Atomic Alignment: New probe for Magnetic fields in diffuse medium

Huirong Yan (Kavli Institute of Astronomy & Astrophysics@PKU, CHINA)

Collaboration: A. Lazarian (UW-Madison, US)

Atoms on the ground state can be aligned by anisotropic radiation Classical Analogy

Thermal system

Radiatively pumped system

radiation

Atomic alignment is differential occupation of the sublevels of the ground (or metastable) state.

by isotropic emission.

Atomic alignment is sensitive to weak magnetic fields

 v_1 –Larmor frequency

A-Einstein coefficient, $v_{\Delta I} - E_{\Delta I}/h$

For weak field (~nG, 1G), atomic alignment happens.

Polarization of absorption is either || or \perp to the magnetic field

 $\rho_0^2 = (\rho_1 + \rho_{-1} - 2\rho_0)/6^{1/2} (\text{for J or F=1})$

Polarization changes direction at Van Vleck angle between pumping radiation and magnetic field $\theta_r = 54.7^\circ$, 180°- 54.7°.

Our results: many observed absorption lines have appreciable polarization Calculated Examples:

lon	CI	CII	Si I	Si II	01	SI
Wavl (A)	1329-1 561	1336	1695-2 529	1265	1302	1807
P _{max}	18%	15%	20%	7%	29%	22%
lon	SII	Ti II	Cr I	Cr II	NI	S III
Wavl (A)	1250	3385	4254-4 290	2741-2 767	1200	1012-1 202
P _{max}	12%	7%	5%	21%	5.5%	24.5%

Many more lines: Fe I, Fe II, Fe III, Fe III, Mn II, Ti III, C II, N II, ...

Our results: polarization of emission lines from aligned atoms

Calculated Examples:

ion	HI	Na I	KI	NV	01	Ρ۷	SII		Till
	(Bal)		15 7 1						
Wavl	3646- 6365	5892	7667	The second s	5555- 7254	1118	1254- 1259	8843	3073
P _{max}	25%	21%	20%	22%	2.3%	27%	31%	20%	7.3%

Many more lines:

N I, N II, N III, P III, AI I, AI III, Fe I, Fe II, Fe III, Fe III, Mn II, Ti III, C II, N II, Cr I ...

How to observe it? - I. Absorption

Species w. at least 3 sublevels on the ground state or metastable state
Spectral resolution: R>20,000

Wavelengths: Optical & UV

exclusive indicator of the alignment effect.
qualitative measurement is adequate for determining 2D field in the pictorial plane.

How to observe it? - II. Emission

- Species w. at least 3 sublevels on the ground state or metastable state
- Spectral resolution: R>5,000
- Wavelengths:1.Resonance: Optical & UV
- 2.fluorescence: UV/optical/NIR

More available lines.Marginal averaging along line of sight.

3rd possibility: Forbidden (submm, IR) transitions within the aligned ground state

• qualitative measurement is adequate for determining 2D field in the pictorial plane.

Forbidden (submm, IR) transitions within the aligned ground state are <u>Calculated Examples</u>:

	[O I]	[C I]	[C II]	[Si II]	[S IV]
Lines	$3P_1 \rightarrow 3P_2$	$3P_1 \rightarrow 3P_0$	$3P_{3/2} \rightarrow 3P_{1/2}$	$3P_{3/2} \rightarrow 3P_{1/2}$	$3P_{3/2} \rightarrow 3P_{1/2}$
Wavl	63.2 μm	610 µm	157.7µm	34.8µm	10.5 µm
P _{max}	24%	11%	2.7%	4%	11%

Many more lines:

[H I]	[N V]	[O II]	[O III]	[Fe II]	[S I]
21cm	70.7mm	0.373 μm	51.8/88.4 µm	35µm	25µm
[N III]	[N II]	[S II]	[S III]	[Si I]	[Ne III]
57.3µm	122/205µm	0.67µm	18.7/33.5µm	129.7/68.5µm	15.6µm

3D information: from degree of polarization $P(\rho^2_0(\theta_r),\theta)$. Two lines are enough

3D information: from degree of polarization $P(\rho^2_0(\theta_r), \theta)$. Two lines are enough

3D information: from degree of polarization $P(\rho^2_0(\theta_r),\theta)$. Two lines are enough

3D information: from degree of polarization $P(\rho_0^2(\theta_r), \theta)$. Two lines are enough

3D information: from degree of polarization $P(\rho^2_0(\theta_r),\theta)$. Two lines are enough

MHD simulations of comet's wake.

MHD simulations of comet's wake.

MHD simulations of comet's wake.

Resonance scattering of solar light by sodium tail from comet.

MHD simulations of comet's wake.

y $P_{max} \sim 10\%$ θ_0 θ_B B $P_{max} \sim 10\%$

P: -8%~14% for Na D2

Resonance scattering of solar light by sodium tail from comet.

Ex. II: Polarization from circumstellar envelope

Polarization vectors are centrosymmetric without magnetic realignment

Aligned species produces different polarization pattern from non-aligned species.

Ex. III: alignment allows study of magnetic field in the epoch of Reionization

Schematics of UV pumping of OI 63.2µm emission

Polarization of OI 63.2 µm

β= UV excitation rate/ CMB excitation rate (Yan & Lazarian 2008)

Ex. III: alignment allows study of magnetic field in the epoch of Reionization

-0.4^L

 β = UV excitation rate/ CMB excitation rate (Yan & Lazarian 2008)

θ_100

50

θ=30°

θ=60°

θ=90°

150

Ongoing projects

Sounding rocket flight is funded.(PI Nordsieck)

Ongoing observation at Steward MMT(w. H. Meng)

New technique opens wide avenues for magnetic field studies

Comet and Io Na tails are

easy test.

SALT

Studies of polarization from debris disk are intended.

CFHT

Studies of [C I] polarization.