MHD instabilities of accretion disks and jets
– a new spectral theory of rotating plasmas –

Hans Goedbloed & Rony Keppens

FOM-Institute for Plasma Physics ‘Rijnhuizen’
Astronomical Institute, Utrecht University
Center for Plasma Astrophysics, K.U. Leuven

[goedbloed@rijnh.nl]
1. Introduction
 • Fusion & astrophysical plasmas ⇒ Spectral theory of moving plasmas
 • Theme of new textbook on Advanced MHD ⇒ Stationary plasma flow

2. New spectral theory
 • Self-adjoint operators G and U ⇒ Real quadratic forms W and V
 • Energy flow in open system ⇒ Solution path in the complex ω plane
 • Oscillation theorem ⇒ Alternator monotonic on solution path

3. Applications
 • Spectral web for magneto-rotational and other instabilities
 • Rotational stabilization of jets

4. Summary
Two textbooks on Magnetohydrodynamics

Principles of Magnetohydrodynamics
With Applications to Laboratory and Astrophysical Plasmas

Hans Goedbloed
and Stefaan Poedts

Volume II (2010)

Advanced Magnetohydrodynamics
With Applications to Laboratory and Astrophysical Plasmas

J. P. Goedbloed
R. Keppens
and S. Poedts
1. Introduction: The ideal MHD model (from Vol. 1)

Conservation laws & Scale independence

- **Ideal MHD equations** in terms of \(\rho, v, p, B \):

 \[
 \frac{\partial \rho}{\partial t} + \nabla \cdot (\rho v) = 0, \quad \text{Conservation of mass}
 \]

 \[
 \rho \left(\frac{\partial v}{\partial t} + v \cdot \nabla v \right) + \nabla p - \rho g - \frac{1}{\mu_0} (\nabla \times B) \times B = 0, \quad \text{momentum}
 \]

 \[
 \frac{\partial p}{\partial t} + v \cdot \nabla p + \gamma p \nabla \cdot v = 0, \quad \text{entropy}
 \]

 \[
 \frac{\partial B}{\partial t} - \nabla \times (v \times B) = 0, \quad \nabla \cdot B = 0. \quad \text{magnetic flux!}
 \]

- **They are independent of length scale** \((l_0) \), **density** \((\rho_0) \) and **magnetic field** \((B_0) \)

 \(\Rightarrow \) describe global dynamics of both laboratory and astrophysical plasmas!

- **Of course, to be supplemented with appropriate boundary conditions.**
Magnetized plasma is omni-present and described by magnetohydrodynamics.

- Tokamak (Iter)
- Pinwheel Galaxy M101 (HST)

⇒ **Nuts and bolts** fix static plasma
⇒ **Gravity and rotation** fix moving plasma
Fusion plasmas

- **Energy principle for static plasmas (1957):** standard stability paradigm for more than 50 years ⇒ interchanges, kinks, peeling–ballooning, RWM \((k \perp B)\).

- **Modification for stationary plasmas (Frieman–Rotenberg, 1960):** known, but hardly investigated due to misnomer “non self-adjoint”. Shear flow stabilizes some instabilities, but also drives new ones ⇒ Kelvin–Helmholtz (KH).

Astrophysical plasmas

- **Energy principle does not apply** since there are no static astrophysical plasmas.

- **Gravity and differential rotation establish equilibrium**, but also drive instabilities (violating tokamak “intuition”: \(k \parallel B\)) ⇒ Rayleigh–Taylor (RT), Parker, MRI, . . .

MHD spectroscopy of stationary plasma flow

- **Urgent common theme** for laboratory and astrophysical plasma research.

- **Demands fundamentally different approach** from static flow, that can be based on two foundations laid 50 (Frieman–Rotenberg) and 100 (Hilbert) years ago.
2. New spectral theory: Waves and instabilities of static plasmas

Displacement vector

⇒ Solves 3 of the 4 PDEs, so that only ‘Newton’s law’ remains:

\[F(\xi) = \rho \frac{\partial^2 \xi}{\partial t^2} = -\rho \omega^2 \xi \]
(for normal modes \(e^{i\omega t} \))

⇒ Energy:

\[W \equiv -\frac{1}{2} \int \xi^* \cdot F(\xi) \, dV \]
Hain *et al.* (1957), Bernstein *et al.* (1958)

⇒ More than 50 years applied to tokamaks, and even to astrophysical plasmas!
Modified displacement

Since astrophysical (and also present tokamak) plasmas are not static at all (even supersonic!)
⇒ Need MHD spectroscopy for moving plasmas.

⇒ Again solves 3 of the 4 PDEs so that ‘Newtons law’ remains:

\[
G(\xi) - 2\rho \mathbf{v} \cdot \nabla \frac{\partial \xi}{\partial t} - \rho \frac{\partial^2 \xi}{\partial t^2} = G(\xi) - 2\omega U \xi + \rho \omega^2 \xi = 0
\]

Frieman–Rotenberg (1960)

\(G \): generalized force operator, \(U \equiv -i\rho \mathbf{v} \cdot \nabla \): Doppler–Coriolis shift operator

(for plain waves \(e^{i\mathbf{k} \cdot \mathbf{x}} : = \mathbf{k} \cdot \mathbf{v}_0 \))
New spectral theory: Three fundamental problems

(1) \[H\Psi = i\hbar \frac{\partial \Psi}{\partial t} = E\Psi \] (1926)

Quantum mechanics (atoms, molecules, condensed/living matter . . . everything?):
Hamiltonian \(H \Rightarrow \) real EVs \(E \rightarrow \) stable solutions!

(2) \[F(\xi) = \rho \frac{\partial^2 \xi}{\partial t^2} = -\rho \omega^2 \xi \] (1957)

MHD of static plasmas (fusion only):
Force operator \(F \Rightarrow \) real EVs \(\omega^2 \rightarrow \) \(\begin{cases} W > 0 \ (\omega \text{ real}) & \rightarrow \text{stable waves} \\ W < 0 \ (\omega \text{ imag.}) & \rightarrow \text{instabilities} \end{cases} \)

(3) \[G(\xi) - 2\rho v \cdot \nabla \frac{\partial \xi}{\partial t} - \rho \frac{\partial^2 \xi}{\partial t^2} = G(\xi) - 2\omega U \xi + \rho \omega^2 \xi = 0 \]

MHD of moving plasmas (fusion/astrophysical . . . cosmic):
Generalized force \(G \) and Doppler–Coriolis \(U \equiv -i\rho v \cdot \nabla \\
\Rightarrow EVs \begin{cases} \omega \text{ real} & \rightarrow \text{stable (undamped) waves} \\ \omega \text{ complex} & \rightarrow \text{instabilities/damped waves} \end{cases} \)

How to compute them?
Obstacle

- Problems (1) & (2): extensively studied (∼ ten thousands of papers).
- Problem (3): hardly studied (∼ hundreds of papers), due to widely held belief that “the problem is non-self-adjoint”.
- How come? Energy is conserved, and both G and U are self-adjoint!

Quadratic forms

- Inner product and norm: $\langle \xi, \eta \rangle \equiv \frac{1}{2} \int \rho \xi^* \cdot \eta \, dV$, $I[\xi] \equiv \|\xi\|^2 \equiv \langle \xi, \xi \rangle < \infty$.
- Operators are self-adjoint:

 $\langle \eta, \rho^{-1} U \xi \rangle = \langle \rho^{-1} U \eta, \xi \rangle \quad \Rightarrow \quad \text{real} \quad V \equiv \frac{1}{2} \int \xi^* \cdot U \xi \, dV$ (Doppler shift),

 $\langle \eta, \rho^{-1} G(\xi) \rangle = \langle \rho^{-1} G(\eta), \xi \rangle \quad \Rightarrow \quad \text{real} \quad W \equiv -\frac{1}{2} \int \xi^* \cdot G(\xi) \, dV$ (energy).

- But eigenvalue problem (3) is nonlinear:

 $\omega^2 - 2\overline{V} \omega - \overline{W} = 0$, \hspace{1cm} $\overline{V} \equiv V/I \equiv \langle \rho^{-1} U \rangle$, \hspace{1cm} $\overline{W} \equiv W/I \equiv \langle -\rho^{-1} G \rangle$.
New spectral theory: Solution paths – monotonicity?

- ‘Solutions’ of the quadratic, with \(\omega \equiv \sigma + i\nu \):
 \[
 \begin{cases}
 \sigma = \overline{V} \pm \sqrt{W + V^2}, \quad \nu = 0 & \text{(stable waves)} \\
 \sigma = \overline{V}, \quad \nu = \pm \sqrt{-W - V^2} & \text{(instabilities)}
 \end{cases}
 \]

 This expression determines stability and yields a picture of where actual eigenvalues are located ⇒

- Would also yield a computational procedure if we knew:
 How to compute solution averages before eigenvalue (EV) is obtained?

- Recall static (‘linear’) eigenvalue problem:
 1. \(F \) self-adjoint ⇒ \(\omega^2 \) real ⇒ EVs \(\omega \) lie on the real and imaginary axes.
 2. EVs monotonic with number of zeros of \(\xi \) (Goedbloed–Sakanaka, 1974).

- In stationary problem, Doppler–Coriolis shift \(\overline{V} \) moves EVs off the imaginary axis:
 ⇒ (1) Solution path \(\equiv \) unknown curve on which the EVs are located?
 ⇒ (2) Monotonicity property of EVs on the solution path?
New spectral theory: Generic spectral problems

Arbitrary \(\rho(r), p(r), v_\theta(r), v_z(r), B_\theta(r), B_z(r) \),
but satisfying the equilibrium condition,
\[
(p + \frac{1}{2}B^2)' = (\rho v_\theta^2 - B_\theta^2)/r - \rho \Phi'_\text{gr}.
\]

Apply to two generic astrophysical problems:

1. **Accretion disk model, thin slice \(\Delta z \):**
 annulus \(\Delta r \) \((M_* \text{ at } r = 0), k \Delta z \gg 1; \)

2. **Rotating jet of finite length \(L \):**
 plasma + ‘vacuum’, \(\Phi_\text{gr} = 0, k = n\pi/L \).

Reduction of Frieman–Rotenberg equation, with \(\chi \equiv r \xi_r = \hat{\chi}(r)e^{i(m\theta + kz - \omega t)} \):

\[
\frac{d}{dr} \left[\frac{N}{D} \frac{d\chi}{dr} \right] + \left[A + \frac{B}{D} + \left\{ \frac{C}{D} \right\}' \right] \chi = 0, \\
\text{or} \\
N \frac{d}{dr} \begin{pmatrix} \chi \\ \Pi \end{pmatrix} + \begin{pmatrix} C & D \\ E & -C \end{pmatrix} \begin{pmatrix} \chi \\ \Pi \end{pmatrix} = 0,
\]

where \(N = N(r; \tilde{\omega}) \), with \(\tilde{\omega} \equiv \omega - k_0 \cdot v \), and \(\Pi \) is the total pressure perturbation.

BCs:

\[
\begin{align*}
\chi(r_1) &= 0 \quad \text{(left)} \\
\chi(r_2) &= 0 \quad \text{(right)}
\end{align*}
\]

\(\Rightarrow \) **Eigenvalue problem.**
Spectral properties

For plane slab: ODE similar to static case (Goedbloed, 1971), but ω is replaced by the **Doppler-shifted frequency** in co-moving layers:

$$\omega \rightarrow \tilde{\omega}(x) \equiv \omega - \Omega_0(x), \quad \Omega_0 \equiv k_0 \cdot v(x).$$

For cylinder: Hain–Lüst eq. (1958), generalized for rotation by Bondeson et al. (1987), and for gravitating thin disk with MRI by Keppens et al. (2002).

$$\Omega_0 = m v_\theta / r + k v_z,$$

and Coriolis terms $\sim v_\theta / r$!!

Previous results:

- **HD** ⇒ **flow continuum** $\{\Omega_0(x)\}$, discovered by Case (1960).
- **MHD** ⇒ contrary to prolonged belief, **no flow continuum**! (Goedbloed *et al.*, 2004).
- Instead, three static MHD continua split into **six Doppler-shifted continua**:

$$\Omega_A^\pm \equiv \Omega_0(x) \pm \omega_A(x) \quad \text{(Alfvén)}, \quad \Omega_S^\pm \equiv \Omega_0(x) \pm \omega_S(x) \quad \text{(slow)}, \quad \Omega_F^\pm \equiv \pm \infty \quad \text{(fast)}.$$

Flow continuum is obtained in the limit $B \rightarrow 0$.

⇒ How is the full (complex) spectrum connected to this (real) structure?
New spectral theory: Real EVs monotonic about the continua

Continuous spectra in HD and MHD

(Goedbloed, Beliën, van der Holst, Keppens, 2004)

HD:

(a) backward
p modes

(b) backward / forward

(g modes)

forward
p modes

MHD:

(b) backward

fast
Alfvén
slow

forward

slow
Alfvén
fast

\(\Omega^-_p \)

\(\Omega^0_p \)

\(\Omega^+_p \)

\(\Omega^+_p 0 \)

\(\Omega^-_p 0 \)

\(\Omega^-_p \)

\(\Omega^0_p \)

\(\Omega^+_p \)

\(\Omega^-_p \)

\(\Omega^0_p \)

\(\Omega^+_p \)

\(\Omega^-_p \)

\(\Omega^0_p \)

\(\Omega^+_p \)

\(\Omega^-_p \)

\(\Omega^0_p \)

\(\Omega^+_p \)

\(\Omega^-_p \)

\(\Omega^0_p \)

\(\Omega^+_p \)
Consider open system

(a) **Spectral differential equation** can be solved accurately for arbitrary complex ω.
 \Rightarrow No problem!

(b) Actual problem is searching in the complex ω-plane for the eigenvalues.
 \Rightarrow Temporarily, drop that part by removing one of the boundaries!

Keep: $\xi(x_1) = 0$ (left BC)
Drop: $\xi(x_2) = 0$ (right BC).

- To get harmonic time dependence $\exp(-i\omega t)$, energy has to be injected or extracted at x_2.
 This is represented by imaginary part of energy, which we demand to vanish:

 $W_2 \equiv \text{Im}(W) = 0 \Rightarrow$ solution path!

- Required expression follows directly from proof of **self-adjointness of the force operator** G.

- Eigenvalues have to lie on this path.
Problem solvable for arbitrary complex ω, but energy is complex: $W = W_1 + iW_2$.

\Rightarrow Three BVPs:

I – Eigenvalues (closed),
wall on the plasma:
$W_2 = 0, \quad \xi(x_2) = 0$;

II – Solution path (closed), \Leftarrow
e.g. variable vacuum layer:
$W_2 = 0, \quad \xi(x_v) = 0$;

III – Arbitrary complex ω (open),
external excitation:
$W_2 \neq 0$.

Solution of the quadratic $\omega^2 - 2V\omega - \bar{W} = 0 \Rightarrow \sigma = \bar{V}$, iff $W_2 = 0$

\Rightarrow average Doppler shifted real part of frequency vanishes iff system is closed.
Solution path

• **Pre-self-adjointness relation for** \(G \), with \(\xi \) and \(\eta \) not yet satisfying right BC:

\[
\int \left[\eta^* \cdot G(\xi) - \xi \cdot G(\eta^*) \right] dV \overset{\text{(Gauss)}}{=} - \int \left[\eta^* \Pi(\xi) - \xi \Pi(\eta^*) \right] dS \ (= 0 \text{ if BC}).
\]

Skip last step! Choosing \(\eta \equiv \xi^* \) yields easily computable expression for \(W_2 \):

\[
W_2 = \frac{1}{4} i \int \left[\xi^* \cdot G(\xi) - \xi \cdot G(\xi^*) \right] dV = \frac{1}{2} \int (\xi_1 \Pi_2 - \xi_2 \Pi_1) dS
\]

\[
\Rightarrow W_2[\xi(r; \omega)] = 0 \Rightarrow \text{path } \mathcal{P}_u \text{ of unstable solutions}.
\]

• Equivalently, **self-adjointness of** \(U \) **yields mapping of** \(\omega \)-plane onto itself,

\[
Q(\omega) \equiv \omega - \overline{V}[\xi(r; \omega)] \equiv \omega - \frac{\int \xi^* \cdot U \xi dV}{\int \rho |\xi|^2 dV},
\]

which provides both solution paths:

\[
\begin{cases}
\text{Im } Q \equiv \nu = 0 \\
\text{Re } Q \equiv \overline{\sigma} \equiv \sigma - \overline{V}[\xi(r; \omega)] = 0
\end{cases} \Rightarrow \text{path } \mathcal{P}_s \text{ of stable solutions}, \quad \text{path } \mathcal{P}_u \text{ of unstable solutions}.
\]
Oscillation theorems and alternator

- Once solution path is determined, EVs on it are found by imposing the missing BC. But how does one move from one EV to the next?

- **Oscillation theorem \(\mathcal{R} \) for stable waves:** Counting nodes of the real function \(\xi \) yields Sturm–Liouville monotonicity (as static case: Goedbloed–Sakanaka 1974).

- **Instabilities:** On the solution path, the alternating ratio \(\mathcal{R} \equiv \frac{\xi}{\Pi} \) is real:

\[
W_2 = \frac{1}{2} [\xi_1 \Pi_2 - \xi_2 \Pi_1]_{x_2} = 0 \quad \Rightarrow \quad R \equiv \frac{\xi(x_2)}{\Pi(x_2)} = \frac{\xi_1(x_2)}{\Pi_1(x_2)} = \frac{\xi_2(x_2)}{\Pi_2(x_2)},
\]

\[
R_1 = 0 \quad \Rightarrow \quad \text{Eigenvalues}.
\]

- \(\Rightarrow \) **Oscillation theorem \(\mathcal{C} \) for instabilities** [proof exploits quadratic forms]:

The alternator \(\mathcal{R} \equiv \frac{\xi_e}{\Pi_e} \) is real and monotonic along the solution path in between the zeros of \(\Pi_e \) separating the eigenvalues.

- **Now, we are in business!**
3. Applications: (a) Rayleigh–Taylor & Kelvin–Helmholtz instabilities

Solution path

Plane gravitating slab

ρ: linear profile,

\mathbf{B}: sheared,

\mathbf{v}: sinusoidal profile.

\Rightarrow Infinite sequence RT modes on ever smaller closed loops, one isolated KH mode.
Full spectrum (LEDA–FLOW)

Standard equilibrium:

\[\rho = r^{-3/2}, \quad v_\theta \sim r^{-1/2}; \]

Parameters:

\[\epsilon \equiv \sqrt{p} = 0.1, \]
\[\beta \equiv 2p/B^2 = 2000, \]
\[\mu \equiv B_\theta/B_z = 1; \]

Mode numbers:

\[m = 0, \quad k = 50 \]
Applications: MRIs

Spectral web (ROC)

Equilibrium:
\[\epsilon = 0.1, \quad \beta = 100, \quad \mu = 1; \]
Mode numbers:
\[m = 0, \quad k = 50. \]

Solution path is not along imaginary axis:
\[\sigma = \overline{V} \neq 0 \]

Alternator loops give genuine \((\xi_1 = \xi_2 = 0)\)
& false \((\Pi_1 = \Pi_2 = 0)\) eigenvalues.
Applications: MRI, eigenfunction nr. 1

Fastest growing mode

\[\sigma = -2.031 \times 10^{-3}, \quad \nu = 0.6277 \]
Applications: MRI, eigenfunction nr.10

One of the cluster modes

\[\sigma = -1.287 \times 10^{-3}, \, \nu = 0.3861 \]
Applications: (c) Non-axisymmetric modes (NAM)

Spectral web (ROC)

Contours of solution path and alternator

Equilibrium:
\[\epsilon = 0.1, \quad \beta = 100, \quad \mu = 1; \]

Mode numbers:
\[m = 10, \quad k = 50 \]

Overlapping continua:
\[\Omega_{A,S}^+, \Omega_{A,S}^- \]

Both, solution path and alternator form loops!
Applications: NAM, eigenfunction nr. 1

Fastest growing mode

\[\sigma = -8.860 \times 10^{-3}, \, \nu = 0.3753 \]
Loops of solution path and alternator continue indefinitely towards the edges of forward and backward Alfvén/slow continua \(\Omega_{A,S}^+ \) and \(\Omega_{A,S}^+ \).
One of the cluster modes

\[\sigma = -9.101, \ \nu = 0.06565 \]
Applications: (d) Alfvénic jet (far beyond Kruskal–Shafranov limit!)

Equilibrium (ROC)

\[\epsilon \equiv \frac{2\pi a}{L} = 0.1, \quad q_0 = 0.1, \quad q_1 = 0.2 \]

K–S limit: \(q_1 > 1 \) (torus), \(q_1 > 2 \) (jet)
Applications: Alfvénic jet

Spectral web (ROC)

$\kappa = n\pi/L$, $n = 1$, $m = -1$

Just one violently unstable external kink mode!
Applications: Alfvénic jet

External kink mode

\[\sigma = -5.000 \times 10^{-2}, \nu = 0.1334 \]

Plasma:
\[(\chi, \Pi)^T \]

‘Vacuum’:
\[(\psi, \Lambda)^T. \]
Applications: Rotating Alfvénic jet

Equilibrium (ROC)

Adding rigid rotation \((v_1 = 0.14) \)
Approaching $v_1 = 0.15 \approx \frac{1}{3}v_{A,\theta}$ where external kink mode is completely stabilized by rotation.
Applications: Rotating Alfvénic jet

External kink mode

\[\sigma = -4.989 \times 10^{-2}, \ \nu = 4.354 \times 10^{-2} \]
(nearly stable)

\(\sigma \) and \(\nu \) are constants in the context of magnetic configurations, indicating the stability of the kink mode.
Conclusions

New spectral theory
[Goedbloed, PoP (2009), PPCF (2011)]

- Construction of full complex MHD spectrum of moving plasmas based on self-adjointness of force operator G and Doppler–Coriolis operator U.

Method

- Closed system is opened up, converting the original EVP into one-sided BVP. Solvable for all complex ω, which makes the energy \overline{W} complex, whereas the Doppler–Coriolis shift \overline{V} remains real. ⇒ $W^2 = 0$ provides the solution path, on which the alternator is real and monotonic and $R_1 = 0$ provides the EVs.

Applications

- Spectral web of MRIs and new class of non-axisymmetric modes.
- External kink modes of Alfvénic jets stabilized by rigid rotation.