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Introduction

Jets are observed in the vicinities
of Protostellar Objects, Young Stel-
lar Objects (YSOs), post-AGB stars,
X-ray binaries and active galactic
nuclei. Models suggest that jets are
launched and collimated by accre-
tion, rotation and magnetic mecha-
nisms in their “central engine” (re-
view [1]). The extent over which the
magnetic energy of jets dominates
the kinetic energy divides them into
(1) magnetocentrifugal jets [2], in

able features (length, velocity, co-
coon geometry, etc.) of PFD jets
and their power (this is known for
kinetic-energy dominated (magne-
tocentrifugal) jets)? What is the ef-
fect of cooling and rotation on PFD

jets? The image below is from [8].
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We wuse the Adaptive Mesh
Refinement (AMR) code As-
troBEAR2.0 [6] to solve the equa-
tions of radiative-MHD in 3D. The
domain: |z|,|y] <160AU and 0<
z <400 AU, 64x64x80 cells plus 2
AMR levels; resolution of 1.25 AU.
Initial conditions:

e Static molecular gas

o Ideal gas eqn. of state (y = 5/3)

e =100cm°; T =10000 K

which magnetic fields only domi- ; 7(cos(2r) +1)(cos(2 z) + 1)+
nate out to the Alfvén radius, (ii) g o A(r,z) = g(cos(2r) +1)(cos(2z) + 1)k, forr,z <re;
Poynting flux dominated jets [3,4] & 0, for r, z > re,

(PFD), in which magnetic fields
dominate the jet structure. Recent
laboratory experiments have pro-
duced magnetized jets [5].

Open questions: What is the
relation between the main observ-

Structure and evolution
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RA OFFSET (arcminutes)

or. ~30AU; a =40 (=800AU); 8 <1forr,z < re.
Evolution: Continuous central injection of magnetic or kinetic energy.

Simulations:

o Magnetic towers: adiabatic; optically thin cooling [7]; Keplertian rotation

energy flux than the adiabatic magnetic tower.

Forces and current density

o Hydrodynamical jet with the same time average propagation speed and
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dro jet beam is thicker, ¢

A

-6 =d =2 0 2 4 6 =6 -4 =2 0 2 4 6 =6-4 =2 0 2 4 6
(20 AU) (20 AU) (20 AU)

Cooling Rotating Hydro

Time= {42, 84, 118} yr, from top to bottom.

The jets’ field lines are
parallel to » =0 and
surrounded by toroidal

lines (red). There is quickly affected by cooling. The =
another exterior he- adiabatic and rotating cases show
lical component of high beta regions between the re- =

lines. The injected
magnetic energy keeps
a non-force-free con-
figuration at base;
“new” lines push “old”
ones upwards. In-
dependently, cooling
and rotation amplify
current-driven  per-
turbations.  We see
pinch (m=0) and kink
(m =1) modes. The
Figure’s time is 118 yr.
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Vey Uy, Uz(= Vjer), the sound
and the Alfvén speed of the tow-
ers at r =0. Early, jets are
sub-Alfvénic and trans-sonic. Fast-
forward MHD (FF) and hydrody-
namic shocks are formed ahead of
the jets” head. FF shocks steepen
in time. Hydrodynamic shocks are

verse and the forward slow-modes
of compressive MHD waves. Late,
the cooling and rotating jets show
fast, azimuthal, sub-Alfvénic veloc-
ities in their central beam part.
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Cooling
Time={42, 84, 118} yr, from top to bottom.

Conclusions

e PFD jet beams are lighter, slower and less stable than kinetic-energy
dominated ones. We predict characteristic emission distributions for each
of these. e Current-driven perturbations in PFD jets are amplified by both
cooling, firstly, and base rotation, secondly: shocks and thermal pressure
support are weakened by cooling. Total pressure balance at the jets” base
is affected by rotation. ¢ Our models agree well with [3,4,5,8].
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