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Astrophysical numerical Ideal MHD simulations have proven to successfully model a variety of astrophysical objects.
However, the Ideal MHD approximation used by any numerical simulation is not valid bellow the resolution limit of the numerical representation.

This also holds by any other hydrodynamical equation that we evolve in our numerical schemes, with the exception of the use of an additional sub-
grid model to follow properties below the resolution. Particularly, in the case of Ideal MHD, that numerical artifacts that happen below the resolution 

limit can act as dissipative terms in the induction equation. We propose to calculate those dissipation numbers. In particular in the SPMHD 
implementation in Gadget-3, we are able to use different regularization/div(B) cleaning schemes. Allowing us to determine, with a full 

understanding the numerical limits, their effects and possible mimic as turbulent dissipation.

Introduction

Simulations have been able to reproduce quite well several 
astrophysical MHD situations (see, Kotarba2010, Dolag2009 & 
Sur2010). Those simulations rely only in Ideal MHD regime (no explicit 
physical diffusion considered). An effective dynamo action requires the 
non-ideal MHD terms to be considered, however is not usually the 
case. Therefore in the numerical schemes some reconnection is being 
done. Actually numerical codes are meant to be accurate in scales 
larger that in intrinsic numerical resolution that each implementation is 
able to resolve. Inside those scales (i.e. below the resolution), the 
codes can break, in our case, the Ideal MHD constraint and allow the 
code to reconnect the field lines in some undefined manner.

Depending in the numerical scheme used, this effect can be larger or 
smaller, however generally is neglected just not considering those 
scales. Gracefully, we can explain physically this numerical effect.
Is commonly accepted (Ruzmaikin1988) that the magnetic field is 
coupled with the turbulence of the system. In the same way as the 
Kolmogorov turbulent theory, the coherence length of the magnetic 
turbulence energy scales from larger to smaller ones.

At small scales (in our case the resolution of our simulation), the ideal 
MHD constraint is not hold any more because the MHD equations are 
resolved between interpolants that, by definition, lay outside that 
length. Usually, when is needed to follow small scale physics, a sub-
grid model is added to the schemes using additional physical recipes 
to evolve processes that should occur inside the resolution length.

We propose to estimate how much is the numerical dissipation in 
numbers, therefore being be able to estimate in which regimes our 
equations are valid. 

Particularly we study this within the SPMHD implementation in 
Gadget-3, which offer us different regularization schemes and div(B) 
cleaning schemes (See Numerical Schemes in this poster).

Reconnection Layer

One of the easiest tests that one can imagine to measure diffusive effects is 
to think situations in which we can push the system to naturally reconnect. 
Therefore we build a shock tube in which the left and right states, 
simply differ in the directions of the magnetic field and with a contracting 
velocity. Explicitly B = [0,0,+/- Bo] and V = [+/- Vo,0,0]. 
Assuming that the effect below the resolution will follow a resistive functional 
form, we can calculate the final induction equation in the contact discontinuity 
region as

Note that the terms corresponding to the cross product of the velocities and 
magnetic field are cancelled. The shock tubes were setted up using a glass 
particle distribution in a volume of 70x1x1, having a mean Hsml ~ 0.5.

In the upper figure we show the difference of the Bz component of the 
magnetic field  renormalized to the corresponding value is is just taken an 
adiabatic compression of the field, as function of the distance from the contact 
discontinuity, for different times. One can observe how the difference 
increases with time, which corresponds to the acting numerical resistivity.

In the lower table we show the values found of the magnetic Reynolds 
number and the numerical resistivity. Note that the Rm  varies two orders of 
magnitude between the regularisation schemes to Dedner  and Standard 
implementations however the resistivity only varies one order. 
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Circularly polarized Alfven Wave

Toth2000 described this test and it is used to verify a several MHD Eulerian 
schemes. The test involves a circularly polarized Alfven wave (CPAW) 
propagating into the domain which solution turns out to be exact solution of 
the MHD equations (as difference of the linearly polarized case). The 
solution after one period should exactly match the initial conditions, if there 
is no presence of any kind of dissipative process. 

The particles setup are glass-like distribution, within a completely three 
dimensional setup. The initial conditions are Rho=1, P=0.1, Vx = 0, Bx = 1, 
Vy = By = 0.1 sin(2 Pi x) and Vz = Bz = 0.1 cos(2 Pi x). Solving analytically 
the induction equation for the initial condition in the non-ideal case, we 
conclude that at first approximation in each period an additional, to the ideal 
case, term survives in the Z-component and it can be written as

Therefore, we can measure the change in the amplitude of the wave in the 
Z-component in different times and estimate a value for the numerical 
resistivity.

In the upper figure we shown change of the amplitude for the Z- component 
of the magnetic field as function of time for the different numerical 
implementations. We scale the time evolution with the proper factor so the 
slope corresponds to the numerical dissipation constant. In the lower table 
we summarize the values obtained for this test. 
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Winding-up Disk

When magnetic field lines parallel to the plane of rotating disk evolve, they 
wind-up until reconnection happens and the central region is isolated from the 
external magnetic field [Parker1979, Weiss1966]. This reconnection will be 
function of the number of windings and the magnetic resistivity of the system. 
After the reconnection and isolation of the center, there is a decay in the total 
magnetic field inside the disk. 

This is shown in the upper figures. We show in color the velocity strength and 
the magnetic field vector for two different times, before (right) and after (left) the 
reconnection occurs. In particular the maximum magnetic field reached before 
the reconnection occurs is given by 

The figure above shows the mean value of the magnetic field inside the disk, 
and how does it evolve until is damped by the reconnection, for the different 
implementations cases. Therefore, finding the peak in the magnetic field 
evolution we can calculate the magnetic Reynolds number, independent on any 
assumption on the characteristic length or velocity of the system. The resulting 
values are shown in the table below.
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Conclusion

All numerical schemes rely on different kinds of discretizations of the 
physical system. How this affects the result is a complex task and should 
be carefully taken into account. We concentrate our efforts in the case of 
Ideal MHD and the effects that happen below the resolution. We identify 
them as resistivity terms from Non-Ideal MHD. Note that there is no strict 
reason to be so, because this effect should be completely numerical and 
does not necessary have to obey any kind of dissipation equation.  
However, the interpretation as resistivity allow us to understand previous 
successful astrophysical applications. Solving the induction equation for 
simple test cases we identify terms that exists in the Non-Ideal case, being 
able to measure the numerical resistivity and numbers for the magnetic 
Reynolds number.

We study this effect in tree different tests. In two of them, Reconnection 
Layer and CPAW, we need to decide which will be our characteristic speed 
and length. Doing so we infer magnetic Reynolds number that in general 
are higher than 5e+3. The Winding-up disk problem allow us to infer this 
value without any additional assumption, giving us values of the order 
5e+2. When we translate this values into physical turbulent resistivity we 
obtain values between 1e+20 to 1e+22 [cm2/s] wich are below to estimated 
for turbulent resistivity [see, Lesch2003, Bonafede2011]. We believe that 
this explains the reconnection happening by turbulent motions in previous 
works [Kotarba2010, Dolag2009]. Note that this effect is quite complex, 
because is determined locally by the morphology of the field and 
characteristic lengths compromised, as is shown in the disagreement 
between the Winding-up disk and the other problems suggested. However, 
the global system still is characterized by Ideal MHD. 

Finally, we show that some schemes keep the Magnetic Reynolds number 
with different resolution, whereas others keep the magnetic diffusivity. The 
latter means that will act as a physical diffusivity term, allowing to a quicker 
convergence with increasing resolution.   

Resolution Considerations

Additionally we study the problems in several resolutions. Surprisingly the 
Magnetic Reynolds number keeps constant for Standard implementation and 
the div(B) cleaning scheme, whereas for the regularization schemes it 
decreases.
This can be understood in the terms that the diffusive approach of the 
regularization schemes keeps constant as independent of the resolution. In the 
Art. Dissipation case because we use a constant value, whereas in the 
Magnetic field smoothing because we keep constant the smoothing frequency.
This will imply that the regularization schemes will converge rapidly with 
increasing resolution, because the numerical resistivity acts as a physical one. 
In the other cases, one expects to resolve better the turbulent cascade allowing 
to the magnetic field to grow faster [see  Alexander Beck poster].

Numerical Schemes

We make use of 4 different numerical schemes implemented in Gadget-3  [see, 
Dolag2009]. They have been proved to have distinct properties and handle 
different problems successfully.

●Standard: this is the implementation with the basic improvements of MHD 
equations, as defined in Dolag2009.

●div(B) cleaning: follows the div(B) errors and subtracting them from the induction 
equation. Is locally driven (without any smearing of features) and generally 
improves stability.

●Artificial Dissipation: this implementation is referred as a regularization schemes 
that is meant to stabilize the code artificially using a similar formulation as the 
physical dissipation.

●B-Smoothing: this regularization technique smoothes the field each N global 
timesteps. This regularization of the field smears out features, and as been not 
physically motivated can lead to spurious over-smoothing of the field.
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The non-idealness on Ideal MHD 
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