Testing Ambipolar Diffusion Driven Star Formation Theory

> Dick Crutcher University of Illinois

Testing Ambipolar Diffusion Driven Star Formation Theory

Conclusion: There is no definitive observational evidence in support of ambipolar diffusion driven star formation. Although ambipolar diffusion may drive some star formation, it does not seem to be the dominant mechanism.

Idealized Ambipolar Diffusion Models

Initial Conditions

- uniform density spherical cloud & magnetic field lines
- forces are gravity, and magnetic & thermal pressure

Relaxation to Equilibrium Conditions

- matter flows along field lines until thermal pressure, gravity balance along field lines
- magnetic pressure (mainly) balances gravity perpendicular to field lines, with hourglass morphology

Ambipolar Diffusion

 neutrals collapse through field toward center, dragging ions and field lines inward – hourglass morphology field becomes more pronounced

Measureable Parameters

1) M/ Φ : ratio of gravity to magnetic fields

$V = R - L \propto (dI/dv)(ZB\cos\theta) \Longrightarrow B_{LOS}$

Species	Wavelength	n(H) traced	
ні	21-cm	$10^{1} - 10^{2} \text{ cm}^{-3}$	
ОН	18-cm	$10^3 - 10^4 \text{ cm}^{-3}$	
CN	3 mm	$10^{5} - 10^{6} \text{ cm}^{-3}$	

Zeeman Effect Example – S106

Roberts, Crutcher & Troland 1995

Major Zeeman Surveys

Data Set

Measurements of B_{los}

1.	Compilation Crutcher 1999	27
2.	OH absorption-lines Bourke, Myers, Robinson & Hyland 2001	22
3.	Arecibo H I Millennium survey Heiles & Troland 2004, 2005	67
4.	Arecibo OH dark clouds Troland & Crutcher 2008	34
5.	IRAM 30-m CN Falgarone, Troland, Crutcher, & Paubert 2008	11 (+3 included in #1

TOTAL

161

B_{LOS} versus **N**

B_{LOS} versus **N**

B_{LOS} versus **N**

RCW 57

G14.0-0.6

B(1667) = +135 ± 27 μG

 $B(1665) = -1 \pm 26 \mu G$

B_{LOS} versus N_H

B_{LOS} versus N_H

What to do about measuring B_{los}, not B_{tot}?

PDFs of total B and corresponding los B

For reasonable pdf, mean or median of $B_{los} \approx \frac{1}{2}$ mean or median of B_{total}

Heiles & Crutcher 2005

B_{LOS} versus n_H

Results for B_{TOT} versus n_{H}

Results of Bayesian Analysis

Testing M/Φ Change from Envelope to Core Measure differential M/Φ between core and envelope:

Right Ascension (arcmin)

 $\frac{\left[M/\Phi\right]_{core}}{\left[M/\Phi\right]_{envelope}} = \frac{\left[T_{line}\Delta V / B_{los}\right]_{core}}{\left[T_{line}\Delta V / B_{los}\right]_{envelope}}$

Telescope beam sizes were chosen to ideally sample core and envelope regions of published ambipolar diffusion models. Averaging the four large GBT beams "synthesizes" a toroidal beam, exactly what is needed to sample only the envelope region.

Crutcher, Hakobian, & Troland 2008

Testing M/ Φ Change from Envelope to Core

Results

<u>Cloud</u> :	<u>L1448</u>	<u>B217-2</u>	<u>L1544</u>	<u>B1</u>
B(core):	-26 ± 4	+14 ± 4	+11 ± 2	-27 ± 4
B(envelope):	-3 ± 4	+2 ± 5	+5 ± 3	-7 ± 4
$T_{line} \Delta V$ (core):	1.21	0.60	1.17	2.20
T _{line} ΔV(envelope):	0.73	0.47	0.64	1.60
M/Φ (core) M/Φ (envelope) :	0.21 ± 0.30	0.19 ± 0.46	0.89 ± 0.59	0.37 ± 0.18
Difference from 1:	2.6 σ	1.7 σ	0.2 σ	3.5 σ

Published ambipolar diffusion models require ratio ~ $1/\lambda_{initial}$, typically ~ 2

Crutcher, Hakobian, & Troland 2008

Predictions for M/Φ

ambipolar diffusion

turbulence

Models for Specific Clouds

- 1. Take observed properties (mass, radius, B_{LOS})
- 2. Assume initial cloud properties (mass, radius, M/Φ)
- 3. Evolve model and compare with observations

	B 1			L 1544	
Crutcher, Mouschovias, Troland & Ciolek (1994)				Ciolek & Basu (2000)	
	<u>Theory</u>	<u>Observed</u>		<u>Theory</u>	Observed
1/λ	2.4	0.37 ± 0.18	1/λ	1.25	0.89 ± 0.59
B _{LOS} (μG)	85 <i>cos</i> 70° = 29	27	B _{LOS} (μG)	40 <i>cos</i> 74° = 11	11

Summary

- 1. No subcritical self-gravitating clouds are observed
- 2. $\langle M/\Phi \rangle$ for molecular clouds is supercritical by 2-3
- 3. No observed M/Φ for molecular clouds is subcritical
- 4. PDF of B_{TOTAL} is flat \Rightarrow many self-gravitating, supercritical clouds
- 5. Power law in B $\propto \varrho^{\kappa}$ relationship is $\kappa \approx 2/3$, implying that contraction is roughly isotropic, i.e., not dominated by magnetic fields
- 6. Core/envelope $M/\Phi < 1$ in 4 dark clouds, not > 1 as ambipolar diffusion requires
- 7. Ambipolar diffusion models of B 1 and L 1544 give observed parameters, but require that B be nearly in the plane of the sky; B_{TOTAL} are significantly larger than any B_{LOS} ever observed

Summary

- 1. No subcritical self-gravitating clouds are observed
- 2. $\langle M/\Phi \rangle$ for molecular clouds is supercritical by 2-3
- 3. No observed M/Φ for molecular clouds is subcritical
- 4. PDF of B_{TOTAL} is flat \Rightarrow many self-gravitating, supercritical clouds
- 5. Power law in B $\propto \varrho^{\kappa}$ relationship is $\kappa \approx 2/3$, implying that contraction is roughly isotropic, i.e., not dominated by magnetic fields
- 6. $(M/\Phi)_{core}/(M/\Phi)_{envelope} < 1$ in 4 dark clouds, not > 1 as ambipolar diffusion requires
- 7. Ambipolar diffusion models of B 1 and L 1544 give observed parameters, but require that B be nearly in the plane of the sky; B_{TOTAL} are significantly larger than any B_{LOS} ever observed

Conclusion

There is no definitive observational evidence in support of ambipolar diffusion driven star formation. Although ambipolar diffusion may drive some star formation, it does not seem to be the dominant mechanism.