Atomic Alignment:

New probe for Magnetic fields in diffuse medium

Huirong Yan
(Kavli Institute of Astronomy \& Astrophysics@PKU, CHINA)

Collaboration: A. Lazarian (UW-Madison, US)

Atoms on the ground state can be aligned by anisotropic radiation
Classical Analogy

Thermal system
Radiatively
pumped system

Atomic alignment is differential occupation of the sublevels of the ground (or metastable) state.

Atoms on the ground state can be aligned

by anisotropic radiation

Classical Analogy

Thermal system
Radiatively
pumped system

Atomic alignment is differential occupation of the sublevels of the ground (or metastable) state.
a)

Toy model:s

Induced ± 1 transition followed by isotropic emission.

Atomic alignment is sensitive to weak magnetic fields

v_{L}-Larmor frequency
A-Einstein coefficient, $v_{\Delta J}-E_{\Delta J} / h$
For weak field $(\sim \mathrm{nG}, 1 \mathrm{G})$, atomic alignment happens.

Polarization of absorption is either II or \perp

 to the magnetic field

Polarization changes direction at Van Vleck angle between pumping radiation and magnetic field $\theta_{r}=54.7^{\circ}, 180^{\circ}-54.7^{\circ}$.

Our results: many observed absorption lines

have appreciable polarization

Calculated Examples:

Ion	C I	C II	Si I	Si II	O I	S I
Wavl (A)	$1329-1$ 561	1336	$1695-2$ 529	1265	1302	1807
$P_{\max }$	18%	15%	20%	7%	29%	22%
Ion	S II	Ti II	Cr I	Cr II	NI	S III
Wavl (A)	1250	3385	$4254-4$ 290	$2741-2$ 767	1200	$1012-1$ 202
$P_{\max }$	12%	7%	5%	21%	5.5%	24.5%

Many more lines:
Fe I, Fe II, Fe III, Fe III, Mn II, Ti III, C II, N II, ...

Our results: polarization of emission lines

from aligned atoms

Calculated Examples:

ion	HI $($ Bal $)$	Na I	K I	N V	O I	P V	S II	AI II	Ti II
Wavl	$3646-$ 6365	5892	7667	1243	$5555-$ 7254	1118	$1254-$ 1259	8843	3073
$P_{\max }$	25%	21%	20%	22%	2.3%	27%	31%	20%	7.3%

Many more lines:
NI, N II, N III, P III, AI I, AI III, Fe I, Fe II, Fe III, Fe III, Mn II, Ti III, C II, N II, CrI...

How to observe it? - I. Absorption

- Species w. at least 3 sublevels on the ground state or metastable state
- Spectral resolution:

R>20,000

- Wavelengths: Optical \& UV

General Case

Vexclusive indicator of the alignment effect.区qualitative measurement is adequate for determining 2D field in the pictorial plane.

How to observe it? - II. Emission

- Species w. at least 3 sublevels on the ground state or metastable state
- Spectral resolution: R>5,000
- Wavelengths:
1.Resonance: Optical \& UV
2.fluorescence: UV/optical/NIR

『More available lines.
■Marginal averaging along line of sight.

3rd possibilty: Forbidden (submm, IR) transitions within the aligned ground state

Schematics of UVpumping of CI $610 \mu \mathrm{~m}$ emission (similar to Wouthuysen-Field effect)

[CI] Emission
Percentage of $\mathrm{P} /(\tau)$

区qualitative measurement is adequate for determining 2D field in the pictorial plane.

Forbidden (submm, IR) transitions

 within the aligned ground state areCalculated Examples:

	$[\mathrm{O} \mathrm{I]}$	$[\mathrm{C} \mathrm{I}]$	$[\mathrm{C} \mathrm{II}]$	$[\mathrm{Si} \mathrm{II}]$	$[\mathrm{S} \mathrm{IV}]$
Lines	$3 \mathrm{P}_{1} \rightarrow 3 \mathrm{P}_{2}$	$3 \mathrm{P}_{1} 3 \mathrm{P}_{0}$	$3 \mathrm{P}_{3 / 2} 3 \mathrm{P}_{1 / 2}$	$3 \mathrm{P}_{3 / 2} 3 \mathrm{P}_{1 / 2}$	$3 \mathrm{P}_{3 / 2} 3 \mathrm{P}_{1 / 2}$
Wavl	$63.2 \mu \mathrm{~m}$	$610 \mu \mathrm{~m}$	$157.7 \mu \mathrm{~m}$	$34.8 \mu \mathrm{~m}$	$10.5 \mu \mathrm{~m}$
$\mathrm{P}_{\max }$	24%	11%	2.7%	4%	11%

Many more lines:

$[\mathrm{H} \mathrm{I}]$	$[\mathrm{N} \mathrm{V}]$	$[\mathrm{O} \mathrm{II}]$	$[\mathrm{O} \mathrm{III}]$	$[\mathrm{Fe}$ II $]$	$[\mathrm{S} \mathrm{I]}$
21 cm	70.7 mm	$0.373 \mu \mathrm{~m}$	$51.8 / 88.4 \mu \mathrm{~m}$	$35 \mu \mathrm{~m}$	$25 \mu \mathrm{~m}$
$[\mathrm{~N} \mathrm{III}]$	$[\mathrm{N} \mathrm{II}]$	$[\mathrm{S} \mathrm{II}]$	$[\mathrm{S} \mathrm{III}]$	$[\mathrm{Si} \mathrm{I}]$	$[\mathrm{Ne} \mathrm{III}]$
$57.3 \mu \mathrm{~m}$	$122 / 205 \mu \mathrm{~m}$	$0.67 \mu \mathrm{~m}$	$18.7 / 33.5 \mu \mathrm{~m}$	$129.7 / 68.5 \mu \mathrm{~m}$	$15.6 \mu \mathrm{~m}$

Using several lines, it's possible to get 3D B

3D information: from degree of polarization $P\left(\rho^{2}{ }_{0}\left(\theta_{r}\right), \theta\right)$. Two lines are enough

$\mathrm{P} / \tau(\mathrm{OI})$

Using several lines, it's possible to get 3D B

3D information: from degree of polarization $P\left(\rho^{2}{ }_{0}\left(\theta_{r}\right), \theta\right)$. Two lines are enough

$\mathrm{P} / \tau(\mathrm{OI})$

Using several lines, it's possible to get 3D B

3D information: from degree of polarization $P\left(\rho^{2}{ }_{0}\left(\theta_{r}\right), \theta\right)$. Two lines are enough

$\mathrm{P} / \tau(\mathrm{OI})$

Using several lines, it's possible to get 3D B

3D information: from degree of polarization $P\left(\rho^{2}{ }_{0}\left(\theta_{r}\right), \theta\right)$. Two lines are enough

$\mathrm{P} / \tau(\mathrm{OI})$

Using several lines, it's possible to get 3D B

3D information: from degree of polarization $P\left(\rho^{2}{ }_{0}\left(\theta_{r}\right), \theta\right)$. Two lines are enough

$\mathrm{P} / \tau(\mathrm{OI})$

Ex. I: alignment allows studies of interplanetary magnetic field

MHD simulations of comet's wake.

Spatial and temparal variation of turbulent magnetic field can be studied.

Ex. I: alignment allows studies of interplanetary magnetic field

MHD simulations of comet's wake.

Ex. I: alignment allows studies of interplanetary magnetic field

MHD simulations of comet's wake.

Resonance scattering of solar light by sodium tail from comet.

Spatial and temparal variation of turbulent magnetic field can be studied.

Ex. I: alignment allows studies of interplanetary magnetic field

MHD simulations of comet's wake.

P: -8\%~14\% for Na D2

Resonance scattering of solar light by sodium tail from comet.

Spatial and temparal variation of turbulent magnetic field can be studied.

Ex. II: Polarization from circumstellar

 envelope

Polarization vectors are centrosymmetric without magnetic realignment

O I ($J_{u}=3 / 2$)

Aligned species produces different polarization pattern from non-aligned species.

Ex. III: alignment allows study of magnetic field in the epoch of Reionization

Polarization of OI $63.2 \mu \mathrm{~m}$

$\beta=$ UV excitation rate/ CMB excitation rate
(Yan \& Lazarian 2008)

Ex. III: alignment allows study of magnetic field in the epoch of Reionization

Epoch of reionization

Polarization of OI $63.2 \mu \mathrm{~m}$

$\beta=$ UV excitation rate/ CMB excitation rate
(Yan \& Lazarian 2008)

Ongoing projects

Sounding rocket flight is funded. (P)
Nordsieck)

New technique opens wide avenues for magnetic field studies
Comet and Io Na tails àre easy test.

Studies of polarization from debris disk are intended.
CFHT

Studies of [C I]
polarization.

