MFPO, Cracow - May 20, 2010

Star formation and turbulence: from sub-pc to kpc scales

Reinaldo Santos de Lima Elisabete M. de Gouveia Dal Pino

IAG-USP, Brazil

Collaborators

Alex Lazarian (U. Wisconsin) arcia M. R. Leao (IAG-USP) **Diego Falceta-Goncalves (UCS)** Jay Gallagher (U. Wisconsin) Grzegorz Kowal (IAG-USP)

Turbulence on star formation

at pc scales

Turbulence on star formation @ pc

MHD turbulence: important for ISM structuring and **star formation**

A related key question:

How is **magnetic field diffused** outward to allow cloud collapse?

The magnetic flux problem

Diffusive mechanisms usually invoked: Ambipolar diffusion (AD) Hyper resistivity: nature? (Shu et al. 2006)

Which one dominates?

AD expected to dominate late stages of collapse (when gas partially ionized);

Early stages? Controversy (see Shu et al. 2006, and papers by Crutcher and Mouschovias)

Diffusion through turbulent reconnection.

Due to turbulence: field lines reconnect, changing their topology and then magnetic flux escapes from denser regions.

→ Lazarian (2005), Santos-Lima et al. (2010)

Underlying physics

Turbulent reconnection:

 Lazarian & Vishniac (1999) fast reconnection model (Alex's talk)

• Recently tested in numerical simulations by Kowal et al. (2009) (Grzegorz's talk)

Magnetic field diffusion in gravitating clouds: 3D simulations

- One fluid model;
- Gravitational potential with cylindrical symmetry;
- Periodic boundary conditions;
- Isothermal EOS;
- Magneto-hydrostatic equilibrium / out-ofequilibrium homogeneous fields;
- Injection of subAlfvenic turbulence

Magnetic field diffusion in gravitating clouds: 3D simulations

- Removal of magnetic flux from the central regions (strong-gravity);
- Gas inflow into the central region;
- Reduction of the flux-to-mass ratio in the central region.

(Santos-Lima et al., ApJ, 2010)

Main results

Higher efficiency of diffusion for:

• Hig	her	gravity
j:	B = 1,	$V_{rms} = 0.8$
$V_{A,0}$	Α	$\eta_{turb}/V_{rms}l_{inj}$
1.4	0.6	≤ 0.015
1.4	0.9	≈ 0.03
1.4	1.2	≈ 0.09

• H	igher	beta
A = 0.	9 ($\Phi = \cdot$	$-A/r^2), V_{rms} = 0.8$
β	$V_{A,0}$	$\eta_{turb}/V_{rms}l_{inj}$
0.3	2.4	≈ 0.03
1.0	1.4	≈ 0.03
3.3	0.8	≈ 0.06

(Models starting from magneto-hydrostatic equilibrium with beta constant)

Main results

Higher efficiency of diffusion for:

• Higher turbulent velocity

 $\beta = 1, A = 0.9$

$8 \approx 0.03$
$4 \qquad \approx 0.18 - 0.36$
$0 \gtrsim 0.37$
(

(Models starting from magneto-hydrostatic equilibrium with beta constant)

Effects of numerical resolution on the turbulent diffusion

Self-gravitating clouds

Self-gravity + external potential (~1/r²)

see poster by Leao et al.

Self-gravitating clouds

Efficient removal of B-flux from the central region

Star formation effects on turbulence and structuring:

at kpc scales

Star formation turbulence feedback

Star formation feedback is a fundamental issue in the evolution of galaxies.

Galactic winds from star forming galaxies are known to be driven by star formation/SN turbulence.

We explore the role of star formation/SN turbulence in even larger scales: cores of galaxy clusters.

Perseus: brightest galaxy cluster in X-ray

The Perseus Cluster—Abell 426

distance 75 Mpc—1 arcsec = 370 pc

- L_B= 3E10 L_{sun}
- → M(*) ~ (few) E11 M_{sun}
- L_x = 3E45 erg/s
- M(gas) ~ 7E13 M
- M(dyn) ~ 1E15 M_{sur}
- Virial radius ~ 2.5 Mpc

Filaments coming out from central galaxy (NGC 1275):

Hα+[NII] & stellar continuum

V(fil) ~200 km/s << c_s(IGM)

> $E(fil) \sim M(fil) < v^2 >$ > 4e57 erg

Cigan, Gallagher et al. 2009 Fabian et al. 2009

What is the role of star formation/SNdriven turbulence in filament-loops formation?

MHD simulations of central region of Perseus

MHD turbulence due to SF:

0.1 SN/yr – 10^{56} erg/Myr Injected within 5 kpc: $1 < L_{inj} < 3$ kpc

~ Radial filaments:

< 40 kpc $n = 0.01-0.04 \text{ cm}^{-3}$ (10-100na) v = 100-500 km/sB dragged and compressed: $5-20\mu\text{G}$ (comparable to Fabian et al. 2008)

Falceta-Goncalves, de Gouveia Dal Pino, Galagher, Lazarian, ApJ lett. 2010a

SF-SN turbulence: could explain isotropic ripples and weak shocks

Falceta-Goncalves, de Gouveia Dal Pino, Gallagher, Lazarian ApJ lett. 2010a

MHD simulation of Perseus: SN turbulence + AGN jet in center

Fabian et

al. 2008

Turbulent kinetic energy not efficiently converted into heat: **additional heating** required to suppress cooling flow \rightarrow AGN

Falceta-Goncalves et al., ApJ. Lett, 2010a

MHD simulation of Perseus: with precessing AGN jet in center

(a)

Simulated AGN

X-ray image

Simulated emission measure

(d)

Precessing jet can also isotropize injected AGN energy distribution

Falceta-Goncalves et al., ApJ. Lett, 2010b

Summary

Turbulence effect on star formation @ pc:

- MF removal from collapsing clouds and cores, which is usually attributed to AD, can be successfully accomplished with turbulent reconnection only.
- Turbulence can play a role in the removal of B-flux in different phases of starformation and make molecular clouds – subcritical → supercritical.

Further study:

Investigation of the relative role of the AD versus reconnection diffusion.

Summary

Star formation feedback @ kpc:

- Star formation/SN turbulence explains isotropic distribution of filaments, magnetic fields an weak shocks and ripples around central galaxy in Perseus cluster.
- Cluster of galaxies: AGN represents the main source of heating against cooling flows, but MHD turbulence (a dominating source of momentum) may be necessary to help to isotropize heating distribution.