at the velocity 
of the scattering centres, U - V, plus a pressure work term plus a diffusive flux: 

(4.39) 

(4.40) 

Finally the wave energy flux consists of the wave energy density advected at (U - V )  
plus the pressure work term: 

Fw = (U - V ) E w  + UPw. (4.41) 

The internal energies can be related to the pressures by 

PC,G = (7C .G - 1)EC,G 

and assuming the waves are AlfvCn waves: 

Ew = 2Pw 

(4.42) 

(4.43) 

(see Dewar 1970; also Xiaoqing and Mutao 1982). 
This gives a system of five unknowns (p,  U and the three pressures) related by 

three conservation equations; to complete the system we need the equations describing 
the energy exchanges between the three components. These are 

(4.44) 

the divergence of the gas energy flux is the rate at which the fluid does work against 
the gas pressure gradient plus the wave dissipation, L :  

JPC -- a F c - ( U - V ) - .  
ax ax 

(4.45) 

The divergence of the cosmic-ray energy flux is the rate at which the scattering centres 
do work against the cosmic-ray pressure gradient: 

aFw apw aPc 
-= U-+ v--L. 
ax ax ax 

(4.46) 
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The divergence of the wave energy flux is the rate at which the fluid does work against 
the wave pressure gradient plus the wave excitation by the cosmic-ray streaming minus 
the dissipation. Of course, these equations are not independent; if any two are 
assumed, the third can be deduced by using the differentiated forms of the conservation 
laws. The system is closed by prescribing some form for the dissipation, L,  and noting 
that in a parallel shock the AlfvCn speed, V a  U1”. Clearly, the key feature which 
enables us to write down this system of equations is that AlfvCn waves are non- 
dispersive; however, it seems plausible that, even if dispersive waves were important 
sources of scattering, these equations, with V interpreted as a ‘mean wave speed’, 
could be used as an approximate model. 

The simplest case to consider is L = 0, i.e. no wave dissipation. The wave energy 
exchange equation can then be integrated to obtain a non-linear version of Bell’s 
expression for the energy of the waves excited by the particle streaming. We have 

a apW aPc 
-[(3U-2V)Pw-j=U-+V- 
ax ax ax 

or 
apw a apC 2( U - V )  -+ Pw - (3U - 2 V )  = v-. 
ax ax ax 

(4.47) 

(4.48) 

Using the relation, U OC V 2 ,  we find that the integrating factor for the LHS is (U - V ) /  V 
and thus 

a apC a 
ax ax ax 

- [2(U - V)’Pw/ VI = ( U -  V )  -=-Fc. 

It follows that 

Ew = Fc + constant 
( U -  V)’ 

V 

(4.49) 

(4.50) 

(the energy equation can be used to eliminate Fc on the RHS; this gives the expression 
found by McKenzie and Volk). In agreement with the linear calculation of Bell, this 
shows that a fraction of the order of V/U of the energy given to the cosmic rays goes 
into exciting the waves. 

This sounds relatively harmless and one is tempted to say that in the limit V<c U 
the wave excitation can be neglected and the simple two-fluid model used. This would, 
however, be premature: the problem is that the energy deposited in the waves, although 
small relative to the cosmic-ray energy, is much larger than that in the background 
magnetic field; the energy density available in the shock is of the order of i p y 2 ,  if 
the acceleration is efficient this implies a wave energy density of the order of fpUV 
whereas the background magnetic-field energy density is $pV2, Clearly, if V << U, the 
waves become non-linear very near the start of the shock structure unless the shock 
is inefficient. What happens thereafter is an interesting but unanswered question?. 

f I think it probable (but this is only speculation) that the magnetic field becomes so disordered that any 
attempt to decompose it into waves yields as many travelling forwards as backwards, the mean wave speed 
drops to zero and the irregularities stop growing. To put it another way, if the field is sufficiently disordered 
its irregularities are tied to the background plasma and cannot propagate through it like small-amplitude 
waves. However, i t  has been argued that just the opposite occurs, that the wave phase speed increases 
(Morrison et a1 1981) due to ‘trapping’ effects (cf Volk and McKenzie 1981) and presumably diffusion is 
then an inappropriate model for the particle transport. 
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One possibility, which at least has the merit of allowing a relatively straightforward 
mathematical analysis, is to suppose that some efficient damping process transfers the 
excess energy from the waves to the gas. 

4.2.3. Two-fluid model with strongly damped waves. If we assume that some, 
unspecified, damping process keeps the wave energy density (and hence also the wave 
pressure) small in comparison to the other energy densities the system of equations 
derived above can be simplified to 

p U = A  

AU + PC -k PG = B 

$ A U ~  + F~ + FG = c 
(4.51) 

This system can be analysed using a U, PG diagram in exactly the same way as 
the simple two-fluid model and clearly in the limit V<c U the two theories become 
identical. The differences are quantitative rather than qualitative; the Hugoniot is 
not a simple hyperbola, but a curve which looks like a hyperbola (at least that part 
which lies inside the triangle of physical states) and instead of gas adiabats one has 
to use the integral curves of the energy transfer equation; the conclusions derived 
from the two-fluid model are essentially unchanged. 

4.3. Non-linear eflects on the particle spectrum 

The simple hydrodynamic models discussed in the last subsection give some idea of 
how the shock structure reacts to the acceleration of energetic particles. The next 
problem is to see how this change in the structure influences the acceleration process 
and the spectrum of the accelerated particles. There are three obvious ways of tackling 
this problem; by looking for exact solutions, by trying asymptotic and perturbation 
expansions and by numerical methods. The first two of these have yielded useful 
information, the last has only begun to be applied, but will obviously be important 
in the future. 

4.3.1. A n  exuct solution, There is one special case of acceleration at a modified shock 
where a complete consistent solution is known (Drury et a1 1982; see also Blandford 
and Payne 1981). The key point is that the steady-state transport equation 

af a af 1 aU af 
U - = - K - - + - - P -  ax ax ax 3 ax ap 

(4.52) 

can be solved, in the sense that a useful expression can be found for the Green function 
relating the upstream and downstream spectra, if the velocity U and the diffusion 
coefficient K are related by 
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where P is a constant. However, with P = (yc+ 1)/2 this is exactly the shock structure 
equation of 0 4.2 (the 'cold' plasma limit leading to smooth hyperbolic tangent type 
velocity transitions) and with P given by (4.32) the same equation applies in the weak 
shock limit. Thus in these cases a consistent analytic solution is possible if the diffusion 
coeficient is independent of momentum (so that I? = K ) .  

To derive this solution we begin by changing the independent spatial variable from 
x to U so that (4.52) becomes 

The Euler operator p a / @  suggests a Mellin transform: 

and on using (4.53) we obtain the ordinary differential equation 

(4.54) 

(4.55) 

(4.56) 

which has three regular singular points (at U1, U2, CO) and can thus be reduced to 
Gauss's hypergeometric equation. The boundary conditions are applied at two of 
these singular points (g must be finite at U, and is known at VI) and the solution is 

where 

(4.57) 

(4.58) 

1 U2 c = l+-- 
P U1-Uz 

(for the theory of the hypergeometric equation see, for example, Whittaker and 
Watson (1902)). Thus 

(4.59) 

and it follows from the convolution theorem for the Mellin transform that 
m 

f A P )  = lo f l ( P ' ) G ( P / P ' )  dP'/P (4.60) 

where G ( p / p ' ) ,  the Green function or spectrum produced by a monoenergetic 
upstream spectrum, is given by 

(4.61) 
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In evaluating this integral it is convenient to set 

s = In ( P l P ' )  

(4.62) 
u1,2 

x 1 , 2  = ~ 

U1 - U2 

U1 + U2 
x 3  =x1 +x2 =- 

U1 - U2 

the integration contour can then be deformed and the integral expressed as a sum of 
residues at the poles of one of the gamma functions with the result 

for s > 0 and G = 0 for s G 0. This rather complicated expression (which is, however, 
easy to compute as the terms in the series satisfy simple recurrence relations) shows 
that an upstream monoenergetic spectrum produces downstream a spectrum which is 
zero below the injection energy (no deceleration) and which consists of an infinite 
sum of power laws (in momentum) above this energy. 

1 1 

Figure 8. The downstream spectrum produced from an upstream delta distribution centred on po by 
diffusive acceleration in a hyperbolic tangent type velocity transition of compression ratio 7 .  Solutions are 
shown for five values of the dimensionless diffusion coefficient p :  (1) 0.1, (2) 0.5, (3) 1.0, (4) 2.0, (5) 10.0 
(from Drury er al 1982). 



A n  introduction to the theory of diffusive shock acceleration 1017 

Figure 8 shows the result of a numerical evaluation of this spectrum for the case 
where the overall compression ratio of the shock is seven and five values of p. This 
parameter can be regarded as a dimensionless diffusion coefficient; in the limit p + CO 

the diffusion length scale is much larger than the shock thickness, the first term of 
the series dominates, the gamma functions disappear and 

G + 3x1 exp ( - 3 ~ x 1 )  (4.64) 

which is, of course, the result found in the simple theory. But whereas that derivation 
assumed the shock to be thin compared to the particle gyroradius, this shows that in 
fact the result holds under the much weaker condition that the shock be thin compared 
to the diffusion length. In the other extreme, p + 0, diffusion is relatively unimportant 
and the spectrum is the upstream delta distribution shifted by adiabatic compression 
a factor of the cube root of the compression ratio in momentum and broadened a 
little. However, in the consistent cases, p is of order unity (the diffusion length then 
determines the shock thickness). Perhaps the most interesting feature of the solutions 
is that, although the spectrum is not a simple power law, it can be very well approxi- 
mated by one at momenta more than a few times the injection momentum; this is 
clear from figure 8 and is a consequence of the rapid convergence of the series (4.63) 
at large s. This asymptotic power law spectrum has a slope of 

-3x1(1 + x d P )  (4.65) 

i.e. steeper than in an unmodified shock of the same compression ratio. 
It is also possible to derive an asymptote for the low momentum end of the 

spectrum and to show from the spectrum that particle number is conserved and that 
the pressure has the value required by the hydrodynamic equations; the details can 
be found in the original papers. 

4.3.2. The high-energy asymptotic spectrum. We were able to find a solution of the 
transport equation in the last subsection only by assuming that the diffusion coefficient 
was momentum-independent. In reality K will normally be an increasing function of 
p .  For example, the energy dependence of the primary to secondary ratio in the 
galactic cosmic rays is usually taken as evidence that their diffusion coefficient has a 
power law dependence on momentum, K ap", with a in the range 0.3-0.5. In any 
case K must eventually increase because it is bounded from below by the monotonically 
increasing value for Bohm diffusion ( K  5 K B  = fr,v). This suggests that if there is a 
steady shock structure with length scale L and velocities of the order of U, it might 
be useful to look for asymptotic expansions of the high-energy end of the spectrum 
by treating K / L U  as a large parameter. 

For simplicity let us suppose K = ~ ~ ( p / p ~ ) "  where KO/LU >> 1 and p o  is so high that 
there are no pre-existing cosmic rays at momenta p >po .  The problem is to study the 
asymptotic form of the solution of the steady transport equation (4.52) for p >po .  
For 1x1 >: L, i.e. far upstream and downstream, dU/dx = 0 and the transport equation 
simplifies to the diffusion-advection equation. Thus upstream: 

and downstream: 
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Let g = In f, s = In ( p / p o ) ;  then (4.52) becomes 

(4.68) 

We now make the ansatz g = giK-i and obtain the recurrence relations 

a2gi i agjagi-j 1 d u  a ( i - 1 ) d U  a 
ax i=oax ax 3 dx as 3 dx ax T +  --+---gi-l--- gi-1- U-  gi-l= 0 i = 0, 1 , 2  . . , 

(4.69) 

The boundary conditions on the gi(x, s)  follow from the large x behaviour of f :  

X + + W  gi (x , s )+gt (s )  i = O ,  1 ,2 , .  . . 
X + - W  gi(x,s)+g;(s) i = o , 2 , 3  , . . .  (4.70) 

g1(x, s)  + g; (s) + UlX. 

The first equation, i = 0, is 

with solution 

The next equation is 

a2g1 i a g , d u  
ax2 3 as dx 
---+---=oo. 

Integrating and using the boundary conditions 

and if we choose the x origin such that 

then 

Thus 

using the notation of § 4.3.1. 
Proceeding to i = 2 

a2g2 1 d U  
ax 3 dx 
-- 

2 -x1x2(U1-U)(U-U*)+-- 

(4.71) 

(4.72) 

(4.73) 

(4.74) 

(4.75) 

(4.76) 

(4.77) 

(4.78) 
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Integrating once and using the boundary conditions we obtain an equation for the s 
dependence of gl: 

where 

The solution is 
Q, 

g: =;Xi(3Xz+ff) Q $ 0  

s: = --3XlX2Q,S a = o  
where we have dropped terms which only add a constant to g. 

Thus the solution to first order is 

or 

(4.79) 

(4.80) 

(4.81) 

(4.82) 

(4.83) 

It is interesting to note that this agrees with the exact solution found in § 4.3.1; if 
a = 0 and K dUldx = +(Ul - U ) ( U -  U,) then Q, = K/P, g: = -3x1x2~s//3 and the 
high-energy spectral slope is -3,y1(1 + x 2 / / 3 ) .  

However, if K increases with p ,  a >0, then the asymptotic slope is that predicted 
by the simple theory (as it clearly should be; but the point is of some importance as 
we will see). In principle, the series could be continued to higher orders, but the 
algebra grows at an alarming rate and there is no reason to suppose that the result 
would be very useful. 

4.3.3. Blandford’s perturbation solution. A different approach has been taken by 
Blandford (1980) who regards the cosmic-ray reaction as a small perturbation and 
simultaneously expands the shock structure and the spectrum in powers of the ratio 
of the downstream cosmic-ray pressure to the kinetic momentum flux. This has the 
obvious disadvantage of only working when the shock is an inefficient accelerator of 
cosmic rays (a circumstance which the considerations of 0 4.2 suggest is rarely the 
case) and leads to rather complicated algebra. However, it does yield more information 
in those cases where it is applicable than the analyses of Pg4.2 and 4.3.2. 

We begin by supposing that in terms of a small parameter E we can make the 
expansions: 

U = U(o)+EU(1)+E2U(2) .  . . 
f = E f ( o ) + E 2 f ( 1 j + .  . , 

(4.84) 

W 

Pc=l0  $p’vfdp=O+~P:)+ . . .  
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On inserting these into the transport and dynamic equations to zeroth order we 
obtain the simple theory of acceleration at a gas shock with no reaction. Thus from 
§ 2 . 3 . 1  the solution is (for simplicity we assume K independent of x )  

(4.85) 

where ,yl = Ul/(Ul - U,) and U\::, 
tions. 

the integrated forms of the mass and momentum conservation laws: 

are related by the Rankine-Hugoniot condi- 

To obtain the first-order corrections to the shock structure it is convenient to use 

p U = A  

A U + PG + P c  = B. 
(4.86) 

The two scaling degrees of freedom can be used to hold A and B constant (so 
that they do not need to be expanded) and, following Blandford, we will also hold 
the shock (gas) Mach number constant (thus U1 = U:”’, PG1= P g ! ) .  By using the 
adiabatic relation PG= U-’ it is then easy to show that upstream 

U‘” = -U(O) 
1 

Pg’  = y P g : 6 ( x )  (4.87) 

P g )  =(AV?’ - ? P $ \ ) ~ ( x )  

where we define E by imposing the condition 6(0) = 1 .  Thus 

(4.88) 

Applying the Rankine-Hugoniot conditions to the sub-shock we then obtain the 
(x- independent) downstream perturbations 

P g :  = yPg: - 2A U‘,“’ (4.89) 
pC’) c2 - -AU\O) - y P g :  

(note that AU:” + P g ;  + Pgi = 0 as required by the constancy of B ) .  
The first-order terms in the transport equations give 

(4.90) 
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i.e. the spectral correction is obtained by solving the zeroth-order transport equation 
with a source term representing the non-linear effects. The results of 0 2.3.1 allow 
us to write down the Green function for the zeroth-order transport equation with an 
upstream source, S ( x  - x ’ ) S ( p  - p ’ )  with x ’ s O :  

1 
U1 
x{exp ( U l ( x  - x ’ ) / ~ l H ( x ’ - x ) + H ( x  - x ’ ) } H ( - x ) S ( p  - p ’ )  

G ( x ,  p ,  x ’, p ’ )  = - [I-  exp ( U I X / K  11 

in terms of which the first-order correction can be expressed purely in terms of 
quadratures : 

0 

f‘%, p )  = dx’ lop dp’G(x ,  P ,  x ’ ,  P’Mx’,  P ’ ) .  (4.92) 
-m 

The simplest case to consider is that where K is independent of p .  Then O ( x ) =  
exp (U:”X/K) and the source term 

The parameter T = yP$;/AU:O’ is, as in Blandford’s paper, the inverse square Mach 
number of the shock. Thus, the downstream perturbation to the spectrum: 

f‘l’(0,  P )  =f‘o)‘(o, P)3xlCy2/2 - 2Tx1) In ( P l P O )  (4.94) 

and to first order 

f ( O , p ) =  f (O)+Ef ( l )  

(4.95) 

We see that for weak shocks the spectrum steepens but for strong shocks it flattens. 
The above expression agrees with that found by Blandford if a misprint in his equation 
(21) is corrected. 

The case ~ c c p ~  can also be considered, but the integrals involved have to be 
performed numerically. However, one can easily see that if K is an increasing function 
of p the downstream spectral slope at high momenta will be that appropriate to the 
overall compression ratio of the transition: 

(4.96) 

whereas at low momenta it teiids to that appropriate to the compression ratio of the 
sub-shock: 
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4.4. Injection and selective acceleration 

It seems very probable, both on theoretical grounds (the collective processes which 
heat the plasma within a collisionless shock do not necessarily produce Maxwellian 
distributions) and by extrapolation from observations of the Earth’s bow shock, that 
if the shock structure contains a collisionless sub-shock this injects particles from the 
background plasma into the diffusive acceleration mechanism. However, it is very 
hard to quantify this effect, although interesting attempts have been made by Eichler 
(1979), Bulanov and Dogel’ (1979) and Krymsky (1981) analytically and by Ellison 
(198 1) numerically: while all agree that injection from the thermal background allows 
a strong shock, even with no upstream ‘seed’ cosmic rays, to accelerate cosmic rays 
‘efficiently’ this result must largely be attributed to their common assumption that the 
process which scatters the high-energy particles is the same as that which heats the 
background plasma (whereas very different interactions could be involved). Until we 
have some theoretical understanding of the microscopic structure of a quasi-parallel 
collisionless shock we can probably do no better than follow Bell (1978b) and assume 
that some small fraction (say, of the thermal particles advected into the shock 
obtain enough energy to enter the diffusive mechanism (cf Sonnerup 1979). From 
various observational constraints the existence of such a process is probably essential 
if diffusive shock acceleration is to be regarded as a viable theory for the origin of 
the galactic cosmic rays, a point emphasised by Eichler (1980). 

An interesting aspect (Eichler 1979, Ellison 1981), assuming injection to exist, is 
the question of selectivity in the acceleration: how is the composition of the accelerated 
particle at high energies related to that of the background plasma? There are clearly 
two effects here; the initial injection could be selective and if the shock structure has 
been modified the acceleration from the injection energy up to the observation energy 
will select those species with larger diffusion coefficients. Both effects suggest that 
the abundance of a species in the high-energy particles relative to that in the plasma 
should be a smooth, and probably increasing, function of its mass to charge ratio, but 
as with the injection itself there exists no quantitative theory. 

The phenomenological approach to injection suggested above can, of course, be 
incorporated into the two-fluid model of the shock structure discussed in 9: 4.2 (H J 
Volk, personal communication). One simply says that a fraction @ ( O s  8 < 1) of the 
kinetic energy dissipated in the sub-shock goes into cosmic-ray energy so that the 
sub-shock jump conditions become 

[Pc]=O [Fc]=-8[$AU2] 

or, in terms of the gas, 

A[ U ]  + [Pa] = 0 

+A [ U*] + (1 - e )  [FG] = 0 

- 0  +erc)(v) = yc(pa). 

(4.98) 

(4.99) 

Thus the jump in the U, PG diagram is still parallel to Pc = 0, but its midpoint now 
lies on the new line (assuming e to be a constant): 

With this new line one can then construct a new reflected Hugoniot and carry out the 
construction of § 4.2. However, whereas in 0 4.2 the existence of at least one non-trivial 
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solution was guaranteed, with 8 > 0 there exist some upstream states with no non-trivial 
solutions. The problem is that the cosmic-ray pressure still reaches its maximum on 
each gas adiabat at the old sonic line whereas weak subshocks, because of the energy 
drain due to injection, travel at less than the sound speed. The effect probably does 
not have much physical significance, but it serves as a warning not to assume that 
steady solutions must exist, a point examined in the next subsection. 

Eichler (1979) claims, on the basis of his simplified model, that the reaction 
regulates the injection so that the overall acceleration efficiency is kept at about 50%. 
This is a very appealing idea, but unfortunately reaction effects are more complicated 
than his model allows (see the next subsection) so that without further work his 
conclusions cannot be accepted. 

4.5. Pressure divergence in non-linear shocks 

In § 4.2 we discussed how the reaction of the accelerated particles, expressed in terms 
of a non-zero cosmic-ray pressure, could modify steady shock structures. Then in 
§ 4.3 we examined particle acceleration in these modified steady shocks. We must 
now check whether this is consistent and the spectral modifications are compatible 
with the assumed cosmic-ray pressures., When we do this we find that we are led to 
a contradiction if K increases with p and the shock is strong. The problem is simple: 
if we assume a strong shock accelerating cosmic rays to have a steady structure, then 
because of the cosmic rays' softer equation of state the overall compression ratio of 
the transition will exceed four; but if K increases withp then the high-energy asymptotic 
slope of the spectrum is determined by the overall compression ratio. It will thus be 
flatter than f ( p )  C C P - ~  and the pressure integral 

P ~ = ? [ ~ ~ p ~ v f  dp 

will diverge. We are forced to conclude that no steady structure can exist for strong 
shocks accelerating cosmic rays unless K is bounded from above (or additional effects 
are incorporated, e.g. a loss mechanism at high energies, which can provide a suitable 
cut-off). 

It is interesting to speculate about what sort of unsteady structure such a shock 
might have; the obvious alternatives are that the structure is periodic or that it changes 
secularly. I know of no detailed solutions relevant to this problem, but some informa- 
tion can be gleaned from the time dependence calculation of § 3.2. 

Let us suppose that the diffusion coefficient K ~ p "  and consider a burst of particles 
with momentum p O  released at t = 0 into an unmodified shock. The particle spectrum 
at the shock is then -3x*  

fa(:) p( t ,p7pO)  (4.101) 

in the notation of § 3.2. But if a >O, then at large times the system 'forgets' the 
injection momentum and the acceleration time distribution tends to a self-similar form: 

CP (t, P, PO) + t ,lG(t/ta) (4.102) 

where the acceleration time t a K K  CCp". The cosmic-ray pressure at the shock: 

P C K  jOm p 3 ( " c - x 1 ) ~  ( t ,  P, PO)  dplp 

where yc = 4/3 if the particles are relativistic, 5 /3  if they are non-relativistic. 

(4.103) 
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Thus, as t + a, 
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t 3 ( rc -x l ) lu - l  (4.1 04) 

An alternative microscopic derivation of this power law time dependence is perhaps 
more convincing. The particles gain momentum at a rate 

so that 
p at ' I " ,  

(4.105) 

(4.106) 

On the other hand, the number of particles, N, decreases due to escape so that 

N - 3 x z  a - 3 x J a  (4.107) 

and these remaining particles occupy a region of width L a K / U  a t around the shock. 
Thus the pressure: 

- - t 3 (vc -x l ) /a - l  (4.108) 

The interesting aspect here is that the particle pressure can continue to increase 
after the injection has been switched off if cy <3(yC-x1).  This of course assumes the 
shock to be infinitesimally thin; if we broaden the transition the momentum gain 
decreases, the escape rate increases and at some finite thickness the pressure growth 
rate will be zero. This suggests that there may exist strong shock solutions where 
there is no injection or advection of fresh particles, but where an ever decreasing 
number of ever more energetic particles maintain a constant downstream pressure 
and a shock structure whose width increases linearly with time. If the particles are 
relativistic and the overall compression of the secularly broadening transition is close 
to the steady value of seven this requires cy < O S .  Interestingly, the particles which 
escape form a power law spectrum so that this may be a way to get spectra 
flatter than 4. Any further discussion would involve us in too much speculation, but 
these simple arguments do suggest that both secular and periodic shock structures 
need to be investigated. 

5. Concluding remarks 

As stated in the introduction, and as I hope the presentation in 9 2.3 has shown, the 
central idea of diffusive shock acceleration is simple and persuasive. Assuming that 
the accelerated particles could be treated as reactionless 'test particles' and their 
transport as diffusive we found that a steady parallel plane shock produced a distribu- 
tion function which was a power law in momentum. In 9 3 we then showed that, as 
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long as the particles are fast and can return across the shock, the obliquity of the 
magnetic field is unimportant and that, at root because the acceleration is a con- 
sequence of Liouville’s theorem, the sole determinant of the spectral slope is the 
compression of the plasma in the shock. However, the acceleration time scale and 
the spectral deviations induced by, for example, curvature of the shock, do depend 
on other factors, in particular the diffusion coefficient. 

Unfortunately, the reaction of the accelerated particles cannot be neglected if they 
contribute significantly to the total pressure (as they must if the acceleration is efficient). 
One consequence of including recoil terms is that if the diffusion is supposed to occur 
through scattering off resonant AlfvCn waves these rapidly become non-linear in all 
except weak shocks as shown in $84.1 and 4.2.2. If we ignore this problem and 
assume, as in the rest of $ 4, that diffusive transport remains a valid approximation 
the reaction effects would be reasonably well understood were the diffusion coefficient 
constant, or at least bounded. Unfortunately this is only a convenient fiction. In 
reality it must increase and, because of the high-energy divergence of the particle 
pressure that this would cause if the shock were steady, acceleration by strong shocks 
must be treated as a time-dependent problem. Nor, at the other end of the spectrum, 
does there exist a satisfactory theory for the injection of particles from the thermal 
background into the diffusive acceleration mechanism. 

Until these gaps in our understanding are filled (and this should be possible with 
modern numerical and analytical methods) it is hard to pass any final judgment on 
diffusive shock acceleration. However, it is worth noting that the problems which 
afflict the theory arise mainly from the fact that as an accelerator the mechanism is 
too good; presumably Nature is better than we are at finding ways of keeping it in 
check, but it is hard to see how the basic mechanism could be completely suppressed. 
I remain optimistic that with the discovery of diffusive shock acceleration we have 
made a step towards understanding the seventy year old problem of the origin of 
cosmic radiation. 
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