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Introduction

The Faraday rotation effect is ob- not clear to what extent, and how,
served on the AGN polarised ra- they affect both the CMFs and their
dio emission traveling through RM characterisation. We investi-
the ICM, revealing magnetic fields gate this in [2].

of ~100kpc scale threading this
media. RM maps are consistent
with the following facts about the
cluster magnetic fields [1] (CMFs):
o|B| ~ 1uG,

o[B(r)| o piom(r),

o|B| o Mcooling flows

o Turbulent structure.

Open questions: The origin,
evolution and role of the CMFs in
the ICM stability. Since AGN jets
have strong effects on the ICM, it is

Effect of radio jets on the rotation measure

f(“)(ll radm~2 from the jets’

cavity contact discontinuity to the end of the domain, along different
viewing angles. We do this at different times, with and without the jets
to assess their effects on the CMFs. The fields in the region between the
cocoon and the bow shock are compressed, stretched and amplified. e.g.
below we show the case of jets” velocity and density of 130 Mach and
0.004p, respectively, at a viewing angle of 45°.
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Above: RM evolution as the model radio jets affect the magnetized ICM. Mean RM (left)
and RM standard deviation (right).

Using Flash 3.1 [3] we solve the
equations of MHD with a con-
strained transport scheme [4] in
a cubic Cartesian domain with
2002 cells. The ICM is implemented
as:

o Monoatomic ideal gas (y = 5/3),
¢ King density profile piew =
e Magnetohydrostatic equilibrium
with central gravity,

e Magnetic fields with a
Kolmogorov-like structure (follow-
ing [5]),

® (3, 2 10.

The plasma relaxes for one cross-
ing time and then we inject mass
and z-momentum to a central con-

U . TE—
T+ (r/a0)?)’

trol cylinder. We experiment with
the jets” power using velocities of
40, 80 and 130 Mach, and densities
of 0.02pg and 0.004p0.
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CM magnetic energy and RM gradients

The energy decays due to numer-
ical diffusion, but the jets with
Mach= {80, 130} are able to impede
this and to increase the energy in
proportion to the jet velocity (image

We calculate the mean RM for the
approaching and the receding radio
lobes vs. the viewing angle. Below,
the jets are on the plane of the sky at
an inclination of +90°. Intrinsically,

below). the depolarisation is always higher
for the receding lobe; i.e. the Laing-
Garrington effect [6]. This however
is only moderately affected by the
radio source expansion, in such a
way that the associated trends tend
to be amplified.
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Though the RM structure functions -
show and preserve the CMFs initial
condition (see section Model), they
are flattened by the jets, at scales
of order tens of kpc. This scale is
larger for sources with fat cocoons
(image below). 100

[ krod m*

<RM>

[ 50
tion angle [ red |
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Conclusions

o The jets distort and amplify the CMFs, especially near the edges of the
lobes and the jets” heads,

¢ (RM) and oy increase in proportion to the jets” power. The effect may
lead to overestimations of the CMFs’ strength by about 70%,

e A flattening of the RM structure functions is produced by the jets, at
scales comparable to the source size,

e Jet-produced RM enhancements are more apparent in quasars than in
radio galaxies.
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Jet Idunch

Ingredients:

-1 compact object

-some accreted
plasma

-some magnetic fields

Preparation:

Stir (rotation) vigorously
until a hot disk is formed
and the magnetic fields
are helical & strong
Enjoy!




Magnetocentrifugal jets (Blandford & Payne 1982;
Ouyed & Pudritz 1997; Ustyugova et al. 1999; Blackman
et al. 2001)

- maghnetic fields only dominate out to the Alfvén radius

Poynting flux dominated jets (PFD; Lynden-Bell 1996;
Ustyugova et al. ‘00; Li et al. '01; Lovelace et al. ‘02;
Nakamura & Meier ‘04)

- magnetic fields dominate the jet structure
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Laboratory experiments

PFD jets, or magnetic towers, produced in a MAGPIE
generator at Imperial College London

1. Radial wire array, Lebedev et al. ‘05,
- Followed with MHD simulations by Ciardi et al. ‘07,
2. Radial wire array + axial magnetic field, Suzuki-Vidal et al. ‘10,

3. Thin conducting foil, Suzuki-Vidal et al. “10; Lebedev et al. ‘10.



1. Radial wire array (Lebedev et al. '05)

1MA pulse current flows radially through 16 x 13um tungsten metallic
wires a central electrode. ~1 MG toroidal magnetic field produced
below the wires.




precursor plasma

Evolution with XUV
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precursor plasma

lefb-over wires !
*
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Evolution with XUV

1.5cm

Full wire ablation near
the central electrode
forms a magnetic cavity.

Lebedev et al. 2005
Suzuki-Vidal et al. 2010



precursor plasma

241ns 251ns

magneticatly contined
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264ns

Evolution with XUV
1.5cm
Expanding magnetic

tower jet driven upwards
by toroidal magnetic field
pressure

Lebedev et al. 2005
Suzuki-Vidal et al. 2010



pinched

precursor plasma

Evolution with XUV

1.5cm

241ns 251ns 264ns

Jet Collimation by hoop stress

Magnetic bubble Collimation by ambient medium

Consistent with Lynden-Bell ‘96, ‘03



Once the jet forms

current-driven 1.5cm
instf'abilities

\

3mm
cathode diameter

274ns 284ns 294ns

5020507

Lebedev et al. 2005
Suzuki-Vidal et al.
2010
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Laser shadow Images; electron density gradients
(Lebedev et al. 2005).
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Simulations (Ciardi et
al. 2007)

Density slices

|so-density surfaces

Synthetic emission

XUV emission from
experiment (again)



Model magnetic tower (Ciardi et al. 2007)
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2. Radial wire array (again) + B
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290ns 300ns 310ns 320ns
(b] Retuga-solenoid g -

B, affects axial
compression

306ns

B, aR

column

More stable

Suzuki-Vidal et al. ‘10
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3. Thin conducting foil (Suzuki-Vidal et al. ‘“10)

1MA, 250ns radial current pulse : ~1 MG toroidal magnetic

55 mm

Lebedev et al. 2011



Foil
(a) (b)

1* magnetic
cavity is formed

ablated
background prasrna

JX B magnetically

rqr. .-
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Foll
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1* magnetic
cavity is formed

ablated
background plasrna
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2™ magnetic
cavity is formed




Tirst merged episodes
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Suzuki-Vidal et al. 2011



Tirst merged episodes
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We simulate stellar magnetic towers
(Huarte-Espinosa, Frank and Blackman 2011b, in prep)

THE ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, 182:519-542, 2009 June
£ 2009 The American Astronomical Society. All rights reserved. Primted in the LS. A_

code

doi: 10, 1088/0067-0049/182/2/519

SIMULATING MAGNETOHYDRODYNAMICAL FLOW WITH CONSTRAINED TRANSPORT AND ADAPTIVE
MESH REFINEMENT: ALGORITHMS AND TESTS OF THE AstroBEAR CODE

* Solve
hyperbolic PDE
with elliptic
constraints:
MHD

* Source terms
for energy
loss/gain,
ionization
dynamics

* Operator
splitting:
gravity, heat
conduction
(HYPRE)
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AstroBEAR 2.0
Parallel AMR Performance

Rebuild load balance algorithm across AMR grid hierarchy
(Carroll et al. 2011, in prep.)

Runtime Efficiency vs. Nr. Processors

1.2
1.1

1
0.9
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0.7
0.6
gg =& fixed-grid
0.3 -l AMR
0.2
0.1

0

Runtime Efficiency

8 16 32 64 128 256 512 1024 2048

Nr. Processors

https://clover.pas.rochester.edu/trac/astrobear



Our simuations

In Huarte-Espinosa, Frank and Blackman (2011b, in prep.) we use
AstroBEAR2.0 (Carroll et al. 2011, in prep.) to solve the
equations of radiative-MHD in 3D with AMR.

1.Adiabatic PFD
2.Cooling PFD
3.Adiabatic and rotating PFD

4.Hydrodynamic jet with the same propagation speed and energy
flux than the adiabatic run.



nitial conditions

Density = 100 cm~ A
Temperature = 10000 K
molecular gas, y =5/3
V=0kms".

Magnetic fields only
within the central region




Continuous magnetic energy injection

new current initial
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Adiabatic
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Cooling

Dalgarno & Mccray (1972).
lonization of both H and He,
the chemistry of H2 and
optically thin cooling.

Tlerg cm? gag’!

Alx
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Field line maps

(microGauss)

e 55.00
- 4250

—30.00
—17.50
5.000

0.00 yr

E== 1 c E== 1 : E=i= 1

adiabatic cooling rotating

Only 2 central field lines



Field geometry

HH 81-81 (Carrasco-Gonzalez et al. '10)
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Perturbations

Magnetic field strength [uG]
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Modeling Poynting flux vs. kinetic-energy

dominated jets
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Introduction

Jets are observed in the vicinities
of Protostellar Objects, Young Stel-
lar Objects (YSOs), post-AGB stars,
X-ray binaries and active galactic
nuclei. Models suggest that jets are
launched and collimated by accre-
tion, rotation and magnetic mecha-
nisms in their “central engine” (re-
view [1]). The extent over which the
magnetic energy of jets dominates
the kinetic energy divides them into
(i) magnetocentrifugal jets [2], in
which magnetic fields only domi-
nate out to the Alfvén radius, (ii)
Poynting flux dominated jets [3,4]
(PFD), in which magnetic fields
dominate the jet structure. Recent
laboratory experiments have pro-
duced magnetized jets [5].

Open questions: What is the
relation between the main observ-

Structure and evolutio

Magnetic pressure
pushes field lines and
plasma up, forming !
magnetic cavities with <
low density. The adi- |
abatic case is the most

stable. Towers decel-

erate relative to the '
hydro jet; magnetic en- ¢
ergy pressure produces -
axial but also radial ex- ,
pansion. Towers’ jets *
(cores) are thin and un-
dro jet beam is thicker, :
smoother and stable. o

stable, whereas the hy-

Adlabahc

able features (length, velocity, co-
coon geometry, etc) of PFD jets
and their power (this is known for
kinetic-energy dominated (magne-
tocentrifugal) jets)? What is the ef-
fect of cooling and rotation on PFD
jets? The image below is from [8].

DEC OFFSET (arcminutes)

log(n) fem ]

213 0. 2. 3.
—_—

®
00
hah

Tao"au) 20 Ay (20 Au)

Cooling Rotating Hydm

i)

T

Time= {42, 84, 118} y1, from top to bottom.

Field geometry

The jets’ field lines are
parallel to » =0 and
surrounded by toroidal
lines (red). There is
another exterior he-
lical component of
lines. The injected
magnetic energy keeps
a non-force-free con-
figuration at base;
“new” lines push “old”
ones upwards. In-
dependently, cooling
and rotation amplify
current-driven per-
turbations. ~ We see
pinch (m=0) and kink
(m =1) modes. The
Figure’s time is 118 yr.
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ROCHESTER

We wuse the Adaptive Mesh
Refinement (AMR) code As-
troBEAR2.0 [6] to solve the equa-
tions of radiative-MHD in 3D. The
domain: |z|,|y] <160AU and 0<
z <400AU, 64x64x80 cells plus 2
AMR levels; resolution of 1.25 AU.
Initial conditions:

o Static molecular gas : =
o Ideal gas eqn. of state (y = 5/3) >
on =100cm—3; 7 =10000 K 2 s Lt
G(cos(27) 4 1)(cos(22) + l)g}Jr
®A(r,z) =1 Z(cos(2r) +1)(cos(2z) + Dk, forr,z <re;
0, forr,z > re,

er, ~30AU; o« =40 (=800 AU); B <1 forr,z < re.

Evolution: Continuous central injection of magnetic or kinetic energy.
Simulations:

® Magnetic towers: adiabatic; optically thin cooling [7]; Keplertian rotation
o Hydrodynamical jet with the same time average propagation speed and
energy flux than the adiabatic magnetic tower.

Forces and current density

uuu)

Magnetic  pres- PR ;. Towers’ jets .

sure dominates ™ carry a high ax- 100233 EY 0.
over  thermal. ial current den-

Towers’ jets sity. There is a *°

current-free  re-
gion about the

(cores) are con-
fined by the

magnetic  hoop jets. The main X:

stress from sur- return  current |

rounding  field goes along the |

lines. The cavity I cavity’s  outer

is collimated by contact disconti- ol ——tRA
external thermal Admh‘mc’ ”8'” nuity. (20 AU)
pressure. Adiabatic, 118 yr
Jet velocity field, shocks and wave fronts

Vg, Uy, V(= Ujer), the sound

and the Alfvén speed of the tow- 2 a

ers at r =0. Early, jets are 72 prey

sub-Alfvénic and trans-sonic. Fast- =
forward MHD (FF) and hydrody-
namic shocks are formed ahead of
the jets’ head. FF shocks steepen
in time. Hydrodynamic shocks are
quickly affected by cooling. The =
adiabatic and rotating cases show
high beta regions between the re-
verse and the forward slow-modes
of compressive MHD waves. Late,
the cooling and rotating jets show
fast, azimuthal, sub-Alfvénic veloc- ~ # ¢ s i

ities in their central beam part. Adiabatic Rotanng
Time= {42, 84, 118)yr, from top to bottom.

Conclusions

e PFD jet beams are lighter, slower and less stable than kinetic-energy
dominated ones. We predict characteristic emission distributions for each
of these.  Current-driven perturbations in PFD jets are amplified by both
cooling, firstly, and base rotation, secondly: shocks and thermal pressure
support are weakened by cooling. Total pressure balance at the jets’ base
is affected by rotation. e Our models agree well with [3,4,5,8].
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Summary

About the experiments of Lebedev, Suzuki-Vidal et al.:
-PFD jets can be produced in the lab!, and help to understand
the physics of astrophysical jets

-Lab jets collimated by hoop stress; outer magnetic cavities
collimated by external pressure

-Lab jets show physical characteristics consistent with
observation of galactic jets

-B, affects the axial compression/expansion and the jet stability

-Jets adopt wiggled structures due to current-driven instabilities

-Thin conduction foils produce episodic jets and nested
magnetic bubbles. New structures are faster than old ones.
e.g. Episodic jets in the FRIlI B0925+420 (Brocksopp at al. ‘07)



Summary

About our simulations:

-Good agreement with Lynden-Bell '96; Nakamura & Maier '04;
Li et al. '06; Lebedev et al. ‘05, ‘10; Ciardi et al. '07; Suzuki-Vidal
et al. 10,

-PFD jet beams are lighter, slower and less stable than kinetic-
energy dominated ones,

-We predict characteristic emission distributions for each of
these,

-Current-driven perturbations in PFD jets are amplified by both
cooling, firstly, and base rotation, secondly,

-Shocks and thermal pressure support are weakened by cooling,

-Total pressure balance at the jets’ base is affected by rotation.
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Thanks!

Find this talk at:
http://www.pas.rochester.edu/~martinhe/talks.h
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