#### Compressibility and helicity in geodynamo

#### M.Yu.Reshetnyak

#### Institute of the Physics of the Earth RAS Moscow, Russia

Reshetnyak M.Yu. Compressibility and helicity in geodynamo

э

#### Structure of the Earth and geodynamo



Reshetnyak M.Yu. Compressibility and helicity in geodynamo

- it should exist at least  $3 \cdot 10^9 y$  (age of the Earth is  $4.5 \cdot 10^9 y$ )
- it is non-stationary
- dipole strcuture
- reversals, excursons
- MAC waves

$$\begin{aligned} \frac{\partial \mathbf{B}}{\partial t} &= \nabla \times (\mathbf{V} \times \mathbf{B}) + \mathbf{q}^{-1} \Delta \mathbf{B} \\ & \mathrm{E} \, \mathrm{Pr}^{-1} \left[ \frac{\partial \mathbf{V}}{\partial t} - \mathbf{V} \times (\nabla \times \mathbf{V}) \right] = -\nabla P - \mathbf{1}_{\mathbf{z}} \times \mathbf{V} + \mathrm{Ra} \, T \, \mathbf{1}_{\mathbf{r}} + \mathrm{E} \, \Delta \mathbf{V} \\ & \frac{\partial T}{\partial t} + (\mathbf{V} \cdot \nabla) \left( T + T_0 \right) = \Delta T \end{aligned}$$
(1)

ミ▶ ▲ ミ ト ミ つ へ ()

$$\Pr = \frac{\nu}{\kappa} \sim 10^{-1} \div 10$$
 - Prandtl number,  $E = \frac{\nu}{2\Omega L^2} \sim 10^{-15}$  - Ekman number

$$Ra = \frac{\alpha g_0 \delta TL}{2\Omega \kappa} \sim 10^9 - modified Rayleigh number, \qquad q = \frac{\kappa}{\eta} \sim 10^{-5} - Roberts number$$

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - の々⊙

- self-consistent thermal and compositional dynamo
- Earth-like spectrum
- reversals and excursions
- inner core rotation
- scaling laws
- inverse cascades

э



Figure: Distribution of the  $V_z$ -component of the velocity field with ranges (-675, 701), (-153, 157)

Reshetnyak, Hejda, Nonlin. Proc. Geophys. 2008 Hejda, Reshetnyak, Phys. Earth Planet. Int. 2009.



э

# $\omega$ , T, E<sub>K</sub>, $\chi$ for R1



Reshetnyak M.Yu. Compressibility and helicity in geodynamo

# $\omega,~{\it T},~{\it E_{\it K}},~\chi$ for R2





## $\omega$ , T, E<sub>K</sub>, $\chi$ for R3

Reshetnyak M.Yu. Compressibility and helicity in geodynamo



along the radius for the R1 (1), R2 (2), and R3 (3) regimes

Reshetnyak M.Yu



**Fig. 7.** The profiles of the rotation angular velocity  $\omega(s)$  for the *R*1 (*I*), *R*2 (*2*), and *R*3 (*3*) regimes. Parabolas (*a*) and (*b*) are specified by the  $f = A_i/s^2$  function, where  $A_a = \omega_{R1}(0.01)$ ,  $A_b = \omega_{R3}(0.46)$ , and  $A_c = -\omega_{R1}(0.46) \approx \omega_{R2}(0.46)$ .

Accordin ascending an without rota the generati of thermal boundary lay gether appea lations for th tion is used. originates or flows have t boundary, th heated fluid of plumes. with dark ec facts as well a sible to state type of bou boundary si absence of v the mantle a quantitative the depende  $\frac{\delta\rho}{\rho} \sim 20\% - \text{ we need anelastic model!}$ Boussinesq or anelastic,  $\nabla \cdot \mathbf{V} \neq 0$ ,  $\left(\frac{\partial\rho}{\partial t} = 0\right)$ ?

- 15 years ago: "Can 3D thermal convection generate magnetic field at all?"
- Even for Boussinesq we have quite enough parameters: kinematic viscoity, thermodiffusion, magnetic diffusion, intensity of thermal sources (including various b.c.), daily angular rotaion (which is too rapid for simulations)
- Re ~  $10^8 10^9$ ,  $q = \kappa/\eta = 10^{-5}$ , R<sub>m</sub> ~  $10^3$ .
- Anisotropy:  $l_{||}/l_{\perp}\sim {\rm E}^{-1/3}\sim 10^5$  (at least at the onset of convection)

It is only some of the reasons why Boussinesq approximation lived so long in geodynamo!

▶ ▲ 臣 ▶ ▲ 臣 ▶ ○ 臣 ● � � � �

Kinetic helicity  $\chi = \langle \mathbf{v} \cdot \operatorname{rot} \mathbf{v} \rangle$ , closely related to the  $\alpha$ -effect – the reason why we have a large-scale magnetic field in the body for  $R_m \gg 1$ .

Sources:

• viscous stresses, e.g., no-slip b.c., generation in the Ekman layer of thikness  $\delta_E \sim E^{1/2}$ ?

• rotation+boundaries:  $\frac{dE_K}{dz} \neq 0$  (violation of geostrophic balance)

• rotation+density gradient:  $\chi \sim \frac{(\mathbf{\Omega} \cdot \nabla \rho)}{\rho} I \mathbf{v}, \ \tau \sim I/\mathbf{v}, \ \alpha = -\frac{\tau}{3} \chi \sim -\frac{(\mathbf{\Omega} \cdot \nabla \rho)}{\rho} I^2$ 

### Meridional section of kinetic helicity $\chi$ for $E = 2 \cdot 10^{-4}$ , Pr = 1 for Ra = $1.5 \cdot 10^2$ and Ra = $8 \cdot 10^2$ , $\nabla \cdot \mathbf{V} = 0$ .





# Meridional section of kinetic helicity $\chi$ , $E = 2 \, 10^{-4}$ , Pr = 1, $Ra = 8 \cdot 10^2$ , $\frac{\delta \rho}{\rho} = 0.2$ and $\frac{\delta \rho}{\rho} = 1$ .





#### Estimation of vorticity. Observations. $\nabla \cdot \mathbf{V} = 0$ limit.

Let 
$$I_{\perp} = C_I L$$
 and  $v_{\omega}^{observ} = C_v V_{wd}$   
For  $I_{\perp} \sim E^{1/3} L \sim 10^{-5} L = 10 m (C_I = 10^{-5})$  and  $C_v = 1$  one has exactly

$$\operatorname{rot} \mathbf{v}_{\omega}^{observ} = \frac{\mathcal{C}_{v}}{\mathcal{C}_{I}} \frac{V_{wd}}{L} \sim 3 \cdot 10^{-5} \, \mathcal{C}_{v} \, s^{-1}$$

This scale is too small for geodynamo:  ${
m R_m} \sim 10^{-2}$ .

3

# Effect of $\nabla\,\rho$

$$\begin{split} \Omega &= 7.3 \cdot 10^{-5} \, s^{-1}, \ \nu = 10^{-6} m^2 / s, \\ V_{wd} &= 3 \cdot 10^{-4} \, m/s, \ L = 10^6 \, m, \ \mathcal{C} = \delta \rho / \rho = 0.2. \\ v_{\perp} &\sim \mathcal{C} \, \frac{l_{\perp}}{L} \, v_z \ - \text{horizontal velocity of cell with} \quad v_z \end{split}$$

$$F_c \sim 2 {\cal C} \Omega v_\perp \sim 2 {\cal C} \Omega rac{I_\perp}{L} v_z -$$
 Coriolise force

$$v_{\omega} = \tau F_{c} \sim \frac{l_{\perp}}{v_{\perp}} 2C\Omega \frac{l_{\perp}}{L} v_{z} \sim 2C\Omega l_{\perp}$$

$$\omega \sim \operatorname{rot} \mathbf{v}_{\omega} \sim 2C\Omega \sim 3 \cdot 10^{-5} \, s^{-1} - \text{ for } \nabla \cdot \mathbf{v} \neq 0$$
Here we do not know  $l_{\perp}$  because diffusion does not
ntroduced!

