Amplification of magnetic fields in the ICM and IGM using a Kinetic MHD model

Reinaldo Santos-Lima (USP, Brazil) **Elisabete M. de Gouveia Dal Pino** (USP, Brazil)

Gzegorz Kowal (USP, Brazil) Diego Falceta-Goncalves (USP, Brazil) Maria Soledad Nakwacki (USP, Brazil) Alex Lazarian (UW, USA)

Turbulent amplification of the MF in the ICM and IGM

 In the MHD framework, a weak field can be amplified by a conductive chaotic flow until saturation:

Magnetic energy ~ Kinetic energy (Batchelor, 1950)

 Turbulence has a dynamo action (see poster by A. M. Beck, and Dolag's talk)

Does it apply directly to the ICM and IGM?

IGM & ICM - COLLISIONLESS

Low density of IGM & ICM:

 \rightarrow ion Larmor radius $\lambda_{L} <<$ mean free path λ_{mfp}

Ex.: Hydra cluster (Ensslin & Vogt 2006):

$$\lambda_L \sim 10^5 \text{ km} \ll \lambda_{mfp} \sim 10^{15} \text{ km}$$

In absence of collisions: $p_{\parallel} \neq p_{\parallel}$

→ M D: INADEQUATE Kinetic-MHD description:

$$P_{ij} = p_\perp \delta_{ij} + (p_\parallel - p_\perp) b_i b_j,$$

(previus talk by Falceta-Golcalves)

Goal

Test capability of this model on amplifying magnetic fields when turbulence is injected and compare with standard MHD turbulent dynamo.

Basic equations of the Kinetic-MHD model

One fluid model (simplicity!)

$$\begin{aligned} \frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{u}) &= 0\\ \rho \left(\frac{\partial}{\partial t} + \mathbf{u} \cdot \nabla \right) \mathbf{u} + \nabla \cdot P - \frac{1}{4\pi} (\nabla \times \mathbf{B}) \times \mathbf{B} = 0\\ \frac{\partial \mathbf{B}}{\partial t} - \nabla \times (\mathbf{u} \times \mathbf{B}) &= 0 \end{aligned}$$

+ equations for the pressures

Linear waves + instabilities

Modified MHD waves:

Max. speed of transverse wave:

$$\left(\frac{\omega}{k}\right)_1^2 =$$

MHD
$$C_A^2$$

 $\begin{array}{c} \textbf{K-MHD} \\ C_A^2 + C_\perp^2 - C_\parallel^2 \end{array}$

Instability regimes:

Isothermal K-MHD

- Assumes constant sound speeds (Falceta-Goncalves' talk)
- Simplest \rightarrow helps to understand the role of the anisotropy on turbulence statistics (Kowal et al. 2011)

Instabilities due to anisotropic pressure accumulate energy in the smallest scales

Turbulent Dynamo in Isothermal KMHD

Resolution: 128^3 Numerical code writen by G. Kowal (Kowal et al. 2011)

Highly dependent on the anisotropy regime!

Adiabatic KMHD

Adiabatic conditions (Chew et al. 1956)

$$\frac{d}{dt} \left(\frac{p_{\perp}}{\rho B} \right) = 0$$
$$\frac{d}{dt} \left(\frac{p_{\parallel} B^2}{\rho^3} \right) = 0$$

In the presence of turbulence
 reconnection
 irreversible processes

Non-adiabatic K-MHD

 More consistent with the fact that the system suffers dissipation due to turbulence:

$$\frac{\partial p_{\parallel}}{\partial t} + \nabla \cdot (p_{\parallel} \mathbf{U}) + 2p_{\parallel} \mathbf{b} \cdot \nabla \mathbf{U} \cdot \mathbf{b} = 0$$
$$\frac{\partial p_{\perp}}{\partial t} + \nabla \cdot (p_{\perp} \mathbf{U}) + p_{\perp} \nabla \cdot \mathbf{U} - p_{\perp} \mathbf{b} \cdot \nabla \mathbf{U} \cdot \mathbf{b} = 0$$

(Kulsrud 1983)

Turbulent power included in energy equation

Turbulent Dynamo under non-adiabatic K-MHD

Setup initially with isotropic pressure.

Turbulent Dynamo under non-adiabatic K-MHD

How to prevent pressure anisotropy catastrophe ?

Possible mechanisms reducing anisotropy involve pitch-angle scattering imposing:

Isotropization rate ~ growth rate of instability

$$\left(\frac{\partial \Delta p}{\partial t}\right)_{scatt} = -A\gamma \Delta p$$
Final provide the second s

• sharp limits on anisotropy (Sharma 2006):

$$1 - \frac{p_\perp}{p_\parallel} - \frac{2}{\beta_\parallel} \, \lesssim \, \zeta$$

$$\frac{p_{\perp}}{p_{\parallel}} - 1 \lesssim \frac{2\xi}{\beta_{\perp}}$$

Dynamo solutions in the non-adiabatic K-MHD with pitch-angle isotropization

Dynamo solutions in the non-adiabatic K-MHD with pitch-angle isotropization

Conclusions

- Pressure anisotropy arises naturally in a collisionless plasma;
- When turbulence is present: non-adiabatic K-MHD required;
- Success of turbulent dynamo: highly dependent on anisotropy regime of K-MHD;
- Isothermal K-MHD dynamo: POSSIBLE if $\mathbf{p}_{\mu} > \mathbf{p}_{\mu}$
- Non-isothermal K-MHD dynamo: POSSIBLE with sharp limits on pressure anisotropy;

Conclusions

- Relevant radiative losses (e.g. cosmic rays, Synchrotron, Bremsstrahlung) must be introduced in order to provide appropriate release of the heating due to turbulence;
- Micro-instabilities leading to pitch angle scattering: have to be better understood to produce a more consistent K-MHD.