MHD instabilities of accretion disks and jets

- a new spectral theory of rotating plasmas -

Hans Goedbloed & Rony Kepppens

FOM-Institute for Plasma Physics 'Rijnhuizen' Astronomical Institute, Utrecht University Center for Plasma Astrophysics, K.U. Leuven

[goedbloed@rijnh.nl]

1. Introduction

- Fusion & astrophysical plasmas \Rightarrow Spectral theory of moving plasmas
- Theme of new textbook on Advanced MHD \Rightarrow Stationary plasma flow

2. New spectral theory

- Self-adjoint operators ${\bf G}$ and $U \ \Rightarrow \ {\rm Real} \ {\rm quadratic} \ {\rm forms} \ W \ {\rm and} \ V$
- Energy flow in open system \Rightarrow **Solution path** in the complex ω plane
- Oscillation theorem \Rightarrow **Alternator** monotonic on solution path

3. Applications

- Spectral web for magneto-rotational and other instabilities
- Rotational stabilization of jets

4. Summary

Volume I (2004)

Principles of Magnetohydrodynamics

With Applications to Laboratory and Astrophysical Plasmas

Hans Goedbloed and Stefaan Poedts

CAMBRIDGE

Volume II (2010)

Advanced Magnetohydrodynamics

With Applications to Laboratory and Astrophysical Plasmas

J. P. Goedbloed R. Keppens and S. Poedts

CAMBRIDGE

Conservation laws & Scale independence

• Ideal MHD equations in terms of ρ , v, p, B:

$$\begin{split} \frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{v}) &= 0, & \text{Conservation of mass} \\ \rho \left(\frac{\partial \mathbf{v}}{\partial t} + \mathbf{v} \cdot \nabla \mathbf{v} \right) + \nabla p - \rho \mathbf{g} - \frac{1}{\mu_0} (\nabla \times \mathbf{B}) \times \mathbf{B} &= 0, & \text{momentum} \\ \frac{\partial p}{\partial t} + \mathbf{v} \cdot \nabla p + \gamma p \nabla \cdot \mathbf{v} &= 0, & \text{entropy} \\ \frac{\partial \mathbf{B}}{\partial t} - \nabla \times (\mathbf{v} \times \mathbf{B}) &= 0, & \nabla \cdot \mathbf{B} &= 0. & \text{magnetic flux} \end{split}$$

• They are independent of length scale (l_0) , density (ρ_0) and magnetic field (B_0)

 \Rightarrow describe global dynamics of both laboratory and astrophysical plasmas!

• Of course, to be supplemented with appropriate boundary conditions.

Magnetized plasma

is omni-present and described by magnetohydrodynamics

• Tokamak (Iter)

 \Rightarrow **Nuts and bolts** fix static plasma

• Pinwheel Galaxy M101 (HST)

 \Rightarrow Gravity and rotation fix moving plasma

Fusion plasmas

- Energy principle for static plasmas (1957): standard stability paradigm for more than 50 years \Rightarrow interchanges, kinks, peeling–ballooning, RWM (k \perp B).
- Modification for stationary plasmas (Frieman–Rotenberg, 1960): known, but hardly investigated due to misnomer "non self-adjoint". Shear flow stabilizes some instabilities, but also drives new ones ⇒ Kelvin–Helmholtz (KH).

Astrophysical plasmas

- Energy principle does not apply since there are no static astrophysical plasmas.
- Gravity and differential rotation establish equilibrium, but also drive instabilities (violating tokamak "intuition": $\mathbf{k} \parallel \mathbf{B}$) \Rightarrow Rayleigh–Taylor (RT), Parker, MRI, ...

MHD spectroscopy of stationary plasma flow

- Urgent common theme for laboratory and astrophysical plasma research.
- **Demands fundamentally different approach** from static flow, that can be based on two foundations laid 50 (Frieman–Rotenberg) and 100 (Hilbert) years ago.

 \Rightarrow More than 50 years applied to tokamaks, and even to astrophysical plasmas!

Modified displacement

(for plain waves $e^{i\mathbf{k}\cdot\mathbf{x}}$: = $\mathbf{k}\cdot\mathbf{v}_0$)

Obstacle

- Problems (1) & (2): extensively studied (\sim ten thousands of papers).
- Problem (3): hardly studied (~ hundreds of papers), due to widely held belief that "the problem is non-self-adjoint".
- How come? Energy is conserved, and both G and U are self-adjoint!

Quadratic forms

- Inner product and norm: $\langle \boldsymbol{\xi}, \boldsymbol{\eta} \rangle \equiv \frac{1}{2} \int \rho \, \boldsymbol{\xi}^* \cdot \boldsymbol{\eta} \, dV$, $I[\boldsymbol{\xi}] \equiv \|\boldsymbol{\xi}\|^2 \equiv \langle \boldsymbol{\xi}, \boldsymbol{\xi} \rangle < \infty$.
- Operators are self-adjoint:

$$\langle \boldsymbol{\eta}, \rho^{-1} U \boldsymbol{\xi} \rangle = \langle \rho^{-1} U \boldsymbol{\eta}, \boldsymbol{\xi} \rangle \quad \Rightarrow \quad \textit{real} \quad V \equiv \frac{1}{2} \int \boldsymbol{\xi}^* \cdot U \boldsymbol{\xi} \, dV \quad \text{(Doppler shift)},$$
$$\boldsymbol{\eta}, \rho^{-1} \mathbf{G}(\boldsymbol{\xi}) \rangle = \langle \rho^{-1} \mathbf{G}(\boldsymbol{\eta}), \boldsymbol{\xi} \rangle \quad \Rightarrow \quad \textit{real} \quad W \equiv -\frac{1}{2} \int \boldsymbol{\xi}^* \cdot \mathbf{G}(\boldsymbol{\xi}) \, dV \quad \text{(energy)}.$$

• But eigenvalue problem (3) is nonlinear:

$$\omega^2 - 2\overline{V}\omega - \overline{W} = 0$$
, $\overline{V} \equiv V/I \equiv \langle \rho^{-1}U \rangle$, $\overline{W} \equiv W/I \equiv \langle -\rho^{-1}\mathbf{G} \rangle$.

New spectral theory: Solution paths – monotonicity?

• 'Solutions' of the quadratic, with $\omega \equiv \sigma + i\nu$:

$$\begin{cases} \sigma = \overline{V} \pm \sqrt{\overline{W} + \overline{V}^2}, \quad \nu = 0 \\ \sigma = \overline{V}, \quad \nu = \pm \sqrt{-\overline{W} - \overline{V}^2} \end{cases} \text{ (instabilities)}$$

- This expression determines stability and yields picture of where actual eigenvalues are located \Rightarrow
- Would also yield a computational procedure if we knew:
 How to compute solution averages before eigenvalue (EV) is obtained?
- Recall static ('linear') eigenvalue problem:

(1) F self-adjoint $\Rightarrow \omega^2$ real \Rightarrow EVs ω lie on the real and imaginary axes.

- (2) EVs monotonic with number of zeros of ξ (Goedbloed–Sakanaka, 1974).
- In stationary problem, Doppler–Coriolis shift \overline{V} moves EVs off the imaginary axis:
 - \Rightarrow (1) Solution path \equiv unknown curve on which the EVs are located?
 - \Rightarrow (2) Monotonicity property of EVs on the solution path?

ROC

Arbitrary $\rho(r)$, p(r), $v_{\theta}(r)$, $v_z(r)$, $B_{\theta}(r)$, $B_z(r)$, but satisfying the equilibrium condition, $(p + \frac{1}{2}B^2)' = (\rho v_{\theta}^2 - B_{\theta}^2)/r - \rho \Phi'_{\rm gr}.$

Apply to two generic astrohysical problems:

(1) Accretion disk model, thin slice Δz :

annulus $\Delta r (M_* \text{ at } r = 0), \ k \Delta z \gg 1;$

(2) Rotating jet of finite length *L*:

plasma + 'vacuum', $\Phi_{\rm gr}=0\,,\;k=n\pi/L.$

Reduction of Frieman–Rotenberg equation, with $\chi \equiv r\xi_r = \hat{\chi}(r)e^{i(m\theta+kz-\omega t)}$:

$$\frac{d}{dr} \left[\frac{N}{D} \frac{d\chi}{dr} \right] + \left[A + \frac{B}{D} + \left\{ \frac{C}{D} \right\}' \right] \chi = 0, \text{ or } \boxed{N \frac{d}{dr} \begin{pmatrix} \chi \\ \Pi \end{pmatrix}} + \begin{pmatrix} C & D \\ E & -C \end{pmatrix} \begin{pmatrix} \chi \\ \Pi \end{pmatrix} = 0,$$

where $N = N(r; \tilde{\omega})$, with $\tilde{\omega} \equiv \omega - \mathbf{k}_0 \cdot \mathbf{v}$, and Π is the total pressure perturbation.

Spectral properties

For plane slab: ODE similar to static case (Goedbloed, 1971), but ω is replaced by the **Doppler-shifted frequency** in co-moving layers:

$$\omega \rightarrow \widetilde{\omega}(x) \equiv \omega - \Omega_0(x), \quad \Omega_0 \equiv \mathbf{k}_0 \cdot \mathbf{v}(x).$$

For cylinder: Hain–Lüst eq. (1958), generalized for rotation by Bondeson *et al.* (1987), and for gravitating thin disk with MRI by Keppens *et al.* (2002).

 $\Omega_0 = m v_{\theta}/r + k v_z$, and Coriolis terms $\sim v_{\theta}/r$!!

Previous results:

- HD \Rightarrow flow continuum $\{\Omega_0(x)\}$, discovered by Case (1960).
- MHD \Rightarrow contrary to prolonged belief, **no flow continuum!** (Goedbloed *et al.*, 2004).
- Instead, three static MHD continua split into **six Doppler-shifted continua**:

 $\Omega_A^{\pm} \equiv \Omega_0(x) \pm \omega_A(x) | \text{(Alfvén)}, \quad | \Omega_S^{\pm} \equiv \Omega_0(x) \pm \omega_S(x) | \text{(slow)}, \quad | \Omega_F^{\pm} \equiv \pm \infty | \text{(fast)}.$

Flow continuum is obtained in the limit $\mathbf{B} \rightarrow 0$.

\Rightarrow How is the full (complex) spectrum connected to this (real) structure?

Consider open system

- (a) Spectral differential equation can be solved accurately for arbitrary complex ω . \Rightarrow No problem!
- (b) Actual problem is searching in the complex ω -plane for the eigenvalues.
 - \Rightarrow Temporarily, drop that part by removing one of the boundaries!

 To get harmonic time dependence exp(-iωt), energy has to be injected or extracted at x₂. This is represented by imaginary part of energy, which we demand to vanish:

 $W_2 \equiv \text{Im}(W) = 0 \Rightarrow$ solution path!

- Required expression follows directly from proof of self-adjointness of the force operator G.
- Eigenvalues have to lie on this path.

Complex omega-plane

Problem solvable for arbitrary complex ω , but energy is complex: $W = W_1 + iW_2$.

- \Rightarrow Three BVPs:
- I Eigenvalues (closed), wall on the plasma: $W_2 = 0$, $\xi(x_2) = 0$; II – Solution path (closed), \leftarrow

e.g. variable vacuum layer:

$$W_2 = 0, \quad \xi(x_v) = 0;$$

III – Arbitrary complex ω (open), external excitation: $W_2 \neq 0$.

Solution of the quadratic $\omega^2 - 2\overline{V}\omega - \overline{W} = 0 \Rightarrow \sigma = \overline{V}$, iff $W_2 = 0$

 \Rightarrow average Doppler shifted real part of frequency vanishes iff system is closed.

Solution path

• Pre-self-adjointness relation for G, with ξ and η not yet satisfying right BC:

$$\int \left[\boldsymbol{\eta}^* \cdot \mathbf{G}(\boldsymbol{\xi}) - \boldsymbol{\xi} \cdot \mathbf{G}(\boldsymbol{\eta}^*) \right] dV \stackrel{(\text{Gauss})}{=} - \int \left[\boldsymbol{\eta}^* \Pi(\boldsymbol{\xi}) - \boldsymbol{\xi} \Pi(\boldsymbol{\eta}^*) \right] dS \quad \left(= 0 \text{ if } \mathsf{BC} \right).$$

Skip last step! Choosing $\eta \equiv \boldsymbol{\xi}^*$ yields easily computable expression for W_2 :

$$W_{2} = \frac{1}{4} \operatorname{i} \int \left[\boldsymbol{\xi}^{*} \cdot \mathbf{G}(\boldsymbol{\xi}) - \boldsymbol{\xi} \cdot \mathbf{G}(\boldsymbol{\xi}^{*}) \right] dV = \frac{1}{2} \int \left(\xi_{1} \Pi_{2} - \xi_{2} \Pi_{1} \right) dS$$

$$\Rightarrow W_{2}[\boldsymbol{\xi}(\mathbf{r}; \omega)] = 0 \quad \Rightarrow \text{ path } \mathcal{P}_{u} \text{ of unstable solutions.}$$

• Equivalently, self-adjointness of U yields mapping of ω -plane onto itself,

$$Q(\omega) \equiv \omega - \overline{V}[\boldsymbol{\xi}(\mathbf{r};\omega)] \equiv \omega - \frac{\int \boldsymbol{\xi}^* \cdot U\boldsymbol{\xi} \, dV}{\int \rho |\boldsymbol{\xi}|^2 \, dV},$$

which provides both solution paths:

<

$$\begin{cases} \operatorname{Im} Q \equiv \nu = 0 & \Rightarrow \text{ path } \mathcal{P}_{s} \text{ of stable solutions,} \\ \operatorname{Re} Q \equiv \widetilde{\sigma} \equiv \sigma - \overline{V} [\boldsymbol{\xi}(\mathbf{r}; \omega)] = 0 & \Rightarrow \text{ path } \mathcal{P}_{u} \text{ of unstable solutions} \end{cases}$$

Oscillation theorems and alternator

- Once solution path is determined, EVs on it are found by imposing the missing BC. But how does one move from one EV to the next?
- Oscillation theorem \mathcal{R} for stable waves: Counting nodes of the real function ξ yields Sturm–Liouville monotonicity (as static case: Goedbloed–Sakanaka 1974).
- Instabilities: On the solution path, the alternating ratio ${f R}\equiv {\pmb\xi}/{\Pi}$ is real:

$$W_{2} = \frac{1}{2} \left[\xi_{1} \Pi_{2} - \xi_{2} \Pi_{1} \right]_{x_{2}} = 0 \quad \Rightarrow \quad R \equiv \frac{\xi(x_{2})}{\Pi(x_{2})} = \frac{\xi_{1}(x_{2})}{\Pi_{1}(x_{2})} = \frac{\xi_{2}(x_{2})}{\Pi_{2}(x_{2})} \\ R_{1} = 0 \quad \Rightarrow \quad \text{Eigenvalues.}$$

- \Rightarrow Oscillation theorem C for instabilities [proof exploits quadratic forms]: The alternator $\mathbf{R} \equiv \boldsymbol{\xi}_e / \boldsymbol{\Pi}_e$ is real and monotonic along the solution path in between the zeros of $\boldsymbol{\Pi}_e$ separating the eigenvalues.
- Now, we are in business!

⇒ Infinite sequence RT modes on ever smaller closed loops, one isolated KH mode.

Full spectrum (LEDA–FLOW)

[Keppens, Casse, Goedbloed, ApJL (2002)]

Standard equilibrium:

Spectral web (ROC)

Equilibrium: $\epsilon = 0.1, \quad \beta = 100,$ $\mu = 1;$ Mode numbers: $m = 0, \quad k = 50.$

Solution path is not along imaginary axis:

 $\sigma = \overline{V} \neq 0$

Alternator loops give genuine $(\xi_1 = \xi_2 = 0)$ & false $(\Pi_1 = \Pi_2 = 0)$ eigenvalues.

Fastest growing mode

One of the cluster modes

Spectral web (ROC)

Equilibrium: $\epsilon = 0.1, \quad \beta = 100, \quad \mu = 1;$ Mode numbers: $m = 10, \quad k = 50$ $\downarrow \downarrow$ Overlapping continua: $\Omega^+_{A,S}$ and $\Omega^-_{A,S}$.

Both, solution path and alternator form loops!

Fastest growing mode

Spectral web (zoom)

Loops of solution path and alternator continue indefinitely towards the edges of forward and backward Alfvén/slow continua $\Omega_{A,S}^+$ and $\Omega_{A,S}^+$.

One of the cluster modes

Equilibrium (ROC)

 $\epsilon \equiv 2\pi a/L = 0.1, \ q_0 = 0.1, \ q_1 = 0.2$

K-S limit: $q_1 > 1$ (torus), $q_1 > 2$ (jet)

ROC74-672-1

$$= n\pi/L, \ n = 1, \ m = -1$$

Just one violently unstable external kink mode!

External kink mode

 $\sigma = -5.000 \times 10^{-2}, \ \nu = 0.1334$

Equilibrium (ROC)

Spectral web (ROC)

Approaching $v_1 = 0.15$ $\approx \frac{1}{3}v_{A,\theta}$ where external kink mode is completely stabilized by rotation.

External kink mode

Conclusions

New spectral theory [Goedbloed, PoP (2009), PPCF (2011)]

• Construction of full complex MHD spectrum of moving plasmas based on self-adjointness of force operator G and Doppler–Coriolis operator U.

Method

• Closed system is opened up, converting the original EVP into one-sided BVP. Solvable for all complex ω , which makes the energy \overline{W} complex, whereas the Doppler–Coriolis shift \overline{V} remains real. $\Rightarrow W_2 = 0$ provides the solution path, on which the alternator is real and monotonic and $R_1 = 0$ provides the EVs.

Applications

- Spectral web of MRIs and new class of non-axisymmetric modes.
- External kink modes of Alfvénic jets stabilized by rigid rotation.

