Cosmic Ray transport and acceleration in turbulent magnetic field Huirong Yan

Kavli Institute of Astronomy & Astrophysics, Peking U

thanks to: A. Lazarian (UW-Madison)

Importance

Propagation:

liffuse Galactic 511 keV radiation

Acceleration:

Gamma ray burst Solar Flare

Stochastic Acceleration:

Problems of CR research

Perpendicular CR transport

Turbulence models

Inadequate description of the interactions between MHD perturbations and particles.

CROSS FIELD TRANSPORT

Fig. 2. Heavy ion C, O, and Fe fluxes measured on both ACE (blue) and Ulysses (red) in the July 2000 event. from Maclennan et al. (2001)

CROSS FIELD TRANSPORT

Fig. 2. Heavy ion C, O, and Fe fluxes measured on both ACE (blue) and Ulysses (red) in the July 2000 event. from Maclennan et al. (2001)

CROSS FIELD TRANSPORT

Fig. 2. Heavy ion C, O, and Fe fluxes measured on both ACE (blue) and Ulysses (red) in the July 2000 event. from Maclennan et al. (2001)

Cross field transport

Dominated by field line wandering.

Intensive studies:

 B^{0}

e.g., Jokipii & Parker 1969, Forman 74, Urch 77, Bieber & Matthaeus 97, Giacolone & Jokipii 99, Matthaeus et al 03, Shalchi et al. 04

Test particle simulations with realistic turbulence

Particle trajectory
Magnetic field

Cross field transport

Dominated by field line wandering.

Intensive studies:

 B^{0}

e.g., Jokipii & Parker 1969, Forman 74, Urch 77, Bieber & Matthaeus 97, Giacolone & Jokipii 99, Matthaeus et al 03, Shalchi et al. 04

Test particle simulations with realistic turbulence

Particle trajectory
Magnetic field

What if we use the tested model of turbulence?

Is there subdiffusion $(\Delta x^2 \otimes \Delta t^a, a < 1)$?

Subdiffusion (or compound diffusion, Getmantsev 62, Lingenfelter et al 71, Fisk et al. 73, Webb et al 06) was observed in near-slab turbulence, which can occur on small scales due to instability.

• What about large scale turbulence? Example: diffusion of a dye on a rope a) A rope allowing retracing, $\Delta t = I_{rope}^2 / D$ b) A rope limiting retracing within pieces I_{rope} / n , $\Delta t = I_{rope}^2 / nD$

Diffusion is slow only if particles retrace their trajectories.

Subdiffusion is not typical!

In turbulence, particles' trajectory become independent when field lines are separated by the smallest eddy size , l_{⊥,min}.

The separation between field lines for $r_0 < l_{\perp,min}$ has a Lyapunov type growth, provides Rechester-Rosembluth distance, $L_{RR} = |_{||,min} \log(l_{\perp,min} / r_L)$ (Chandran &

Cowley 1998, Narayan & Medvedev 01, Lazarian 06) Subdiffusion only occurs below 11, min

Beyond $l_{\perp,min}$, normal diffusion applies for

large scale perpendicular transport (Yan & Lazarian 2008).

Particle trajectory
 Magnetic field

.min

Perpendicular diffusion (λ_{\parallel} < L)

 $M_A < 1$, on large scale CRs need to diffuse L in order to cover a distance LM_A^2 in \perp direction, thus $\Delta t = (R/LM_A^2)^2$ $L^2/D_{\parallel} \longrightarrow D_{\perp} = R^2 / \Delta t = D_{\parallel} M_A^4$

M_A >1, D_⊥ = D_{||}, the stiffness of B field is negligible for $\lambda_{||} << L_A$

Perpendicular diffusion depends on $M_A = \delta B/B_0$.

Yan & Lazarian (2008), numerically tested by Beresnyak, Yan & Lazarian (2011)

Perpendicular transport ($\lambda_{\parallel} > L$)

- $\lambda_{||}$ > L, CR diffusion is controlled by field line wandering
- $M_A < 1$, CRs free stream over distance L, thus $\Delta t = (R/L M_A^2)^2 L/v_{\parallel}, D_{\perp} = R^2 / \Delta t = 1/3 Lv M_A^4$ (differs from the FLRW result, cf. Jokipii 1966)

$$M_A > 1, D_\perp = D_{||} = 1/3L_A v$$

Whether and to what degree \perp diffusion is suppressed depends on M_A .

Comparison w. test particle simulation

Particle trajectory Magnetic field

a realistic fluctuatating B fields from numerical simulations

NORMAL DIFFUSION IS CONFIRMED IN SIMULATIONS!

.

Contrary to common belief: Scattering in Alfvenic turbulence is negligible!

1. "random walk"

2. "steep spectrum"

 $E(k_{\perp}) \sim k_{\perp}^{-5/3}, k_{\perp} \sim L^{1/3} k_{||}^{3/2}$ $E(k_{||}) \sim k_{||}^{-2}$

steeper than Kolmogorov! Less energy on resonant scale Contrary to common belief: Scattering in Alfvenic turbulence is negligible!

1. "random walk"

2. "steep spectrum"

 $E(k_{\perp}) \sim k_{\perp}^{-5/3}, k_{\perp} \sim L^{1/3} k_{||}^{3/2}$ $E(k_{||}) \sim k_{||}^{-2}$

steeper than Kolmogorov! Less energy on resonant scale

FAST MODES DOMINATE COSMIC RAY SCATTERING!

fast modes Alfven modes 10⁻⁵ 10^{-7} β=0.1 β=0.3 no damping 10^{-10} Isotropic turbulence (Kolmogorov 10^{-8} Big difference!!! 10⁻¹⁵ Depend 10⁻²⁰ 10^{-9} 10⁻²⁵ Earlier estimates (Chandran 2000) 10⁻³⁰ 10 E_k(GeV) ^{10²} 10⁰ ^{10¹} E_k(GeV) ^{10²} 10° 10 10 10 **Kinetic energy**

Scattering frequency

The often adopted Alfven modes are useless. Fast modes dominate CR scattering (Yan & Lazarian 02,04).

Nonlinear broadening of resonance solves the 90° problem!

On large scale, unperturbed orbit assumption in QLT fails due to conservation of adiabatic invariant v_{\perp}^2/B

(Volk 75).

varying $v_{\perp} = > varying v_{\parallel}$

-∆**V_{II} t**

vµt

∆**V_{II}** t

Broadened resonance

Nonlinear broadening of resonance solves the 90° problem!

On large scale, unperturbed orbit assumption in QLT fails due to conservation of adiabatic invariant v_{\perp}^2/B

(Volk 75).

varying v₁ - varying v₁₁

-∆**V_{II} t**

vµt

∆**V_{II} t**

Broadened resonance

Nonlinear pitch angle diffusion

NLT confirms the QLT result that gyroresonance with Alfvenic turbulence is negligible.

At large pitch angle (including 90°), the scattering is due TTD.

At small pitch angle, gyroresonance with fast modes dominates.

Test Particle simulation supports our theory!

 Ω — gyration frequency, L — outer scale of turbulence.

Particle scattering in incompressible turbulence (from Beresnyak, Yan & Lazarian 2011)

CR Transport varies from place to place!

CR Transport in ISM

Flat dependence of mean free path can occur due to collisionless damping (Yan & Lazarian 2008).

CR Transport varies from place to place!

FIG. 1.—Cosmic-ray parallel mean free path vs. particle rigidity. Filled and open symbols denote results derived from electron and proton observations, respectively. See text for source references. Circles and upward-pointing triangles denote actual values and lower- limit values, respectively. The shaded band is the observational consensus enunciated by Palmer (1982). The dotted line represents the prediction of standard quasi-linear theory for magnetostatic, dissipationless turbulence with slab geometry (Jokipii 1966).

Flat dependence of mean free path can occur due to collisionless damping (Yan & Lazarian 2008).

Detailed study of solar flare acceleration must include damping, nonlinear effects

to generate energetic electrons in Solar flares (Yan, Lazarian & Petrosian 2008).

Feedback of CRs on MHD turbulence

Lazarian & Beresnyak 2006, Yan & Lazarian 2011

WAVE GROWTH IS LIMITED BY NONLINEAR SUPPRESSION!

p₁

Turbulence compression $\beta \cong Pgas/P_{mag} < 1$, fast modes (isotropic cascade +anisotropic damping) $\beta > 1$ slow modes (GS95)

Scattering by instability generated slab wave

Scattering by growing waves

Simple estimates:

 $\frac{dA}{dt} \sim -\nu A = -\frac{1}{W_{\parallel}} \left(\frac{dW_{\perp}}{dt} - \frac{W_{\perp}}{W_{\parallel}} \frac{dW_{\perp}}{dt} \right) \sim -\Gamma_{gr} \epsilon_N / \beta_{CR}$ By balancing it with the rate of increase due to turbulence compression $\frac{1}{B} \frac{dB}{dt}$, we can get $\epsilon_N \sim \frac{\beta_{CR} \omega \delta v}{\Gamma_{gr} v_A}, \lambda \simeq r_p / \epsilon_N$

Bottle-neck of growth due to energy constraint:

$$\epsilon_{N,max} \sim \frac{v_A}{L_{inj}\Gamma_{gr}}$$

* Anisotropy cannot reach δv/v_A, the predicted value earlier, and the actual growth is slower and smaller amplitude due to nonlinear suppression (Yan &Lazarian 2011).

DOMAINS FOR DIFFERENT REGIMES OF CR SCATTERING

Summary

- Compressible fast modes are most important for CR scattering. CR transport therefore varies from place to place.
 - Large scale mirror is essential for pitch angle scattering (including 90 degree).
- Subdiffusion does not happ Taxin 3D turbulence.
- Our results are tested using input from turbulence simulations.
 - Small scale slab waves are generated in compressible turbulence by gyroresonance instability, dominating the scattering of low energy CRs (<100GeV).
 - Feedback of CRs on turbulence should be included in future simulations.